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Abstract: The beetle antennae search (BAS) algorithm is an outstanding representative of swarm
intelligence algorithms. However, the BAS algorithm still suffers from the deficiency of not being
able to handle high-dimensional variables. A quantum-based beetle swarm optimization algorithm
(QBSO) is proposed herein to address this deficiency. In order to maintain population diversity and
improve the avoidance of falling into local optimal solutions, a novel quantum representation-based
position updating strategy is designed. The current best solution is regarded as a linear superposition
of two probabilistic states: positive and deceptive. An increase in or reset of the probability of the
positive state is performed through a quantum rotation gate to maintain the local and global search
ability. Finally, a variable search step strategy is adopted to speed up the ability of the convergence.
The QBSO algorithm is verified against several swarm intelligence optimization algorithms, and the
results show that the QBSO algorithm still has satisfactory performance at a very small population
size.

Keywords: BAS algorithm; QEA; swarm intelligent optimization; numerical optimization

1. Introduction

Population-based intelligence algorithms have been widely used in many fields be-
cause of their simple principle, easy implementation, strong scalability, and high optimiza-
tion efficiency, such as in UAV path planning [1–3], combinatorial optimization [4,5], and
community detection [6,7]. With the increase in the speed of intelligent computing and
the development of artificial intelligence, many excellent intelligent algorithms have been
proposed such as the seagull optimization algorithm (SOA) [8], artificial bee colony (ABC)
algorithm [9], and gray wolf optimization (GWO) algorithm [10]. In addition, there are
several intelligent algorithms that were proposed earlier and developed relatively well,
such as the particle swarm optimization (PSO) algorithm [11], genetic algorithm (GA) [12],
ant colony optimization (ACO) algorithm [13], starling murmuration optimizer (SWO) [14]
algorithm, and simulated annealing (SA) algorithm [15].

In 2017, the BAS algorithm was proposed by Jiang [16]. The largest difference between
the BAS algorithm and other intelligent algorithms is that the BAS algorithm only needs
one beetle to search. Due to the advantages of having a simple principle, fewer parame-
ters, and less calculation, it has been successfully applied to the following optimization
fields. Khan et al., proposed an enhanced BAS with zeroing neural networks for solving
constrained optimization problems online [17]. Sabahat et al., solved the shortcomings of
the low positioning accuracy of sensors in Internet of Things applications using the BAS
algorithm [18]. Khan et al., optimized the trajectory of a five-link biped robot based on the
longhorn BAS algorithm [19]. Jiang et al., implemented a dynamic attitude configuration of
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a wearable wireless body sensor network through a BAS strategy [20]. Khan et al., proposed
a strategy based on the BAS algorithm to search for the optimal control parameters of a
complex nonlinear system [21].

Although the BAS algorithm exhibits its unique advantages in terms of the calculation
amount and principle, the BAS algorithm drastically reduces the optimization performance
and even fails to search with high probability when dealing with multidimensional (more
than three-dimensional) problems. The reason is that the BAS algorithm is a single search
algorithm and, during the search process, the individual can only move towards one
extreme point. In multidimensional problems, there is often more than one extreme point,
so it is likely to fall into a local extreme point. On the other hand, the step size during the
exploration of the beetle decreases exponentially, which means that the beetles may not be
able to jump out of local optima. For these reasons, the BAS algorithm is not equipped to
handle complex problems with three or more dimensions.

In order to solve the BAS algorithm’s defect of not being able to handle high-dimensional
problems, a quantum-based beetle swarm optimization algorithm inspired by quantum
evolution is proposed in this paper [22]. On the one hand, quantum bits were used to
represent the current best solution as a linear superposition of the probability states of “0”
and “1” to improve the early exploration capability of the QBSO algorithm. On the other
hand, replacing the individual search with a swarm search and a dynamic step adjustment
strategy was introduced to improve the exploitation capability of the beetles. Our work
has two main contributions:

• We solved the shortcoming of the BAS algorithm in that it cannot handle high-
dimensional optimization problems, and the designed QBSO algorithm has an excel-
lent performance in solving 30-dimensional CEC benchmark functions.

