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Abstract: Aerostatic bearings are considered crucial components that can improve the measurement
accuracy of ground simulation tests of space equipment. A structural optimization design method
is proposed to enhance the static performance of aerostatic bearings. A mathematical model which
can quickly calculate the aerostatic bearing capacity and gas consumption is established, and the
influence of structural parameters on bearing performance is analyzed using simulation software. By
comparing the convergence time and convergence results of the algorithm using different initialization
methods, the Latin hypercube initialization method is selected instead of the random initialization
method. The multi-objective particle swarm optimization algorithm is used to obtain the optimal
solution set distributed in the objective space. It is found that the optimized structural parameters
meet the requirements of improving the capacity and reducing gas consumption, which verifies the
method’s effectiveness in designing the structural parameters of aerostatic bearings.

Keywords: aerostatic bearing; bearing static performance; simulation analysis; improved multi-
objective particle swarm optimization algorithm; structure design

1. Introduction

In space equipment, it is necessary to detect the output torque, stiffness, precision,
and other indicators of the joint of the space manipulator in the ground simulation test
to ensure the reliability of the operation [1,2]. Compared with ordinary bearings, gas
bearings have the characteristics of extremely low friction resistance, clean media, and
good adaptability to high-speed rotational environments [3]. They show great application
prospects for improving the accuracy of the ground tests of space manipulator joints. Zhao
et al. summarized the research developments of aerostatic bearings and pointed out that
the applications of aerostatic bearings are affected by low load capacity and stability [4].
However, the development of high-speed machinery and high-precision machinery has
demanded higher performance of aerostatic bearings. Therefore, a reliable optimization
design method is needed to design the structural parameters of aerostatic bearings.

