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Abstract: With the rapid growth of data traffic and mobile devices, it is imperative to provide
reliable and stable services during mobility. Heterogeneous Networks (HetNets) and dense net-
works have been identified as potential solutions to address the upcoming capacity crunch, but
they also pose significant challenges related to handover optimization. This paper presents a com-
prehensive review of recent handover decision algorithms in HetNets, categorizing them based on
their decision techniques and summarizing their input parameters, techniques, and performance
evaluations. Our study highlights the technical challenges and opportunities related to handovers
in HetNets and dense cellular networks and provides key findings from recent studies. The signifi-
cance of this survey is to provide a comprehensive overview of handover decision algorithms in
HetNets and dense cellular networks, which can aid in the development of more advanced handover
optimization approaches.

Keywords: handover; self-optimization; heterogeneous networks; mobility management; handover
control parameters; mobility robustness optimization; time-to-trigger; small cells; 5G networks;
handover margin

1. Introduction

With the introduction of new wireless technologies and applications, mobile com-
munication networks have seen a huge surge in data traffic and the number of mobile
connections. This increase in the number of mobile connections and data traffic is most visi-
ble in cities and other areas with high human activity. According to Ericsson, overall mobile
data traffic will exceed 113 Exabytes per month, including Fixed Wireless Access (FWA) by
the end of 2022 and 368 EB per month by the end of 2027 [1]. This significant increase in
data traffic is due to a variety of mobile network-dependent applications, including mobile
phone users, wireless augmented reality, gaming, high definition video streaming [2], voice
and video calling, Intelligent Transportation Systems (ITS), Vehicle to Vehicle (V2V), Vehicle
to Everything (V2X), Internet of Things (IoT), High-Speed Railway (HSR), Unmanned Air
Vehicle (UAV), and Automated Driving Vehicles. All of these applications demonstrate
a dynamic communications paradigm in which low latency, high reliability, and efficient
spectrum usage are always required to provide optimum Quality of Service (QoS) and
accommodate a greater number of connections. We can fulfill these high data-demanding
requirements by expanding the system’s bandwidth and capacity. This gives rise to the
concept of high-frequency mmWave communications, which will provide a very wide
bandwidth in high-frequency bands, whereas network densification and load sharing of
larger networks into smaller and diverse HetNets, will increase capacity and QoS, especially
at the dense and congested areas such as stadiums, shopping malls, city centers and dense
cities by allowing load sharing between different types of cells [3–9]. Figure 1 showcases
the progression of mobile cellular generations from 1G to the envisioned 6G, emphasizing
the varying applications and the data rates available.
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Figure 1. Mobile Cellular Generations with their Applications.

The small cell base stations (BS) are defined as low-power nodes that cover a limited
range of up to a few hundred meters. These BSs can also operate independently or in
conjunction with the macro cell [8,9]. mmWave communication and network densification
have greatly enhanced bandwidth, capacity, and data rate, as well as QoS, but at the expense
of mobility management and handovers (HO). Because both concepts rely on the idea of
small cells with a relatively limited coverage footprint, resulting in more frequent HOs. In
the case of network densification, the coverage area of small cells is reduced intentionally
to accommodate more user equipment (UE) by deploying more BSs based on the principle
of frequency reuse. In contrast, increased propagation losses limit the expansion of the
coverage area for mmWave communications [10,11]. Due to the smaller cell coverage area,
UE must perform a higher number of handovers in certain scenarios, leading to several
handover-related issues that must be evaluated as key performance indicators (KPI), such
as handover ping-pong (HOPP), unnecessary handovers (UHO), handover failures (HOF),
handover latency (HOL), radio link failures (RLF), interruption time (IT), cell dropping
ratio (CDR), and cell blocking ratio (CBR). This affects throughput, which is closely linked
to the number of handovers, resulting in a decrease in QoS and user satisfaction.