• We used quantum representation to deal well with the balance between the popula-
tion size in terms of the exploratory power and the algorithmic speed, using fewer
individuals to represent more information about the population.

The structure of this article is as follows. Section 2 briefly describes the principle of
the BAS algorithm, including the implications of the parameters and the procedure of
the BAS algorithm. The innovations of the algorithm (i.e., quantum representation (QR)
and quantum rotation gate (QRG)) are presented in Section 3. A series of simulation tests
are presented in Section 4. The optimization performance of the QBSO algorithm was
evaluated by solving four benchmark functions with three comparison algorithms under
different populations. Section 5 is the conclusion.

2. Related Work

Although the BAS algorithm shows better performance than other swarm intelligence
algorithms in dealing with some low-dimensional problems, as mentioned above the
performance of the BAS algorithm in high-dimensional variable optimization problems
is poor or even largely ineffective. In order to solve this problem, some researchers have
conducted related improvement work.

Khan [17] explained the inability of the BAS algorithm to handle high-dimensional
optimization problems. It is claimed that the BAS algorithm has a “virtual particle” limita-
tion, which means it computes the objective function three times per iteration. To overcome
around this problem, a continuous-time variant of the BAS was proposed in which the
“virtual particle” limitation is eliminated. In this algorithm, a delay factor was introduced.
It is critical to keep track of the previous states to determine the current states. Furthermore,
the parallel processing nature of a zeroing neural network was integrated with BAS to
further boost its search for an optimal solution.

Wang [23] combined the population algorithm with a feedback-based step-size strategy,
but this ignores the information interaction between individuals and the population, and
just blindly expands the population size, which will inevitably increase the calculation. To
accelerate the convergence speed and avoid falling into the local optimal solution, adaptive
moment estimation was introduced into the algorithm [24]. The algorithm adjusts different
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dimensional steps using ADAM update rules, replacing all dimensional steps with the same
size. However, the algorithm only performs well on nonconvex problems. Lin [25] added
linearly decreasing inertia weights to the decaying process of the beetle step change to
guarantee that the late step size is large enough to jump out of the local optimum. However,
this also leads to a slow convergence of the algorithm in the later stages.

Zhou [26] combined the BAS algorithm with the solid annealing process from the
perspective of algorithm combination. The inability of the BAS algorithm to handle opti-
mization problems in more than three dimensions is eliminated by complementary advan-
tages. It seems that most current researchers are cleverly circumventing the shortcomings
of the BAS through the fusion of multi-intelligent optimization algorithms. Shao [27]
proposed a beetle swarm algorithm that divides individuals into elite individuals and
other individuals. Each elite individual forms a unique clique, and the individuals in the
group will move toward the optimal solution under the guidance of the elite individuals.
Yu [28] incorporated the BAS algorithm as a search strategy into the gray wolf optimization
algorithm to retain the advantages of the BAS algorithm while avoiding high-dimensional
divergence. However, this does not essentially solve the deficiency of the BAS. Lv [29]
integrated variation and crossover into the population evolution process to improve the
global search for better results. In simple terms, it is a fusion of the BAS algorithm and
several features of the genetic algorithm. All of the studies above have similarities: using
group search to expand the search dimension and solve the shortcoming of one individual’s
lack of search ability in higher dimensions. However, this operation is contrary to the
essence of the BAS algorithm, which is “simple” and “rapid”.

Quantum computing is based on quantum bits, which, unlike the 0.1 bits of a computer,
can be a linear superposition of two states. Based on the unique superposition, entangle-
ment, and interference properties of quantum computing, quantum-based algorithms in
the field of optimization have great potential to maintain population diversity and prevent
falling into local optima [30].