There are many structural parameters and physical parameters that affect the static
performance of aerostatic bearings. In the design process, there is a competitive relationship
between improving bearing capacity and reducing gas consumption. Therefore, optimizing
parameters while considering the static performance of aerostatic bearings has become
the key to the design of aerostatic bearings. Zhu et al. used the DIRECT and simulated
annealing (SA) algorithms to design the air slider. They found that the DIRECT algorithm
is more efficient in solving the non-linear slider optimization problem [5]. Wang et al.
used the hypercube segmentation method instead of the genetic algorithm to optimize
the air-bearing parameters. This algorithm shows the characteristics of a wide calculation
range and a small calculation amount [6]. Shie et al. used a hybrid genetic optimization
algorithm to calculate the optimal parameters of air bearing and verified the reliability of
the optimization design using experiments [7]. Li et al. used the maximum Mach number
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to predict bearing dynamic stability. Accordingly, they established the optimization model
to improve stiffness and eliminate micro-vibration [8]. Cao et al. established two theoretical
models of an ultra-low-friction cylinder to calculate the cylinder’s performance. Then, they
optimized the cylinder’s structure using a constrained optimal design method [9]. The
particle swarm optimization algorithm (PSO) is an evolutionary algorithm that simulates
bird predation. It is simple to implement and has been successfully applied to multi-
objective optimization problems [10]. Naderipour et al. converted two optimization
objective functions into a single objective function using the linear weighting method.
Then, they used the PSO algorithm to find the optimal combination of design variables [11].
Zhu et al. proposed an external archive-guided multi-objective particle swarm optimization
algorithm (AgMOPSO) and introduced the update mechanism of the archive. They verified
that AgMOPSO effectively improves the convergence speed when dealing with multi-
objective test problems [12]. Chen et al. proposed a double-loop multi-objective particle
swarm optimization algorithm to solve the problem when there are uncertain variables in
the optimization process [13]. Lee used MOPSO to optimize the structural parameters of
the turbofan engine and verified the convergence of MOPSO by comparing the Pareto front
with four solutions obtained using the single-objective optimization algorithm [14]. Gao
et al. improved the distribution of sub-problems using a weight vector adjustment strategy
instead of Euclidean distance to divide congestion degrees [15]. Jing et al. used a coupled
multi-objective optimization algorithm to optimize the screw centrifugal blood pump and
the Latin hypercube sampling method to generate an initial sample with a more uniform
distribution [16]. To save computation costs and ensure the reliability of the design method,
this paper uses the Latin hypercube initialization method instead of random initialization.
Then, the optimization results using different initialization methods are analyzed.
Another key to applying the multi-objective particle swarm optimization algorithm
to the optimal design of aerostatic bearings is calculating the static performance (bearing
capacity and gas consumption) through the basic structural parameters of the bearings.
The Reynolds equation of compressible fluid is the basic equation for calculating the per-
formance of gas bearings. Therefore, the essence of calculating the static performance
of aerostatic bearings is to solve the Reynolds equation. Mori researched the pressure
distribution of the gas-lubricated circular thrust bearing by assuming that the flow pat-
tern near an inlet could be divided into the supersonic flow region, the subsonic flow
region, and the viscous and isothermal flow region. He found that the pressure distribu-
tion at the orifice outlet was not consistent with the Reynolds equation [17]. Lund used
the spring and damping coefficients to study the dynamic performance and stability of
gas bearings [18]. Majumdar solved the continuity equation and the Reynolds equation
using the finite difference method to analyze the steady-state characteristics of porous gas
bearings [19]. Professor Liu et al. simplified the two-dimensional Reynolds equation into
a one-dimensional one using the linear gas source assumption, which greatly shortened
the calculation time of the static characteristics of aerostatic bearings compared with the
numerical calculation method [20]. Malik and Bert applied the differential quadrature
method to solve steady-state oil and gas lubrication problems in self-acting hydrodynamic
bearings [21]. Lo et al. derived the non-linear dimensionless Reynolds equation of the gas
flow within bearings and discretized it using the Newton method [22]. Yoshimoto et al.
analyzed the pressure distribution in the bearing clearance of circular aerostatic thrust
bearings with a single air supply inlet using CFD technology. It was found that the airflow
state will change in the rapid pressure recovery region [23]. Yang et al. used the Ph-method
to analyze the Reynolds equation and solved it using the finite difference method and
numerical integration. They analyzed the influence of the number and locations of entry
holes on the characteristics of aerostatic bearings [24]. Miyatake et al. determined discharge
coefficients for a small feed hole of an aerostatic thrust bearing by comparing the results
of a CFD simulation and a mathematical calculation model. They investigated the static
and dynamic characteristics of aerostatic thrust bearings using FDM to solve the Reynolds
equation and obtain the pressure distribution. It was found that the orifice could improve
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the damping and stiffness coefficient [25]. Zhao et al. used the finite difference method
(FDM) to analyze the pressure distribution of the multi-supply air cushion. According to
the principle of mass conservation, the correction iteration route of the pressure boundary
conditions of each supply hole was developed, and the pressure distribution and gas flow
under eccentric load were calculated [26]. Qiang et al. used the linear perturbation method
to solve the Reynolds equation. They found that the bearing capacity and the critical mass
of hydrogen gas bearings were slightly lower than other lubricating mediums [27].

Although the numerical calculation method shows high accuracy, there are some
problems, such as a large amount of calculation, complex calculation steps, and a large
amount of result data. Therefore, it is unsuitable as a solution method for the objective
function in the iterative process of the optimization algorithm. To decrease the calculation
time of the static performance, the engineering calculation model is established. In addition,
this paper also establishes a simulation model of an aerostatic bearing to verify the result of
the engineering calculation model and analyze the influence of the structural parameters
of the aerostatic bearing on static performance. Then, the multi-objective particle swarm
optimization algorithm is used to optimize the structural parameters of the aerostatic
bearing. Finally, the simulation model verifies the reliability of the optimization results,
confirming the feasibility of rapid optimization design.

2. Mathematical Model of Aerostatic Bearing
2.1. Structure of Aerostatic Bearing

The structure of the aerostatic bearing is shown in Figure 1. Aerostatic bearing adopts
double row orifice structure; the key parameters of the structure are bearing length L,
journal diameter D, distance from the center of the orifice to the outlet /, orifice diameter d,
gas film thickness h, eccentricity ¢, gas supply pressure Ps, and atmospheric pressure P,,.
When the journal is not eccentric, the gas film thickness is consistent at any circumferential
position, which is recorded as the average gas film thickness k.

aerostatic

bearing

——— orifice

— gas film

— journal

(a) (b)

Figure 1. (a) Structure diagram of aerostatic bearing; (b) orifice distribution diagram.