The research community has focused primarily on improving mobility and HO man-
agement to reduce the number of HOs and enhance related metrics such as throughput,
cost, and user satisfaction [12–14]. Proposed HO approaches were designed based on
various scenarios and situations, with soft computing methods like fuzzy logic controllers
widely used in these networks for traffic management, congestion control, decision-making,
and network optimization. Additionally, deep learning (DL), machine learning (ML), and
metaheuristic approaches were also applied, along with several self-optimization algo-
rithms developed based on parameters such as UE velocity, reference signal received power
(RSRP), and geographical information.
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The Third Generation Partnership Project (3GPP) introduced the Mobility Robustness
Optimization (MRO) and Load Balancing Optimization (LBO) functions as part of Self-
Optimizing Networks (SON) techniques to adjust handover control parameters, including
handover margin (HOM) and time-to-trigger (TTT) [15–17]. The main objective of MRO and
LBO is to automatically optimize these parameters to maintain a high-quality connection
between communicating UEs, evaluated using KPIs. These optimization methodologies
have improved the overall performance of the system, although adjusting the HOM and
TTT values affects multiple KPIs. For example, increasing TTT reduces HOPP, but increases
RLF at high UE speeds. Thus, finding the optimal balance remains a challenge in managing
and improving KPIs. Although several optimization methods are available in the literature,
there is still a gap to be filled in finding the ideal solution for optimal triggering settings for
HOM and TTT.

Mobility management is considered to be a crucial design challenge in current and
future mobile communication systems, due to the rise in mobility-based users and applica-
tions. The use of high frequencies for larger bandwidths, smaller cells, and HetNets for
increased user capacity and constant data demands have already emphasized the signifi-
cance of handover management. In this survey, we concentrate on the current and future
requirements related to mobility and handover management in mobile communication
networks. To gain an understanding of the necessities and techniques for effective han-
dovers, we scrutinized different handover approaches including RSRP, velocity-based, and
advanced methods such as machine learning, deep learning, and soft computing. It is vital
to comprehend these recent approaches as they will play a crucial role in the intelligence
and management of 5G and beyond 5G mobile networks [18–20].

There are numerous methods for managing HO that have been suggested in the
literature, but none of them is perfect enough to provide a solution. There is still a lot
of research required to be done in this area to find an optimal solution for 5G and B5G
networks, where the number of HOs will increase significantly. Therefore, continued
research into handover management in 5G and HetNets is imperative in order to fully
realize the capabilities of these networks. This survey’s primary contribution can be
summed up as follows:

• This research focuses on HO and mobility management procedures using
self-optimization, soft computing, and ML/DL approaches. These approaches have
been thoroughly discussed, highlighting the most cutting-edge methods available in
various categories. As a result, this study will pave the way for future research on
HOs in mobile networks.

• To better understand the impacts of different parameters on HO, available methods
are classified into different categories.

• Highlight the available challenges for each grouped category and tabulate them in the
form of a summary that includes the proposed scheme, flaws, and findings, as well as
the KPIs and HCPs used.

• The “Open Issues and Future Directions” section highlights potential future research
areas for handovers in 5G, Beyond 5G (B5G), and 6G communications.

This survey paper endeavors to furnish a comprehensive examination of handovers
in HetNets. This paper starts with a review of related surveys. The background section
provides an overview of handovers in HetNets, including handover control parameters,
self-optimization network in HetNets, and handover challenges. The central focus of
this paper is on handover decision techniques, which include velocity, RSRP, fuzzy logic,
machine learning/deep learning, heuristic approaches, and spatial information. The paper
also sheds light on open issues and potential future directions for handover decision
techniques. The conclusion summarizes the key contributions of the survey paper, and
provides recommendations for future research. The outline of this article is presented in
Figure 2.
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Figure 2. Outline of the Article.