Kundra [31] combined the FIRED algorithm with the cuckoo search optimization
algorithm to use quantum superposition state to ensure population diversity. Zamani [32]
proposed a quantum-based algorithm for bird navigation optimization. It extends the
empirical and social learning in the PSO algorithm to short-term and long-term memory.
The probability of the algorithm jumping out of the local optimum is improved by quan-
tum mutation and quantum crossover using the 0–1 representation of quantum for the
crossover operation, which is cleverly combined with differential evolution. Inspired by the
literature [32], Nadimi-Shahraki extended the QANA algorithm to a binary representation
for solving the feature selection problem for large medical datasets, showing satisfactory
results [33]. Zhou [34] introduced a truncated mean stabilization strategy based on the
quantum particle swarm algorithm [35], while using quantum wave functions to locate the
global optimal solution. The improved algorithm improves the population diversity and fu-
sion efficiency. Hao [36] designed the Hamiltonian mapping between the problem domain
and the quantum, and solved the general locally constrained combinatorial optimization
problem based on the quantum tensor network algorithm. Amaro [37] explored the use
of causal cones to reduce the number of qubits required on a quantum computer, and in-
troduced a filtering variational quantum eigen-solver to make combinatorial optimization
more efficient. Fallahi [38] used quantum solitons instead of a wave function, and combined
them with the PSO algorithm to improve the performance of the algorithm. Soloviev [39]
proposed a quantum approximate optimization algorithm to solve the problem of Bayesian
network structure learning. A study [40] introduced the quantum computer mechanism
into the bat algorithm. Incorporating a chaotic cloud mechanism to accelerate the conver-
gence of positive individuals and chaotic perturbation of negative individuals with the aim
of increasing population diversity, the algorithm’s ability to handle complex optimization
problems is verified through comparative experiments.

In summary, it can be concluded that the integration of population-based BAS with
quantum theory is a feasible solution.
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3. Algorithm
3.1. Principle of the BAS Algorithm

The BAS algorithm is inspired by the foraging behavior of beetles in nature (see in
Figure 1). Beetles have left and right antennae, which can sense the intensity of food odors
in the environment. Beetles move toward food according to the difference in the odor’s
strength as perceived by the left and right antennae. When the intensity of an odor that is
perceived by the left antenna is greater than that by the right antenna, the beetle moves
toward the left. Otherwise, the beetle moves toward to the right. The smell of food can
be regarded as an objective function. The higher the value of the objective function, the
closer the beetle is to the food. The BAS algorithm simulates this behavioral characteristic
of beetles and carries out an efficient search process.
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Figure 1. Feeding behavior of beetles.

Similar to other intelligent optimization algorithms, the position of an individual
beetle in the D-dimensional solution space is X = (X1, X2, · · ·XD). The positions of the left
and right antennae of the beetle are defined in the following formula: Xr = X + l ∗

→
d

Xl = X− l ∗
→
d

(1)

where l denotes the distance between the beetle’s center of mass and the antennae; d
represents a random unit vector that needs to be normalized to:

→
d =

rands(D, 1)
‖rands(D, 1)‖2

(2)

Based on the comparison of the intensity of an odor by the left and right antennae, the
updated adjustment strategy for the next exploration location of the beetle is as follows:

Xt+1 = Xt + δt ∗
→
d ∗ sign[ f (Xr)− f (Xl)] (3)

where t represents the current number of iterations of the algorithm; f (·) represents the
fitness function; δt is the exploration step at the tth iteration; ε represents the step decay
factor, for which the usual value is 0.95; and sign(·) denotes the sign function. The specific
definitions of the step and sign function are as follows:

δt+1 = δt × ε (4)

sign(x) =


1, i f x > 0,
0, i f x = 0,
−1, otherwise

(5)

The basic flow of the BAS algorithm is as follows in Figure 2:
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3.2. Principle of the QBSO Algorithm

The BAS algorithm is limited by a single individual search and has poor optimization
performance in handing multidimensional complex optimization problems. In order to
solve this shortcoming, the QBSO algorithm was designed in this study.