2.2. Engineering Calculation Method

The engineering calculation method usually expands the gas film of the aerostatic
bearing into a plane for analysis. According to the number of single row orifice #, it is
divided into n equal parts; each width is 271R/n, and the following assumptions are made:

1.  The gas film thickness is very small relative to the diameter of the journal. The
curvature of the gas film can be ignored. It is considered that the thickness of the gas
film in each equal area is a fixed value;

2. The gas film thickness is tens of microns. It can be considered that the gas pressure
and density distribution in the direction of the gas film thickness shows no change;



Appl. Sci. 2023, 13, 3355

40f17

3. Lubricating gas does not slide on the solid surface, and the velocity of gas on the solid
surface is the same as that on the solid surface;

4. As the lubricating gas is air and the density is small, the effect of volume force can be
ignored, and the gas flow in the lubrication process is assumed to be laminar flow;

5. Itis considered that the pressure between the two orifices in each equipartition area is
equal, and the pressure is equal to the pressure after gas throttling. It is assumed that
there is no gas flow between each equipartition area.

The gas film expansion diagram is shown in Figure 2. The direction of the gas flowing
to the end face is the x-axis, the direction of the gas film thickness is the y-axis, and the
circumferential direction is the z-axis. The gas film thickness at the orifice represents the
gas film thickness in an equal area. According to the assumption that the gas in each equal
area shows only one-dimensional motion flowing axially to the bearing outlet, the gas
momentum equation can be expressed as:

P _  %u

W*P‘ayz

%’:0 o
P _

E_O

The gas mass flow m;; of gas flowing out of the ith region can be obtained using
Equation (2):

2R [hi
My =b-mj = W pudy 2)

where m;, is the mass flow per unit width section perpendicular to the x-axis.
The gas film thickness h; of the ith region can be obtained using Equation (3):

hi = hgp(1 — ecos ;) (3)

where hy, is the average gas film thickness; ¢ is eccentricity; and g; is the position of the
orifice on the circumference of the bearing.

The gas mass flow m;, of gas flowing into the ith region can be obtained using Equation
(4):

2
mo = APy | Loy, )
S

where A is the cross-sectional area of the orifice; ¢ is the gas flow coefficient, and its value is
0.8; and v; is the flow function of the orifice, which is determined by the air supply pressure
and orifice outlet pressure.

_ 1/2
{k(z)(k“)/(k 1)] (P—O Sﬁk)
i kHP‘ 2/k ooy (k1) /K7 /2 :
e (OO R (O R PR

where P; and Py, are the gas supply pressure and the orifice outlet pressure of the ith
region, respectively, and f is the critical pressure ratio; the orifice throttling process can be
regarded as an adiabatic process, where k is the adiabatic index, with a value of 1.4, so the
critical pressure ratio is 0.528.

P = %)
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Figure 2. Sketch of gas film in the circumferential direction.

The expression of the inflow gas mass flow in each region can be obtained by integrat-
ing Equation (1) in the direction of gas film thickness and bringing it into Equation (2):

nRI3p, _dP
L= it pr
i 6unP, ~ dx (©)
By separating variables and integrating x and P, we can obtain:
12unP,
P2 Py = - By x(0 < x <) @)
TtRA? pq
Inserting the boundary condition when x = [, P = P;, we can obtain:
12unp,
P2 P2 = - Tyl 8
a 0i ﬂRh?pa il ®)

It can be seen from the continuity equation that m;; = m;. We can bring m;, into
Equation (8) and simplify it according to the gas state equation to obtain:

12un 2P,
By = Pt = sl AOP [ by ©)
1

The projection of the carrying capacity F; provided by the air film in the ith region on
the vertical direction can be obtained by:

1
F; = 2|RPy;(L —2I) sin% + / 2RPsin :dx} COS «; (10)
0

Thus, the total carrying capacity W can be obtained by superimposing the carrying
capacity provided by the gas film of each region:

T !
W= Z?:l F; = 2R sin ﬁzlﬁ:l [Poi(L =2+ /0 de} COS &; (11)

The expression of pressure P can be obtained from Equations (7) and (8). Then, we can
bring it into Equation (11):

3
g 11 (#)
W:2Rsm;2i:1P0i (L—Zl)—i—glﬁ Cos &; (12)

-\ P
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The orifice outlet pressure of the ith region Py, can be obtained by solving the non-
linear Equation (9) numerically. Then, the gas consumption of each region can be obtained
using Equation (13):

2
Q= AP\ T v (13)
3. Simulation Analysis

3.1. Simulation Modeling of Aerostatic Bearing

Fluent can accurately solve the pressure distribution of the gas-bearing flow field
using the finite volume method. The Fluent simulation process is shown in Figure 3.