2. Related Surveys

Several survey papers have been published on the topic of handover and mobility
management in mobile HetNets. The authors provided a detailed overview of the handover
and mobility issues in the burgeoning ultra-dense mobile networks in [21]. They discussed
the key findings from recent studies, highlighted the technical difficulties and potential
opportunities related to mobility from the perspective of developing ultra-dense cellular
networks. They not only presented a thorough tutorial on 5G mobility approaches, but
also highlighted the key mobility risks of legacy networks. An overview of the handovers
and mobility management utilizing 5G enabling technologies is provided in [22]. They
described the 5G wireless network layout and explored HO information gathering and
decision management methods for ultra-dense small cell networks, with a particular em-
phasis on how machine learning approaches can assist in optimizing the HO process in 5G
networks. Additionally, they addressed the HO information gathering techniques, radio
resource control, HO metrics, and categorization of HO decision systems. In the survey
by [23], the authors provided an overview of the current state of cellular communication
networks. They then provided a comprehensive tutorial on mobility and handover man-
agement in 5G, emphasizing the unique challenges posed by its features such as mmWave
communications, HetNets, IoT, vehicular communications, device-to-device communi-
cations (D2D), and high-speed train communications, which are more complex than in
4G. Additionally, they discussed the basics of handover management in B5G and 6G THz
communications. They also discussed the main branches of ML, including supervised,
unsupervised, and reinforcement learning (RL), and how each is applied to the handover
management process. They provided a thorough analysis of recent research on ML-assisted
handover management methods under a novel classification based on the two major cat-
egories of visual data-based and wireless network data-based handover management
methods. In the survey paper [24], the authors provided an overview of SON functions
and its various definitions. They discussed the major categories of SON and highlighted
the most well-known applications of SON in 5G cellular networks. They also discussed
the different SON architecture designs that aim to make the system more scalable, flexible,
and open, and provide more intelligence to the 5G network. The authors emphasized the
benefits of using ML and big data to overcome the constraints of SON implementation
in 5G networks, while also highlighting the drawbacks and challenges of implementing
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SON in 5G cellular networks. They grouped the SON functions based on how 5G mobile
networks are managed, and explained the challenges that SON must overcome to be ef-
fectively used in 5G networks. The authors of [25] discussed recent research on various
handover and mobility management strategies in 5G ultra-dense HetNets, with a focus on
dual connectivity (DC). They first provided an overview of the fundamental principles of
5G networks and HO procedures in 5G HetNets. They then examined the use of DC in 5G,
highlighting its benefits and drawbacks, as well as the significant challenges that may arise
as a result of DC in future networks, such as mobility management, spectrum management,
high data rate requirements, and security and privacy. They also explored opportunities
and potential solutions to these challenges through the use of AI, ML, and DL techniques
and optimization of load and mobility processes.

The authors in [26,27] conducted a comprehensive survey on handover decision
making in 4G and 4G/5G networks. They first provided a technical overview of admission
control and handover procedures, as well as challenges in handover management in the
latest LTE-A architecture. They then analyzed various handover methods and algorithms,
focusing on the main approaches and factors used in making handover decisions. They
highlighted the key mechanisms, inputs, advantages, and limitations of each method, and
explained how they were utilized in the decision-making process. In [28], the authors
delve into the intricacies of SON operations. They trace its evolution through various
mobile communication generations and present design approaches proposed for SON in
B5G contexts. The authors also provide a comprehensive overview of SON applications
such as MLB, CCO, MRB and Automatic Neighbor Relations (ANR). They highlight the
potential of AI and ML algorithms in the successful implementation of SON in 5G and B5G
scenarios and discuss recent advancements in the field of research. The authors conclude
by identifying key areas of focus for future SON research in order to ensure its success in
upcoming networks like B5G. In the article [29], the authors delved into the topic of load
balancing in HetNets. They began by providing an overview of what load balancing is
and its objectives. Next, they explored various options for managing the load balancing
problem in HetNets such as data analysis-based solutions, Cell Range Expansion (CRE),
fuzzy logic solutions, cell breathing, and channel borrowing. They also discussed various
key performance indicators (KPIs) that can be used to evaluate performance in HetNets,
such as SINR, resource utilization (Physical Resource Balancing-PRB), user satisfaction,
throughput, CBR, CDR, outage ratio (OR) and PLR. The authors also highlighted the
importance of coordination between MRO and MLB, as well as strategies for conflict
resolution. Finally, they looked at how different researchers have used various ML methods
to solve the load balancing problem in HetNets. They discussed the basic implementation
details, technical challenges, performance analyses, and model inadequacies of these ML
methods. In [30], the authors conducted a detailed examination of the handover process
in 5G networks, highlighting key parameters such as MRO and LBO optimization and
exploring different decision-making functions for initiating a handover. The study also
included a thorough examination of the literature pertaining to different optimization
methodologies such as velocity aware-based, RSRP-based, and FLC-based. The authors
also discussed the various scenarios, methodologies, key performance indicators, and
simulator types, highlighting both the successes and challenges of the handover process
and potential solutions.