3.2.1. Quantum Representation

The exploration strategy of the BAS algorithm is similar to other intelligent optimiza-
tion algorithms, in which balanced exploration and exploitation are achieved by controlling
the step size. However, this balancing effect is weak. The premature convergence originates
from loss of diversity. Herein, we introduce an alternative approach for preserving diversity
of the population. We offer a new comprehension of the concept of optimal solution. The
current optimal solution is considered a linear superposition of two probabilistic states: “0”
state and “1” state. A qubit of a quantum bit string of length n can be defined as follows:[

α1 α2 · · · αn
β2 β2 · · · βn

]
(6)

where αi ∈ [0, 1], βi ∈ [0, 1], and it satisfies the condition that α2
i + β2

i = 1(i = 1, 2, · · · , n);
α2 represents the amplitude of the probability in the “1” state; β2 represents the amplitude
of the probability in the “0” state. The quantum representation of the current global optimal
candidate solution can be summarized as follows:

xT
g ,

[
xg,1 xg,2 · · · xg,n
α1 α2 · · · αn

]
(7)
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To compute the QR observations, a complex function called the wave function ω(x, y)
is introduced here. |ω(x, y)|2 is the probability density, which represents the probability of
a quantum state occurring in the corresponding space and time.

|ω(xi)|2 =
1√

2πσi
exp

(
− (xi − µi)

2

2σi

)
, i = 1, 2, · · · , n (8)

where µi is the value of the function expectation; σi represents the standard deviation of
the function. The formula for calculating the observed value of the current global optimal
solution is as follows:

x̂g,i = rand× |ω(xi)|2 × (xi,max − xi,min) (9)

where the expected value of the wave function calculation process can be expressed as Xg,i

and the variance value as σ2
i (|ϕi〉 ).

σ2
i (|ψi〉) =

{
1− |αi|2, i f |ψi〉 = |0〉,
|αi|2, if |ψi〉 = |1〉,

(10)

The observations of |ϕi〉 using a stochastic process are:

|ψi〉 =
{
|0〉, if rand ≤ α2

i
|1〉, if rand > α2

i
(11)

The direction of the convergence for each beetle is determined by observing the
individuals with the current global optimal solution:

dj,c = x̂g,i − xt (12)

Xt+1 = Xt + δt ∗
→
d ∗ sign[ f (Xr)− f (Xl)] + dj,c (13)

3.2.2. Quantum Rotation Gate

In the quantum genetic algorithm, since the chromosomes under the action of quantum
coding are no longer in a single state, the traditional selection, crossover, and mutation
operations cannot be continued. Therefore, a QRG is employed to act on the fundamental
state of the quantum chromosome to make them interfere with each other and change the
phase, thus changing the distribution domain of αi.

Here, QRG is also used to update the probability amplitude of the optimal solution. By
increasing the rotation angle, the probability amplitude of αi is improved. In this way, the
convergence rate of individuals toward the global optimal solution is accelerated. At the
beginning of the algorithm, the corresponding probability amplitudes of αi and βi are set
to
√

2/2. If the global optimal solution changes after the end of the iteration, αi is increased
by the QRG. Otherwise, all probability amplitudes are reset to the initial value to prevent
the algorithm from falling into the local optimum. The update strategy of the QRG is as
follows:

αi(t + 1) = [cos(∆θ)− sin(∆θ)]

 αi(t)√
1− [αi(t)]

2

 (14)

αi(t + 1) =


√

η, if αi(t + 1) <
√

η,
αi(t + 1), if

√
η ≤ αi(t + 1) ≤

√
1− η,√

1− η, if αi(t + 1) >
√

1− η,
(15)

where η ∈ [0, 1], which is usually a constant; ∆θ is the rotation angle of the QRG, which is
equivalent to the step size defining the convergence rate toward the current best solution.
Briefly, QRA is considered a variation operator here to enhance the probability of obtaining
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a positive optimal solution. If successive iterations are still the current optimal solution, α
is increased by QRA, while indicating an increase in the probability of the current optimal
solution becoming the global optimal solution. Otherwise, α is reset to maintain vigilance
against falling into a local optimum.

In addition, the search step size of the BAS algorithm also affects the convergence rate
of the algorithm. If the step size is too large, the convergence rate of the QBSO algorithm
will be reduced. If the step size is too small, it may lead to search failure. Therefore, this
study changed the step size updating strategy: when the global optimal solution changes,
the step size is updated according to Formula (16). Otherwise, the decay of the step size
accelerates. In order not to affect the search accuracy, the value of εmin is set to 0.8 according
to the original study. The flow of the QBSO algorithm is shown in Figure 3.

