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Abstract: Waste management is one of most important challenges in environmental protection. Much
effort is put into the development of waste treatment methods for further use. A serious problem is
the treatment of municipal sewage sludge. One method that is useful for this substrate is composting.
However, it is reasonable to compost a sewage sludge mixed with other substrates, such as maize
straw. To carry out the composting process properly, it is necessary to control some parameters,
including the total solids and volatile solids content in the composted mixture. In this paper, a
method for the determination of the total solids and volatile solids content based on image analysis
and neural networks was proposed. Image analysis was used for the determination of the colour and
texture parameters. The three additional features describing the composted material were percentage
of sewage sludge, type of maize straw, and stage of compost maturity. The neural models were
developed based on various combinations of the input parameters. For both the total solids and
volatile solids content, the most accurate models were obtained using all input parameters, including
30 parameters for image colour and texture and three features describing the composted material.
The uncertainties of the developed models, expressed by the MAPE error, were 2.88% and 0.59%,
respectively, for the prediction of the total solids and volatile solids content.

Keywords: composting; sewage sludge; maize straw; total solids; volatile solids; neural networks;
image analysis

1. Introduction

The volume and variety of the waste generated are increasing every year [1]. Waste
associated with the municipal sector plays a crucial role. It is produced every day by each
inhabitant of the planet. One such type of waste is municipal sewage sludge, defined
according to Polish law as “sludge from digestion chambers and other installations for
the treatment of municipal sewage and other sewage with a composition similar to that
of municipal sewage” [2]. Sewage sludge management is challenging. Any action taken
should consider the legal, environmental, social, and economic aspects. Sludge is a prob-
lematic material that must be managed in a legal manner [3]. In many countries around the
world, sewage sludge is landfilled, although this is increasingly limited by regulations. It
is therefore necessary to look for other options for their management. One solution may
be to use sewage sludge in the reclamation of degraded and devastated areas. This issue
has been addressed in reports by Bęś et al. [4] and Halecki et al. [5]. Another solution for
managing sewage sludge is to use it as a fertiliser in agriculture. Research on this topic has
been carried out by Salinitro et al. [6], Ragonezi et al. [7], and Wydro et al. [8].

One method of municipal sewage sludge management is composting [9,10]. It is one
of the simplest and most popular methods [11]. However, due to the fact of its structure
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and chemical composition, it is unreasonable to use sewage sludge as a monosubstrate.
Therefore, it is mixed with a suitable structuring material that, on the one hand, increases
the porosity of the composted mixture and, on the other hand, improves the ratio of the
C:N [12,13]. Such a material could be maize straw, which is the residue left over from
the cultivation of maize for grain, as well as other types of straw, e.g., wheat, paddy,
rapeseed, or sugarcane. However, under Polish conditions, maize straw has far fewer
potential customers than straw obtained from the cultivation of other cereals or oilseed
rape. Therefore, it is particularly interesting for use as a structuring material.

When sewage sludge is composted properly, there is significant heating of the com-
posted biomass. This promotes pasteurisation and the destruction of pathogens [14,15].
The material is assumed to be properly hygienised when its temperature is maintained
at a level of at least 55 ◦C for at least 1 day. Alternatively, it should maintain a level of
at least 70 ◦C for at least 1 h [16,17]. When considering the agricultural use of compost
from sewage sludge, it is crucial to ensure that the heavy metals content is sufficiently low.
Suitable compost for this purpose can usually be produced on the basis of sewage sludge
from municipal sewage treatment plants located in areas without excessive industry. In
addition, it is important to check that the compost produced does not contain pathogens so
that it is safe to use for fertiliser purposes [18].

In recent years, a considerable amount of attention has been paid to the study of
biomass composting processes involving sewage sludge. Studies have been aimed at
gaining a better understanding of these processes and optimising them regarding the
minimisation of the time required to obtain a final product of suitable quality [19–23].
This research requires the implementation of experiments, which are often carried out
at the laboratory scale using specialised bioreactors [15,24]. During such tests, several
physicochemical parameters of the composted material are monitored, as well as the
concentrations of oxygen and carbon dioxide in the air exiting the bioreactor and the
emissions of ammonia, hydrogen sulphide, and methane [25,26]. Based on these parameters,
decisions regarding the termination of a composting process may be taken at the right time,
i.e., when the aerobic decomposition process has slowed down considerably.