Import model

[Meshing |

Set solution model

| Set boundary conditions ‘

Whether
the residual
is less than the convergence
accuracy?

Modify setting parameters

Output the results
Figure 3. Simulation process.

There are two rows of orifices symmetrically arranged on the aerostatic bearing.
Therefore, the 1/2 geometric model of the flow field of the gas bearing is established in
SolidWorks. The flow field mesh is shown in Figure 4.

(b) ()

Figure 4. (a) Gas film flow filed meshing (1/2 model); (b) orifice meshing densification; (c) meshing

layering.

Due to the large difference in the order of magnitude between the gas film thickness
and other structural parameters and to ensure the reliability of the solution results, the
mesh is divided into three layers in the direction of the gas film thickness, and the mesh
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at the orifice is encrypted. As the gas flow is assumed to be laminar in the engineering
calculation, the laminar model is used, and the solver is set to the pressure basis to solve
and open the energy equation. After the solution is completed, the static performance of
the aerostatic bearing can be extracted in the post-processing module CFD-Post.

3.2. Engineering Calculation Model and Simulation Model Validation

In Section 3.5 of the literature [28], the author compares the theoretical calculation
value and the simulation value of the bearing capacity of the aerostatic bearing with two sets
of experimental detection values. It is found that the theoretical calculation value and the
simulation value are well fitted. The simulation value is consistent with the experimental
test results and can be used as a theoretical analysis model. Further, the author provides the
detailed process and calculation results of the theoretical calculation of the bearing capacity
of the aerostatic bearing in the literature [29]. We bring the structural parameters provided
by the literature in [29] into the engineering calculation and simulation models established
in this paper to compare the results.

It can be seen from Figure 5 that the calculation results of the bearing capacity obtained
using the engineering calculation model and the simulation model established in this paper
are in good agreement with the calculation results presented in the literature [29]. The
maximum error between the engineering calculation value and the literature result is 2.7%
when the eccentricity is 0.3. The maximum error between the simulation value and the liter-
ature result is 6.2% when the eccentricity is 0.1. Under the same eccentricity, the calculated
bearing capacity of the theoretical solution is always greater than the simulation result. As
the diffusion and circulation effects are not considered in the theoretical calculation, the
calculated bearing capacity will be larger than the real value. However, the overall error is
small, so the engineering calculation results and simulation results are acceptable. Based on
this simulation model, the optimization range is determined, and the effectiveness of the
optimization results is tested. The structural parameter optimization algorithm is designed
based on this engineering calculation model.

200 T
r |=—@— "Yue, Y. 2022" calculation results
—A— Engineering calculation results
160 . . ]
Simulation results

z
>
5 120 1
©
o
© 4
o
2
= 80 7]
©
o]
m

40

ofit s L . L
0 0.1 0.2 0.3 0.4 0.5

Eccentricity

Figure 5. Relationship between bearing capacity and eccentricity [29].

3.3. Optimization Parameter Analysis

Many factors affect the static performance of the aerostatic bearing. Air supply pres-
sure Ps, eccentricity ¢, bearing length L, and journal diameter D are determined using
real working conditions, so they can be set as fixed values in the design process. The
influence of orifice diameter d, the distance from the orifice to the outlet /, the average
gas film thickness iy, and the number of single-row orifice 7 on the static performance
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of the aerostatic bearing can be studied using Fluent, and the optimization range can be
determined. The initial values of the structural parameters are shown in Table 1.

Table 1. Structural parameters of aerostatic bearing.

Structural Parameters Initial Value Unit
Air supply pressure, Ps 0.4 MPa
Bearing length, L 60 mm
Journal diameter, D 30 mm
Orifice diameter, d 0.2 mm
Orrifice to outlet distance, [ 15 mm
Average gas film thickness, h 20 um
Equalizing chamber diameter, d, 2 mm
Equalizing chamber depth, &, 0.1 mm
Single-row orifices number, n 8 /

3.3.1. Influence of Orifice Diameter on Static Performance

It can be seen from Figure 6a that the diameter of the orifice has little effect on the
bearing capacity at low eccentricity. Under the same eccentricity, the increase in the
diameter of the orifice leads to the deterioration of the throttling effect, which reduces
the overall bearing capacity. As the gas consumption is proportional to the square of the
orifice diameter, the increase in the orifice diameter will lead to a significant increase in gas
consumption, consistent with the results in Figure 6b.