δt+1 =

{
δt × ε, i f x̂g not changed
δt × εmin, i f x̂g changed

(16)
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3.3. Computational Complexity Analysis

The main time complexity in the QBSO algorithm is within the while loop step. Let n
denote the population size and D denote the number of decision variables. The complexity
of calculating the direction of the convergence di,c is O(Dn). The complexity of updating
the location information x is O(n). The complexity of the quantum revolving gate is O(n2).
When dealing with large-scale optimization problems, D � n. According to the operation
rules of the symbol O, the worst-case time complexity for the QBSO can be simplified as
O(TD). When dealing with nonlarge-scale optimization problems, D ≈ n. The worst-case
time complexity for the QBSO algorithm can be simplified as O(T ∗ n(d + n)).

4. Experiment

Since the BAS algorithm cannot solve high-dimensional complex optimization prob-
lems, it cannot be used for simulation comparison experiments with the QBSO algorithm.
Therefore, the pigeon-inspired optimization algorithm (PIO), seagull optimization algo-
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rithm (SOA), gray wolf optimization algorithm (GWO), and beetle swarm optimization
(BSO) algorithm [41] were chosen as the comparison objects. To ensure the validity of
the experimental results, the common parameter settings were identical in all algorithms,
where the rotation angle in the QBSO was −11◦ [22]. The other algorithm parameters
remained the same as in the original literature. We used trial and error to select the number
of iterations. In the context of a population size of 30, the Griewank function was optimized
with different numbers of iterations (see Figure 4).
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When the number of iterations is 100, all algorithms basically converge to near the
global optimal solution. Each algorithm is comparable. Therefore, we set the iteration
number to 100.

To ensure that the PIO, SOA, and GWO algorithms are well explored and developed,
researchers usually maintain the population size of the algorithms between 30 and100. If
the population is too small, it will affect the searching and convergence abilities of the
algorithm. Too large of a population can waste population resources and increase the
search time. In order to verify that quantum expression can represent richer population
forms with fewer individuals, a comparison experiment with the population size set to 8
and 30 was performed.

We conducted multiple comparison experiments on both the unimodal unconstrained
optimization problem and multimodal unconstrained optimization problem. The unimodal
benchmark function has only one optimal solution and can be used to detect how quickly
the algorithm converges to the vicinity of the optimal solution. The multimodal benchmark
function has multiple optimal solutions and is used to detect the ability of the algorithm to
jump out of the local optimum.

4.1. Unimodal Unconstrained Optimization

The unimodal function only has a single optimum solution and the benchmark prob-
lems can be seen in Table 1 [42], where the decision variables of F1 and F3 are 2-dimensional
and the other functions are 30-dimensional. The formulation of the functions f (y), their
global minima f (y)min, and the value of the estimated variables y(t) are shown in Table 1.
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Table 1. Unimodal benchmark functions.

Name Formulation f(y) f(y)min y(t)

F1 −200e−0.2
√

y2
1+y2

2 −200 {0,0}

F2 ∑n−1
i=1
(
y2

i
)(y2

i+1+1)
+
(

y2
i+1

)(y2
i +1) 0 {0, 0, · · · , 0}

F3 −
1+cos

(
12
√

y2
1+y2

2

)
(0.5(y2

1+y2
2)+2)

−1 {0,0}

F4 ∑n
i=1|yi|i+1 0 {0, 0, · · · , 0}

To demonstrate that the QBSO algorithm can exhibit an excellent optimization perfor-
mance at a relatively small population size, we conducted comparative experiments with
population sizes of 8 and 30 under unimodal optimization problems. Each algorithm was
run independently 100 times. The best, worst, average, and variance of the results obtained
by each algorithm were collected and used to verify the performance of the algorithm. The
optimization results of the unimodal benchmark functions are shown in Tables 2 and 3.

We randomly chose 1 of the 100 independent runs and plotted the algorithm opti-
mization iteration process as a graph, as shown in Figure 4. Considering that when the
population size was eight, the optimization results of the PIO algorithm, SOA, and GWO
algorithm were so different from the QBSO that it was easy to compress the QBSO into an
approximate horizontal line in the figure, we omitted the iterative curve plot here for the
population size of eight.