Modern IT methods are increasingly being used to study the composting process [17,22].
Methods based on computer image processing and analysis in combination with neural
modelling [27–29] are widely used in solving classification and prediction problems in many
different fields, including life sciences [30–33]. Nevertheless, they are rarely used in studies
of composting processes. In previous studies, these techniques have been successfully
employed to identify the early maturity stage of a composted mixture of sewage sludge
and maize straw [16] and sewage sludge and rapeseed straw [34]. A particular type of
neural network (convolutional neural networks (CNNs)) was applied to the identification
of cosubstrate composted with sewage sludge [35] and to the maturity classification of
composted sewage sludge and rapeseed straw mixtures [17].

For reaching the early maturity of the composted material, in addition to the tem-
perature, parameters such as the total solids (TS) and volatile solids (VS) content in the
composted mixture are important. The measurement of these parameters is usually carried
out during aeration of the composted biomass mixture [36]. There are studies on the
possibility of using spectrometric methods to measure the moisture content of compost [37].
However, this type of analysis requires expensive laboratory equipment. In reports by
Zaborowicz et al. [38] and Wojcieszak et al. [39], a preliminary analysis of the possibility
of using image analysis and neural modelling to determine the content of total solids
and volatile solids in compost is presented. Unfortunately, the results obtained should be
regarded as preliminary research due to the small number of learning cases in relation to
the number of inputs of the neural models. Therefore, it was decided to extend the research
on the use of neural image analysis to determine the physicochemical parameters of the
composted material. The aim of this study was to develop neural models for determining
the total solids and volatile solids content in a composted mixture of sewage sludge and
maize straw based on the information extracted from images of the composted material.
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Image analysis and neural networks are useful tools for research into the composting
process. Their use can help in analysing the selected parameters of the composting process
and in controlling it, which was conducted as part of this research.

2. Materials and Methods
2.1. Research Material

A composted mixture of sewage sludge and maize straw was used as the test mate-
rial. The sludge came from the municipal sewage treatment plant located in Szamotuły
(Greater Poland Voivodeship, Poland), while the straw was obtained from a branch of the
Swadzim Agricultural Experimental Farm located in Złotniki (Greater Poland Voivodeship,
Poland). The composting processes were carried out under controlled conditions at the
Ecotechnology Laboratory (Poznań University of Life Sciences) using a dedicated bioreac-
tor [15,24,26,40]. Two types of maize straw were used in the study: untreated and ensiled.
A total of eight composting experiments lasting between 29 and 39 days were carried out
(Table 1). The values of the total solids content were determined using the standard PN-EN
14346:2011 [41], while the values of the volatile solids content were determined using the
standard PN-Z-15011-3:2001 [42].

Table 1. Plan of experiments.

Experiment
Number

Sludge
Content (%)

Straw
Content (%) Straw Type

Experiment
Duration

(Days)

Sampling
Days

1 30 70 untreated 36 1, 10, 20, 36
2 45 55 untreated 36 1, 10, 20, 36
3 60 40 untreated 36 1, 10, 20, 36
4 30 70 ensiled 29 1, 6, 14, 29
5 40 60 ensiled 29 1, 6, 14, 29
6 50 50 ensiled 29 1, 6, 14, 29
7 45 55 ensiled 39 1, 7, 14, 25
8 55 45 ensiled 39 1, 7, 14, 25

2.2. Image Acquisition

The samples of composted material were subjected to image acquisition in a specialised
photographic chamber illuminated with visible light (Figure 1). The construction of this
chamber was described in detail by Kujawa et al. [43]. As a light source, fluorescent lamps,
Sylvania Luxline Plus F15W/865 (Feilo Sylvania, Budapest, Hungary), were used. The
images were acquired using a Nikon D80 digital single-lens reflex camera (DX format
sensor), equipped with a fixed lens Nikkor 35 mm f/1.8G AF-S DX (Nikon Corporation,
Tokyo, Japan). The exposure parameters were set according to the rules of photography,
taking into account the intensity of the light illuminating the photographed sample. The
ISO number of the camera’s sensor was set to ISO100, the aperture was set to f/5.6, and the
shutter speed was set to 1/25 s. A total of 1536 images of composted material were acquired
with a resolution of 968 × 648 pixels covering an area of 98 × 65 mm. The 576 images
were of a composted mixture with untreated straw and 960 with ensiled straw. At the
same time, 865 images were of immature material, while 672 were of material that had
reached the early maturity stage. Example images taken at the beginning and the end of
each composting experiment are shown in Figure 2. It is worth noting that the composted
material filled the entire frame of the photograph. Therefore, there was no problem of
separating the material from the background at a later stage of the research.
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Figure 2. Example images taken at the beginning (left) and the end (right) of each composting exper-
iment ((a—experiment 1; (b)—experiment 2; (c)—experiment 3; (d)—experiment 4; (e)—experiment
5; (f)—experiment 6; (g)—experiment 7; (h)—experiment 8).