140
i 0.45F
120 b —&—d=0.20mm i —
d=0.25mm +g‘g-§gm"‘
~—A— d=0.30mm 04} =0.25mm
=100} 4=0.35mm @ —A— d=0.30mm
< ! : =) M [—¥—d=0.35mm
= =
g 5035F
° 80f B
© €
.| 3 03t
2 60 2
= o
[
1o} 1]
& 4ot §o025
2F 0.2
0 L A L L : N 015 1 1 1 1 i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Eccentricity Eccentricity
(a) (b)

Figure 6. Influence of orifice diameter on (a) bearing capacity and (b) gas consumption.

3.3.2. Influence of Orifice to Outlet Distance on Static Performance

It can be seen from Figure 7a that the bearing capacity under the different conditions
changes almost uniformly with the eccentricity. When the orifice is closer to the outlet, the
deceleration phase of the compressed gas flowing into the atmosphere after throttling is
shorter, resulting in increased gas consumption, as shown in Figure 7b.



Appl. Sci. 2023, 13, 3355

90f17

Bearing Capacity(N)

1

iy

-

Bearing Capacity(N)

160

140

120

100

80

60

40

20

40 : ; ; ; ; ; 0.25
1 [} 1 1 1 | I A U U N N U
I e e P2 R S L TE R LR T
ook - [—e—=100mm| o Tl - -
—®—1=13.5mm| 1 023F-=-=-d--cdeo -
oo A =te8mm| 1 T i S U S U
00} - - 4=¥—1=20.0mm| |- _ _ __ L 2022f---FT—mao - - oo
1 1 S - - - -d=-- =T g -- - -
_____________ [ TTTTTTAT T T 30_21-———J~————————————
80f---F---9---- B SRR R B E  p---TT A - TR - -
. 2 02f---7---"
T ____--____-T___- 8 F= ==t = = == ===
N (N P AU B [ R Fe - - e = = - = oo oo
60 . g0l i R R
e A B N N . —0—1=10. !
i CREYS Mol SO SR A
___21_ /o8N U R R S L | =1s.omm| v LT
40 ! 017 1 1=16.5mm ___:____
Ry A Rl EEEE B S r=200mm| D D DD D
20 L 0.16 L i i
o1 02 03 04 05 06 07 0 01 02 03 04 05 06 07
Eccentricity Eccentricity
@) (b)
Figure 7. Influence of orifice position on (a) bearing capacity and (b) gas consumption.
3.3.3. Influence of Average Gas Film Thickness on Static Performance
When the gas film is thinner, the pressure dissipation of the compressed gas after throt-
tling is smaller. Therefore, as shown in Figure 8a, at the same eccentricity, reducing the film
thickness can improve bearing capacity and reduce gas consumption. However, it should
also be noted that smaller film thicknesses will challenge the difficulty of manufacturing
and assembly.
i i i i i i i i i i —o— 1=0.010mm
e L e I i
| _ |—e—n=0.010mm]|_ _:_ o _:_ I J', i 0.35 1 1 1 ! :=8'g;grmn$
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[T 1" 2 8025
1 a
E
____________________ £
2 02
Q
______________________ &)
[2]
0.1
________________________ go1s
1
1
. s ] 0.1
1 1 1 1 1
1 1 1 1 1
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Figure 8. Influence of average film thickness on (a) bearing capacity and (b) gas consumption.

3.3.4. Influence of Orifice Number of Each Row on Static Performance

As shown in Figure 9a, under the same eccentricity, the increase of orifices can provide
greater bearing capacity and improve the stiffness of the gas bearing but will inevitably
increase gas consumption.
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Figure 9. Influence of the number of orifices on (a) bearing capacity and (b) gas consumption.