Table 2. Results of the unimodal benchmark function experiments (population size = 30).

Name Algorithm Best Worst Average Variance Time(s)

F1

PIO −199.7120 −175.2841 −195.4801 19.4308 0.029
SOA −199.9893 −45.0261 −185.6132 658.3112 0.010

GWO −200 −200 −200 10−28 0.011
QBSO −200 −199.9999 −200 10−10 0.087
BSO −200 −177.8722 −197.8545 10.3658 0.009
BAS −199.9965 −199.8666 −199.9398 10−4 0.017

F2

PIO 10−4 31.4922 6.2104 60.2032 0.027
SOA 0.0020 104 103 107 0.018
GWO 0.0017 0.0391 0.0134 10−5 0.026
QBSO 10−7 10−5 10−6 10−11 0.152

BSO 0.1055 1.5872 1.2652 2.8857 0.018
BAS 8.366 33.949 19.747 24.237 0.017

F3

PIO −0.9998 −0.9291 −0.9509 10−4 0.029
SOA −1 −0.0352 −0.7232 0.0831 0.010
GWO −1 −0.9362 −0.9754 10−4 0.011
QBSO −1 −1 −1 10−23 0.088

BSO −1 −0.9362 −0.9641 10−4 0.010
BAS −0.996 −0.465 −0.897 10−3 0.018

F4

PIO 10−6 107 105 1012 0.066
SOA 0.0227 1045 1043 1088 0.025
GWO 10−4 103 27.9445 104 0.037
QBSO 10−19 10−15 10−16 10−31 0.181

BSO 10−4 104 103 107 0.025
BAS 19.887 104 103 108 0.017
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Table 3. Results of the unimodal benchmark function experiments (population size = 8).

Name Algorithm Best Worst Average Variance Time(s)

F1

PIO −200 −156.4101 −186.9236 126.6304 0.025
SOA −199.9457 −8.5804 −119.6113 103 0.009

GWO −200 −199.9999 −200 10−11 0.010
QBSO −200 −199.9996 −200 10−9 0.075
BSO −199.9958 −10−4 −177.3426 103 0.004

F2

PIO 0.0082 137.1152 26.5353 771.5456 0.020
SOA 73.2925 104 104 108 0.015
GWO 3.2853 57.7149 16.7590 111.2829 0.015
QBSO 10−8 10−6 10−6 10−12 0.095

BSO 3.4566 67.7782 21.5658 155.9654 0.010

F3

PIO −1 −0.6185 −0.8981 0.0072 0.025
SOA −0.9635 −0.0045 −0.2380 0.0722 0.009
GWO −1 −0.9362 −0.9478 10−4 0.010
QBSO −1 −1 −1 10−21 0.076

BSO −1 −0.4877 −0.9238 0.0079 0.003

F4

PIO 10−4 1013 1011 1024 0.031
SOA 1010 1048 1047 1095 0.013
GWO 105 1019 1017 1036 0.018
QBSO 10−20 10−14 10−15 10−30 0.115

BSO 1017 1049 1047 1097 0.048

4.2. Multimodal Unconstrained Optimization

Multimodal functions contain more than one optimal solution, which will also mean
that the algorithm is more likely to fall into a local optimum when optimizing these
functions. The population-based intelligence optimization algorithm has an upper hand in
optimizing these functions, and this is the idea we improved. Collaborative search among
multiple individuals is less likely to fall into local optima than single-individual algorithms
such as the BAS algorithm. We dealt with these multimodal benchmark functions with the
solution space dimensions set to 30. The formulation of the functions f (y), their global
minima f (y)min, and the value of the estimated variables y(t) are shown in Table 4.

Table 4. Multimodal benchmark functions.