2.3. Image Processing and Features Extraction

Each of the acquired images was extensively analysed, resulting in values for 25 colour
and 5 texture parameters. Some of these parameters were obtained from the images in
their original form (24-bit JPEG format). However, to obtain some of them, the following
transformations were performed:

• Image conversion from a 24-bit RGB colour space model to an 8-bit grey scale (256 grey
levels); the brightness of each pixel was determined as the weighted sum of the R, G,
and B components according to the following relationship:

GS = 0.2989R + 0.5870G + 0.1140B, (1)

• Greyscale image binarisation using 4 threshold values: 0.05, 0.1, 0.15, and 0.20;
• Conversion from the RGB model to the HSV model.

The greyscale images were used in the texture analysis process. For each image,
a grey-level co-occurrence matrix (GLCM) was created. Eight pixel brightness classes
were included, and the neighbourhood was considered as one pixel, symmetrically along
the 4 main directions: 0, 45, 90, and 135◦. A full list of the obtained colour and texture
parameters is presented in Table 2.

Table 2. Colour and texture parameters extracted from the images.

No. Parameter
Category Colour Model Number of

Parameters Description of Parameters

1 colour RGB (original) 9 mean, median, and standard deviation
of the R, G, and B components

2 colour greyscale 3 mean, median, and standard deviation
of a pixel’s brightness

3 colour binary 4
the percentage of white colour in an
image binarised using the assumed

threshold values

4 colour HSV 9 mean, median, and standard deviation
of the H, S, and V components

5 texture greyscale 5 entropy, brightness, contrast, energy,
and homogeneity

The colour and texture parameters were extracted from the acquired images in an
automated manner. For this purpose, the Compost Image Analysis software (version 2.0,
Sebastian Kujawa, Poznań, Poland), developed in the MATLAB programming language,
was used. The formulas presented in [16] were used to determine the texture parameters.

Based on the extracted image parameters, as well as additional information on the
composted material, 10 datasets were developed for the training of neural models to
determine the total solids content of the composted material. For training of models to
determine the volatile solids content, the separate 10 datasets were prepared. The additional
information on the composted material was as follows:
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• Sewage sludge percentage;
• Maize straw type (0—untreated, 1—ensiled);
• Compost maturity stage (0—immature compost, 1—compost at early maturity).

An integral part of the datasets was the expected output information of the neural
network on the total solids or the volatile solids content determined during the laboratory
tests. Each dataset was composed of 1536 independent cases and was divided in a 2:1:1
ratio into training (768 cases), validation (384 cases), and test (384 cases) subsets. The
datasets varied in terms of the input parameters (Table 3).

Table 3. Input parameters used in the datasets.

No. Name of
Dataset for TS

Name of
Dataset for VS

Number of
Parameters Description

1 TS1 VS1 9 colour parameters for the RGB
model only

2 TS2 VS2 3 colour parameters for greyscale only
3 TS3 VS3 4 colour parameters for binary scale only
4 TS4 VS4 9 colour parameters for HSV model only
5 TS5 VS5 25 all colour parameters
6 TS6 VS6 5 texture parameters only
7 TS7 VS7 30 all image parameters
8 TS8 VS8 31 all image parameters + SLUD_PER a

9 TS9 VS9 32 all image parameters + SLUD_PER a +
STR_TYPE b

10 TS10 VS10 33 all image parameters + SLUD_PER a +
STR_TYPE b + IS_YCOMP c

a Sewage sludge percentage; b maize straw type (0—untreated, 1—ensiled); c compost maturity stage
(0—immature compost, 1—compost at early maturity).