4. Optimization Design Algorithm
4.1. Optimization Model

According to the analysis of the simulation results, the optimization range of the
structural parameters to be optimized is determined. The optimization range is shown
in Table 2. The other structural parameters are fixed to the initial value set in Section 3.3,
and the eccentricity of the gas bearing is fixed to 0.4 during the optimization process. The
optimization goal is to improve the bearing capacity while minimizing gas consumption.

Table 2. Optimization range of structural parameters.

Structural Parameters d (mm) I (mm) huy (mm) n
Initial value 0.2 15 0.02 8
Optimization range 0.2-0.3 10-20 0.015-0.025 6-10

According to the derivation of bearing capacity and gas consumption in the engineer-
ing calculation method, the following optimization model can be obtained:

min F(X) = [f1(X) = =W, f2(X) = Q]
s.t. xlr-“in <x <x",i=1,2,3,4
X = [X],XZ, X3, x4} - [d/ l/havr 1’[]

where f1 is the objective function of the bearing capacity, and f; is the objective function of
gas consumption. The X vector consists of four structural parameters, and the boundary
condition is the optimization range of the four structural parameters.

4.2. Ordinary Multi-Objective Particle Swarm Optimization Algorithm

The ordinary multi-objective particle swarm optimization algorithm can be split into a
basic particle swarm optimization algorithm and an archives maintenance algorithm.

4.2.1. Basic Particle Swarm Optimization Algorithm

In the particle swarm optimization algorithm, each particle is denoted by
X =[x, X2, oo - ,Xig], wherei =1,2,...... , N, N is the number of particles, and d is the
dimension of the particle. Each particle updates the position using Equations (14) and (15)
according to its optimal position and the optimal global position during the iteration
process [30]:
ol = whol + o7t (pbf — xb) + c1rh (gb' — xt) (14)

1
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Xt = x40t (15)

where t is the number of iterations, v;’, x;, and pb,f are the speed, position, and self-optimal
position of the ith particle at the tth iteration, ¢b is the optimal global position at the tth
iteration, w! is the inertia factor, w! decreases with the increase in the number of iterations,
c1 and c; are learning factors, and rq and rp are random numbers between 0 and 1.

4.2.2. Archives Maintenance Algorithm

In the process of multi-objective optimization, multiple Pareto solutions (non-dominated
solutions) will be obtained. The solution set composed of all Pareto solutions is called
the Pareto front (PF). Therefore, it is necessary to introduce an archive to store the Pareto
solutions. The archive maintenance algorithm is as follows:

1. The target space is divided according to the boundary value of each objective function
of all particles in the archive and the grid width;

2. Calculate the grid number of each particle in the archive;

3. Calculate the crowding degree of the grid, that is, the number of particles in the grid;

4.  Determine whether the number of particles in the archive exceeds the archive’s
capacity. If it exceeds, randomly delete a particle in the most crowded grid until the
number of particles does not exceed the archive’s capacity.

4.2.3. Multi-Objective Particle Swarm Optimization

The iterative process of the multi-objective particle swarm optimization algorithm is
as follows:

1.  Randomly initialize each particle’s position and velocity, calculate each particle’s objec-
tive function value, update the optimal position of each particle, non-dominated sort
each particle, save the Pareto solution to the archive, and call the archive maintenance
algorithm;

2. Update the speed of each particle to obtain v;**! and then update the position of each
particle to obtain x;/*1;

3. Calculate the objective function value of each particle after updating, and update the
optimal position of each particle;

4. Non-dominated sort each particle, store the Pareto solution in the archive, and call
the archive maintenance algorithm;

5. Determine whether the maximum number of iterations has been reached, jump to
Step 2 if not, and output all Pareto solutions in the archive if reached.

4.3. The Latin Hypercube Initialization Method
The operation of the Latin hypercube initialization method is as follows:

—_

Determine the population size N, which is the number of particles;

2. Divide the optimization range of each dimensional variable into N equal parts. Ran-
domly select a point in each interval of each dimension as a sampling point;

3. The sample points selected in each dimension space are randomly sorted to form the

initial position of particles.

To illustrate the difference between the Latin hypercube initialization and the random
initialization, the distributions of two-dimensional particles using different initialization
methods are shown in Figure 10. It is found that the distribution of particles using Latin
hypercube initialization is more uniform than those using random initialization, which is
more conducive to algorithm optimization.
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Figure 10. Distribution of (a) Latin hypercube and (b) random initialization.