Name Formulation f(y) f(y)min y(t)

Ackley
−20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
−

exp
(

1
n

n
∑

i=1
cos(2πxi)

)
+ 20+ exp(1)

0 {0, 0, · · · , 0}

Griewank
n
∑

i=1

x2
i

4000 −
n
∏
i=1

cos
(

xi√
i

)
+ 1 0 {0, 0, · · · , 0}

Rastrigin 10n +
n
∑

i=1

(
y2

i − 10 cos(2πyi)
) 0 {0, 0, · · · , 0}

Quarrtic
n
∑

i=1
iy4

i + random[0, 1) 0 + rand {
√

i,
√

i, · · · ,
√

i}

Each algorithm was run independently 100 times. The optimization results of the
multimodal benchmark functions with the population sizes of 30 and 8 are shown in
Tables 5 and 6.
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Table 5. Results of the multimodal benchmark function experiments (population size = 30).

Name Algorithm Best Worst Average Variance Time(s)

Ackley

PIO 0.0210 5.6406 2.4490 2.5567 0.032
SOA 0.0620 21.3100 19.4798 19.0403 0.021
GWO 20.6624 21.1627 20.9935 0.0081 0.030
QBSO 10−4 0.0030 0.0011 10−7 0.140

BSO 10−5 6.1147 1.9238 2.2163 0.023
BAS 3.753 5.506 4.399 0.1266 0.017

Griewank

PIO 10−4 0.1750 0.0390 0.0020 0.034
SOA 10−5 4.4718 1.3344 0.8192 0.022
GWO 10−4 0.1750 0.0390 0.0020 0.029
QBSO 10−9 10−7 10−8 10−15 0.149

BSO 1.0792 5.4872 1.6651 0.4517 0.134
BAS 0.371 0.949 0.655 0.0156 0.017

Rastrigin

PIO 5.7557 247.5033 138.0620 103 0.037
SOA 0.4156 104 103 107 0.017
GWO 27.9906 143.6525 55.9303 359.9034 0.029
QBSO 10−6 10−4 10−5 10−9 0.143

BSO 5.57 104 103 106 0.022
BAS 82.358 102 102 102 0.017

Quarrtic

PIO 0.0042 103 105 156.2653 0.056
SOA 0.0084 108 107 1016 0.030
GWO 0.1165 1.1138 0.3810 0.0330 0.038
QBSO 10−6 0.0027 10−4 10−7 0.175

BSO 0.6687 108 108 1016 0.046
BAS 102 102 102 104 0.018

Table 6. Results of the multimodal benchmark function experiments (population size = 8).

Name Algorithm Best Worst Average Variance Time(s)

Ackley

PIO 0.0694 8.2592 4.3592 4.2878 0.023
SOA 11.3070 21.3684 21.0656 1.1158 0.016
GWO 20.7051 21.1816 21.0613 0.0065 0.015
QBSO 10−4 0.0015 10−4 10−8 0.097

BSO 10−5 20 3.5073 25.7410 0.006

Griewank

PIO 0.0011 1.0355 0.6206 0.1467 0.029
SOA 1.0423 13.6958 5.2995 10.9620 0.017
GWO 0.1494 0.9737 0.5470 0.0272 0.016
QBSO 10−10 10−8 10−8 10−16 0.095

BSO 1.2868 10.8748 3.9758 2.7785 0.007

Rastrigin

PIO 13.1031 312.7558 131.6508 103 0.028
SOA 159.2776 104 104 108 0.011
GWO 85.6812 329.1141 193.3601 103 0.016
QBSO 10−6 10−4 10−5 10−9 0.093

BSO 229.76 104 104 107 0.006

Quarrtic

PIO 0.0047 104 103 107 0.026
SOA 11.1423 109 108 1017 0.018
GWO 62.0423 104 103 107 0.018
QBSO 10−5 0.0109 0.0023 10−6 0.109

BSO 10.51 109 108 1018 0.013

Similarly, we randomly selected 1 result from the 100 independent runs of the multi-
modal optimization problem. The iterative process is presented in Figure 5. Here, for the
reasons we mentioned above, the iteration curve of the algorithm for a population size of
eight is not shown.
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Figure 5. The iteration curves when solving unimodal benchmark functions with four algorithms.