2.4. Neural Models Development

Based on the datasets detailed in Table 3, neural models were developed to determine
the content of TS and VS in the analysed material. The models were created in the MATLAB
computing environment using the Deep Learning Toolbox. As a neural network, the
multilayer perceptron (MLP) with ten neurons in the hidden layer and one neuron in the
output layer was employed. MLP is one of the most popular feedforward neural network
topologies [44]. It has a high degree of flexibility and is widely used to solve a variety of
classification and regression problems. Its advantage over more complex networks, such as
CNNs, is its much simpler structure. As a result, it is not necessary to have huge amounts
of data to train (determine weights and biases) this network. One hidden layer and the
number of neurons in this layer were chosen on the basis of the authors’ experience and
previous preliminary analyses. In the authors’ experience, a good starting point for similar
regression problems is usually between 5 and 30 neurons in the hidden layer. A sigmoidal
function was taken as the activation function in the hidden layer and a linear function
in the output layer. The number of inputs to the MLP depended on the number of input
parameters in the dataset. The networks calculated a single output in terms of total solids
and volatile solids content. The models were trained using a back-propagation algorithm in
the form of Bayes regularisation (BR). The mean square error (MSE) was used as the error
function. The maximum number of training epochs was set at 1500. The training process
was stopped earlier if there was no reduction in the value of the network error function
with respect to the validation set within 100 consecutive epochs.

3. Results and Discussion

The information on the neural models developed to determine the total solids content
in the composted material is presented in Table 4. The MSE error of the models trained only
on the basis of some of the image parameters was in a range from 20.346 to 52.211 for the test
dataset. The MLP 25-10-1 TS5 model, considering all colour parameters, was the one with
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the smallest error. The MSE error of the MLP 5-10-1 TS6 model, which was based on the
texture parameters, was equal to 42.737. In the case of the MLP 30-10-1 TS7 model trained
with the dataset containing all image parameters, the MSE error was 19.359. Additional
information on the composition of the composted material (percentage of sludge and type
of straw) and the maturity stage of the compost at the input of the network had a significant
effect on improving the prediction of the total solids content. This is probably due to
the differences in the appearance of the composted material with different proportions of
substrates used, both during intensive composting and after reaching the early maturity
stage. The best accuracy was observed for the MLP 33-10-1 TS10 network, developed based
on all of the image parameters and three additional features of the material analysed. The
MSE error of this network was 2.470.

Table 4. Neural models for the prediction of the total solids content in composted material.

No. Model Dataset
Number of

Training
Epochs

MSE

Training
Dataset

Validation
Dataset

Test
Dataset

1 MLP 9-10-1 TS1 TS1 122 19.522 23.837 23.393
2 MLP 3-10-1 TS2 TS2 117 49.274 49.721 52.211
3 MLP 4-10-1 TS3 TS3 103 48.291 53.389 51.965
4 MLP 9-10-1 TS4 TS4 59 20.163 23.929 24.284
5 MLP 25-10-1 TS5 TS5 49 12.619 17.924 20.346
6 MLP 5-10-1 TS6 TS6 75 38.194 45.003 42.737
7 MLP 30-10-1 TS7 TS7 40 11.390 17.185 19.359
8 MLP 31-10-1 TS8 TS8 214 2.995 8.102 10.012
9 MLP 32-10-1 TS9 TS9 49 2.018 3.511 4.759

10 MLP 33-10-1
TS10 TS10 36 1.049 2.454 2.470

Detailed information on the models developed for the prediction of volatile solids
content in the composted material is presented in Table 5. In the case of the models
trained with the use of the selected image parameters, the MSE error was in a range of
8.582–14.418. The smallest MSE error in this group of models was observed for MLP 25-10-1
VS5, trained based on all colour features. The MSE error of the model developed on the
basis of texture parameters (MLP 5-10-1 VS6) was equal to 13.308. The accuracy of the MLP
30-10-1 VS7 model trained based on all image parameters was lower than the accuracy of
the model developed with the use of only colour features, which was unexpected. The use
of parameters describing the composition of the composted material and the maturity stage
of the compost as additional inputs to the model significantly improved the prediction of
the volatile solids content. A similar phenomenon was observed for the models of the total
solids content in the composted material. The lowest error of 0.494 was calculated for the
MLP 33-10-1 VS10 model, developed taking into account all image parameters and three
additional features describing the material.