4.4. Convergence Condition
The process of judging the convergence of the algorithm is as follows:

1. Firstly, a large iteration period is preset as the stopping condition of the algorithm.
Then, the objective function values corresponding to the Pareto solutions obtained
by each iteration are stored. These objective function values are arranged from small
to large according to the gas consumption (or according to the bearing capacity) to
form a 2 x n matrix F;; n is the number of Pareto solutions, and ¢ is the number of
iterations;

2. Determine whether the number of Pareto solutions of the t + 1 generation is the
same as that of the previous generation. If it is different, the Pareto solutions are still
changing, so let the algorithm continue to iterate. If not, go to the next step to judge
its convergence;

3. Equation (16) can express the convergence judgment formula. Firstly, the Frobenius
norm of the difference between the ¢ + 1 generation objective function matrix F;,; and
the previous generation objective function matrix F; is calculated and then divided by
the Frobenius norm of F;. When the result is less than the given small amount ¢, it is
considered that the objective function matrix is almost unchanged, so the algorithm is
considered to have converged:

[Fecs — Bille (16)
|1 Eell¢
The algorithm’s parameters, such as population number and iteration period, are
determined through the trial and error method. We fixed the population number to 30, and
the archive’s capacity is 50. We compared the convergence of Latin hypercube initialization
and random initialization and ran each algorithm ten times, respectively. The convergence
situation is as follows (Table 3):

Table 3. Comparison of convergence period.

Initialization Average Minimum Maximum
Method Convergence Period  Convergence Period  Convergence Period
Latin hypercube 41.5 40 43
Random 47.2 39 55

Latin hypercube sampling can obtain a more diverse initial population distribution
with less population size, and the convergence is very stable in 10 runs. The population
initialization distribution using random sampling may be evenly filled in the target space
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and too concentrated. Therefore, in 10 runs, the convergence period of random initialization
fluctuates greatly. In the trial operation process, we obtained the maximum convergence
period of 55, so we set the iteration termination condition to a maximum of 60 iterations to
ensure the reliability of the algorithm’s convergence in the real operation.

4.5. Results
4.5.1. Comparison of Different Optimization Results

The different optimization results are illustrated in two aspects. Firstly, to compare
the optimization results under different initialization methods, the progress of iteration is
displayed in Figures 11 and 12, respectively. Secondly, the genetic algorithm (GA) is often
used to solve multi-objective optimization problems. Therefore, to prove the effectiveness
of particle swarm optimization, the performance of both algorithms in solving the same
multi-objective optimization problem is compared. Identically, the population size of GA
is 30 and is allowed to evolve to 60 generations. In the subsequent figures, the bearing
capacity and gas consumption of the bearing are normalized.
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Figure 11. Pareto solutions obtained using (a) Latin hypercube and (b) random initialization.
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Figure 12. Pareto solutions obtained using (a) Latin hypercube and (b) random initialization after the
60th generation.

The ordinate corresponds to the normalized gas consumption, and the abscissa corre-
sponds to the normalized bearing capacity. It can be seen from Figure 11a that the selectivity
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of the Pareto solutions gradually increases from the 1st to the 30th generation. The particle
swarm gradually approaches the Pareto front in the iterative process, and the Pareto so-
lutions obtained after the 30th generation fit well with the final Pareto front. Compared
with Figure 11b, it is found that the Pareto solutions obtained using random initialization
after the 30th generation are still poorly fitted with the final Pareto front. As the particle
distribution obtained by the Latin hypercube is more reasonable, it effectively reduces the
amount of computation and improves the speed of finding the optimal solutions.

Figure 12 shows the Pareto solutions obtained using different initialization methods
after the 60th generation. It can be seen from Figure 12b that the distribution of the Pareto
solutions in the region identified by the red circle is sparse. Compared with Figure 12a,
it is found that the Pareto solutions obtained using Latin hypercube initialization show a
much wider distribution and more selections. It also proves that using Latin hypercube as
a particle initialization method can effectively improve the global search ability.

It can be seen from Figure 13 that the Pareto solutions obtained using the two initial-
ization methods after the 60th generation are in good agreement. The Pareto solutions
obtained using GA are surrounded by the Pareto front obtained using particle swarm opti-
mization in Latin hypercube initialization, which proves that particle swarm optimization
shows a stronger global search ability and can find better solutions.
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Figure 13. Pareto solutions obtained after the 60th generation.