For algorithm designers, the accuracy and time consumption of the algorithm are
difficult to balance. For population-based optimization algorithms, the larger the dimen-
sionality, the larger the population size that needs to be consumed. It was clear from the
computational complexity analysis that the time required to maintain accurate optimization
results will grow exponentially. Our goal is to try to trade off dimensionality and time for
the decision maker, and to handle the high-dimensional optimization problem with the
smallest population size. We conducted a performance comparison of the algorithms in
different dimensions with the Rastrigin function, and the results are shown in Table 7.

Table 7. Comparison results of the impact of dimensions on algorithm performance.

D 5 10 15 20 25 30 35 40 45 50

PIO 17.5 48.1 68.7 90.1 102 102 102 102 102 102

SOA 758 103 103 104 104 104 104 104 104 104

GWO 4.63 19.9 40.7 72.4 102 102 102 102 102 102

BSO 15.99 102 102 102 103 103 103 103 103 103

QBSO 10−7 10−5 10−5 10−4 10−4 10−4 10−4 10−4 10−3 10−3

4.3. Population Diversity Study

We introduced the population diversity metric to validate the QBSO algorithm diver-
sity metric. The population diversity formula is follows:

DP(t) =
1

N(t)

N(t)

∑
j=1
‖xj(t)− x(t)‖2 (17)
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where x(t) is the mean value of individuals in the current generation. Considering that the
BAS is a single individual search algorithm, it cannot constitute a population. Therefore,
we chose the BSO algorithm as the diversity comparison algorithm.

5. Discussion

It can be observed from Tables 2 and 5 that the QBSO algorithm showed relatively
excellent performance in handing both unimodal optimization problems and multimodal
optimization problems. This is due to the fact that quantum representation can carry more
population information and prevent the loss of diversity. At the same time, the quantum
rotation gate as a variational operator can better help the algorithm to jump out of a local
optimal solution. The SOA did not perform well because the attack radius of the SOA
did not decrease with iteration. This improves the probability of the SOA jumping out of
local optimum, but it also loses the fast convergence capability. Therefore, the appropriate
iteration size for the QBSO algorithm may not be suitable for the SOA.

As shown by the data in Tables 3 and 6, the PIO algorithm, SOA, GWO algorithm, and
BSO algorithm cannot converge to the optimal solution when the population size is eight.
On the contrary, the QBSO algorithm continued to perform well.However, there are still
several flaws in the QBSO algorithm. From the curves shown in Figures 5 and 6, it can be
found that the QBSO algorithm seems to be unable to trade off accuracy and convergence
speed. There are two reasons for this: first, the step size adjustment strategy with feedback
leads to a slower convergence of the algorithm; second, the variational operation of the
quantum rotation gate maintains the diversity but also slightly sacrifices the convergence
speed. This will be the focus of our research in the next phase of work.
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Our design attempted to handle the high-dimensional optimization problem with a
minimal population. For further validation, we measured the population diversity and
the effect of dimensionality on the performance of the algorithms. Figure 7 shows that the
QBSO algorithm had a significant advantage in maintaining population diversity when
the number of iterations was less than 40. This was due to the quantum representation of
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the QBSO algorithm that enriched the population information and the quantum rotation
gate as a variational operator that improved the population variability. Table 7 illustrates
that, with increasing dimensionality and unchanged population size, the QBSO algorithm
shows the best adaptability, verifying the feasibility of the QBSO for high-dimensional
optimization problems.
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the population size = 30.

6. Conclusions

In this paper, we propose the QBSO algorithm to address the inability of the BAS
algorithm to handle high-dimensional optimization problems. Quantum representation
was introduced into the algorithm, which can carry more population information with
small-scale populations. To compare the performance with the PIO, SOA, GWO, and
BSO algorithms, multiple comparison experiments with population sizes of 8 and 30 were
conducted with unimodal benchmark functions and multimodal benchmark functions as
the optimization objectives, respectively. The experimental results show that the QBSO
algorithm still had satisfactory optimization capability at a population size of eight. The
global convergence ability of the algorithm and the feasibility of the quantum representation
were verified. The designed QBSO algorithm can handle high-dimensional optimization
problems with low population sizes and still have an excellent optimization performance.
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