MLP 33-10-1 TS10 and MLP 33-10-1 VS10 proved to be the best models for determining
the total solids and volatile solids content in the composted mixture of sewage sludge and
maize straw, respectively. The high accuracy of both neural models as predictive tools is
confirmed by the regression issue statistics and error values (Tables 6 and 7). The linear
regression between the values of the total solids content predicted by the MLP 33-10-1 TS10
model and the experimental values of this parameter for the test dataset is depicted in
Figure 3. The information on the error in the determination of the analysed parameter is
presented in the form of a histogram. Analogous information on the volatile solids content
and the MLP 33-10-1 VS10 model is included in Figure 4. The correlation coefficient for
these two models was 0.9865 and 0.9876, respectively. Their uncertainties measured by the
MAPE error were 2.88% and 0.59%.
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Table 5. Neural models for the prediction of the volatile solids content in the composted material.

No. Model Dataset
Number of

Training
Epochs

MSE

Training
Dataset

Validation
Dataset

Test
Dataset

1 MLP 9-10-1 VS1 VS1 100 8.456 9.170 10.902
2 MLP 3-10-1 VS2 VS2 51 14.439 13.324 13.927
3 MLP 4-10-1 VS3 VS3 143 14.442 13.766 14.418
4 MLP 9-10-1 VS4 VS4 40 7.342 9.764 9.769
5 MLP 25-10-1 VS5 VS5 52 5.241 8.392 8.582
6 MLP 5-10-1 VS6 VS6 58 13.372 13.089 13.308
7 MLP 30-10-1 VS7 VS7 91 4.715 8.062 9.315
8 MLP 31-10-1 VS8 VS8 75 1.500 2.978 4.109
9 MLP 32-10-1 VS9 VS9 40 0.627 1.496 1.570
10 MLP 33-10-1 VS10 VS10 58 0.141 0.377 0.494

Table 6. Regression statistics and error values for the 33-10-1 TS10 model.

Regression Statistics and
Error Values Training Dataset Validation

Dataset Test Dataset

Data Mean 36.2213 37.0124 35.7915
Data SD 9.7505 9.8745 9.6006

Error Mean −0.0176 −0.0658 −0.0094
Error SD 1.0248 1.5671 1.5737
SD Ratio 0.1051 0.1587 0.1639

Correlation 0.9945 0.9873 0.9865
Coefficient of determination 0.9889 0.9748 0.9731

RAE 0.0273 0.0409 0.0424
RMSE 1.0243 1.5664 1.5717
MAE 0.6683 0.9672 1.0054

MAPE 1.8847 2.7185 2.8802

Table 7. Regression statistics and error values for the 33-10-1 VS10 model.

Regression Statistics and
Error Values Training Dataset Validation

Dataset Test Dataset

Data Mean 76.0722 76.5073 76.3556
Data SD 4.5709 4.5610 4.4766

Error Mean 0.0014 0.0419 0.0324
Error SD 0.3759 0.6130 0.7030
SD Ratio 0.0822 0.1344 0.1570

Correlation 0.9966 0.9910 0.9876
Coefficient of determination 0.9932 0.9819 0.9753

RAE 0.0049 0.0080 0.0092
RMSE 0.3757 0.6136 0.7028
MAE 0.2518 0.3776 0.4444

MAPE 0.3350 0.4962 0.5896

The modelling of the composting of various substrates, including sewage sludge, to
better control and optimize the process has been the subject of some scientific reports.
Dogan et al. [45] used four artificial intelligence methods to model the process of the
cocomposting of sewage sludge (dewatered by a decanter and separator) and biomass
fly ash: feedforward neural network (FFNN), feedback neural network (FBNN), cascade
forward neural network (CFNN), and deep cascade forward neural network (DCFNN).
They found that the DCFNN model was the most accurate for the prediction of the pH,
electrical conductivity, and NH4