The performance of different algorithms in solving the multi-objective optimization
problem can be assessed using performance metrics, such as the spacing and diversity
metric (DM) [31]. The performance metrics can be obtained using Equations (17) and
(18), respectively. Spacing assesses the evenness of the solution set, and DM measures
the diversity of the Pareto solutions. A more uniform and diverse solution set results
in smaller values of spacing and DM. It can be seen from Figure 14 that particle swarm
optimization using Latin hypercube initialization shows a better performance in solving
the multi-objective optimization problem:

. 1 & - 2
Spacing(A) = ﬁ,; (d —d;) (17)
A-1 _
df-i-dl-i-lz di—d‘
M= =1 (18)

df+dl+(A—1)d
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where A is the number of Pareto solutions, d; is the Euclidean distance between consecutive
solutions, d is the average of all distances, d;, df, and d; are the Euclidean distances between
the extreme solutions and the boundary solutions. In this paper, the intersection of the
fitted Pareto front and the boundary of the target space are taken as the extreme solutions.
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Figure 14. Performance metrics of the multi-objective optimization algorithm.

4.5.2. Structural Parameter Optimization Results

To further verify the effectiveness of the optimization solutions shown in Figure 12a,
two groups of solutions with the minimum and maximum bearing capacity are selected
from 50 groups of Pareto solutions, and eight groups of solutions are randomly selected
from the remaining 48 groups of Pareto solutions according to the bearing capacity from
small to large. The static performance corresponding to these ten groups of solutions
is calculated using the simulation model and then compared with that of the aerostatic
bearing before optimization. The comparison results are shown in Table 4.

Group 1 is the structural parameters before optimization, and Group 2 to Group 11
correspond to the ten groups of structural parameters obtained using the optimization
algorithm. It can be seen intuitively from Table 4 that compared with the structural pa-
rameters before optimization, the ten groups of parameters optimized by the optimization
algorithm guarantee the effect of improving bearing capacity and reducing gas consump-
tion. Group 11 shows the largest increase in bearing capacity. It increases bearing capacity
by 23.07% and reduces gas consumption by 1%. Group 2 shows the largest reduction in
air consumption. It reduces gas consumption by 25.59% and increases bearing capacity by
2.96%. Therefore, it can be proved that the multi-objective particle swarm optimization
algorithm can effectively optimize the structural parameters of aerostatic bearings, thereby
improving the static performance.

Table 4. Comparison of optimization results.

Group d (mm) I (mm) hyp (LM) n W (N) Q (g/s)
1 0.2000 15.00 20.0 8 94.68 0.2157
2 0.2055 16.52 15.6 8 97.48 0.1605
3 0.2049 17.15 15.0 8 99.49 0.1720
4 0.2017 16.97 17.7 8 101.35 0.1814
5 0.2079 16.25 18.0 8 104.97 0.1861
6 0.2088 15.93 15.7 8 106.17 0.1887
7 0.2004 15.06 16.1 8 108.29 0.1960
8 0.2025 14.86 18.3 10 110.55 0.1970
9 0.2040 14.27 16.9 10 112.46 0.2021
10 0.2068 13.89 17.3 10 113.08 0.2076
11 0.2098 13.14 174 10 116.52 0.2136
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5. Conclusions

In this paper, the mathematical model of bearing capacity and gas consumption
of aerostatic bearings is established using an engineering calculation method, and the
rapid calculation of the static performance of aerostatic bearings is realized. The static
performance of aerostatic bearings can be solved more accurately using simulation software,
so the influence of each structural parameter on static performance can be analyzed using
simulation.

Through a trial and error method, we found that the MOPSO algorithm using Latin
hypercube initialization is more stable than using random initialization and shows better
convergence speed and convergence results in most cases.

Pareto solutions obtained using the MOPSO algorithm using Latin hypercube initial-
ization all meet the two optimization conditions of improving the bearing capacity and
reducing gas consumption. The MOPSO algorithm using Latin hypercube initialization
offers more abundant and more accurate global optimal solutions. Designers can further
filter out the optimal solution by allocating the proportion of bearing capacity and gas
consumption and verify the design result using the simulation model. The optimization
design method proposed in this paper offers certain practical guiding value for the rapid
optimization design of aerostatic bearings.
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