+/NO3
− ratio, with MAPE values lower that 1%. The

only exception was the composting process of sewage sludge dewatered by a separator,
with a MAPE value of 1.99%. The three algorithms, namely, feedforward neural networks,
Elman recurrent neural networks, and response surface methodology (RSM), were used
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by Dümenci et al. [46] to predict the compost maturity efficiency. In their study, olive
mill wastes mixed with natural mineral materials (montmorillonite, kaolinite, sepiolite,
and expanded vermiculite) were composted. The authors stated that the neural models
(MAPE < 2%) were of better accuracy than the RSM model (MAPE > 10%). Higashikawa
et al. [47] employed Fourier transform infrared spectroscopy and the partial least squares
regression (PLS) method to predict the stability and maturity of compost-based substrates.
The accuracy of the prediction depended on the maturity index. The coefficient of deter-
mination (R2) between the experimental and predicted values for the test dataset varied
from 0.55 for the NH4

+/NO3
− ratio to 0.92 for the degree of polymerisation. The same

techniques were used by Meissl et al. [48] to determine the humic acids content in composts.
For all of the PLS models developed in this research, the R2 between the experimental and
predicted values exceeded 0.8.
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The topic of determining the total solids and volatile solids content in composted
material using computer image analysis and neural modelling methods is very rare and,
therefore, innovative. It has only been analysed in a few publications. Such research was
conducted by Zaborowicz et al. [38] and Wojcieszak et al. [39]. They developed neural
networks to predict the values of these parameters for composted mixtures of sewage
sludge with maize, rape, and wheat straw. The model for determining the total solids
content from compost images acquired under visible light presented in their report had
an RMSE error of 0.0922. The model for the prediction of the volatile solids content was
less accurate, with an RMSE error of 0.1722. The neural models presented in this work
are described by a higher RMSE error. However, they were developed on the basis of
a significantly larger dataset (1536 independent learning cases vs. 84 learning cases).
Consequently, the predictive models presented in this work are characterised by a much
higher generalisability and lower recall. The uncertainties of these models, expressed by
the MAPE error, were 2.88% and 0.59%, respectively, for the prediction of the total solids
and volatile solids content. These results may be considered very satisfactory.

Changes in the total solids and volatile solids content are crucial for monitoring a
composting process [49]. The total solids content is a parameter that is subject to change
during the process. This is due, among other things, to the evaporation of significant
quantities of water contained in the initial mixture of substrates prepared for the compost-
ing. The analysis of changes in the volatile solids content provides information about the
correct course of the composting process. This is due to the fact that some of the volatile
solids contained in the substrate mixture decompose over time. Classical methods for
the determination of total solids and volatile solids content are based on sampling from a
reactor or pile and determining these parameters using drying and combustion processes.
The disadvantage of these methods is that more than one day is needed to produce the
results. The method proposed in this article is less invasive than the classic sampling of the
composted mixture from the chambers. The parameters are determined on the basis of the
photographs taken, and there is no need to irretrievably remove a portion of the compost
from the reactor that will no longer be returned to it.

4. Conclusions

The management of biodegradable waste is one of the most important environmental
challenges. Due to the fact of its relatively low investment costs and well-known technology,
composting is a popular method for managing waste, including sewage sludge. In this
study, twenty prediction models based on MLP topology were developed to determine
the total solids and volatile solids content in a composted mixture of sewage sludge and
maize straw. In these models, the input information was the image parameters describing
the samples of composted material. Some of the models included additional information
on the material. The best prediction results, for both the total solids and volatile solids
content, were obtained using models with 33 input parameters. These parameters included
30 colour and texture parameters and three parameters for the percentage of sewage sludge,
the type of straw, and the maturity stage of the compost, respectively. The uncertainty of
the best of the models for determining the total solids content, expressed using the MAPE
error, was 2.88%. The MAPE error in the case of the best model for determining the volatile
solids content was 0.59%. The MAPE values, as well as the values of the other error metrics
obtained for these two best models, demonstrated their high accuracy.

The results of this research indicate that neural networks combined with image analysis
are a suitable tool for determining the selected physicochemical parameters of composted
material. Neural image analysis has proven to be a fast, noninvasive method for predicting
the total solids and volatile solids content of analysed material. The use of this method may
provide an alternative to traditional time-consuming and invasive methods for determining
these parameters based on drying and combustion. However, further research should be
carried out to fully exploit the advantages of the proposed technique. This research should
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be related to the analysis of the composting processes of other common substrates or even
the introduction of other machine learning methods (e.g., convolutional neural networks).
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