Table 1 provides a comprehensive overview of various survey papers related to
mobility and handover management. As far as our research is concerned, it is noteworthy
that we only considered the most recent survey articles related to handover and mobility
management. The analyzed works in the table focus on different aspects such as 4G and 5G
network scenarios, handover and mobility, load balancing, machine learning applications
to handover management, utilization of heuristic approaches, spatial information-based
handover approaches, and conventional RSRP and UE velocity. These in-depth studies
aim to provide a comprehensive understanding of the current state of the art in the field of
mobility and handover management.
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Table 1. Summary of Related Surveys.

Ref. No Year
Scenario

Mobility/HO Load Balancing AI/ML Metaheuristic Spatial Information
Measurement Based

4G 5G RSRP UE Velocity

2020 [21] X X X X X

2022 [22] X X X

2021 [23] X X X

2021 [24] X X X X

2022 [25] X X X X

2020 [26] X X X X X

2020 [27] X X X X X X X

2022 [28] X X X X X

2022 [29] X X X X X

2022 [30] X X X X X X

Our survey X X X X X X X X X



Appl. Sci. 2023, 13, 3367 7 of 43

3. Background

Mobile communication technologies have evolved into an essential aspect of modern
life. The growing number of communication devices, services, diverse applications and
user behaviors necessitates fast data speeds, large capacity, and continuous connectivity.
As the most recent mobile communication systems are capable of providing high data
rates and lower latency with higher bandwidths, the increase in the number of connections
necessarily requires an increase in network capacity, which can be substantially increased
up to 100 times by using small cells and HetNets along with other benefits like offloading
of congested macro cells, extend cell coverages, and better-received signal quality at the
edges of macro cells [31,32].

HetNets are wireless networks that make use of multiple types of access networks.
A broadband network may offer wireless services in places with various traffic densities,
such as outdoor areas, within buildings, residences, and even underground sites such as
tunnels, by employing macro cells, micro cells, and femtocells. These types of deployments
always need better network capability in terms of network coverage, capacity, and data
rates. High data rates, spectrum efficiency, energy efficiency, and lower congestion are
among the benefits of HetNets. However, mobile communication systems provide a more
complex scenario. As a result of dense deployments of access points and base stations,
mobility and HO issues, as well as higher path losses, smaller coverage regions, and rapid
signal fading, will occur, resulting in more errors and a drop in QoE. To maximize overall
network performance, HO and mobility problems must be addressed effectively [33].

This section’s goal is to provide an overview of the handover mechanism and its
numerous related functions.

3.1. Handovers in HetNets

For next-generation mobile communication networks, HetNets will be a key solution
since they will deliver better data rates, more user capacity, and wider coverage. Low-
power small cells such as microcells, picocells, and femtocells are incorporated inside
the high-power macro cell positioned within the same geographical coverage region to
form HetNets which resultantly achieve cost-effective and energy-efficient solutions for
users QoE [34–36]. However, the massive and ultra-dense deployment of these small
cells increases the number of HO. This spike in the number of HO is exacerbated in a
high-speed mobility environment. When compared to a pedestrian-moving UE, a high-
speed UE requires a more smooth and more effective HO transfer to the next cell to ensure
connectivity and quality. The incorrect or inefficient HO strategy does have quite a severe
impact on communication quality in the form of longer interruption times, higher call
dropouts, and throughput deterioration. As a result, in order to offer seamless connectivity
and services to mobile customers, HOs must be maintained properly and optimally [30,37].

The HO phenomenon refers to a user’s radio link process switching from a source
cell to a target cell in order to retain connectivity while traversing from one cell to the
next [38,39]. Figure 3 illustrates the basic concept of HOs in mobile communication systems
with a number of scenarios. HOs ensure that users receive better QoS and uninterrupted
connectivity, as well as maintain good network performance overall. The number of
successful/failed HOs, interruption times, and radio link failures all affect QoS and perfor-
mance. Although HO techniques vary by technology, we may model them in three or four
steps [26,40–42]:

• Measurement Phase: The UE constantly collects RSRP values from surrounding cells
during the measurement or information collecting phase in order to look for improved
signal conditions for HO. This method of continual scanning or information collection
assures QoS and network availability. Other parameters, such as RSRQ, SINR, and
RSSI, can also influence this measuring and scanning procedure for HO decisions.

• Decision Phase: The HO decision step will proceed after the information acquisition
and measurement phase at the serving cell. A list of adjacent cells will be examined
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during this process to determine the target cell that best meets the requirements.
Following analysis, the target cell with the highest RSRP value receives the HO
request message. The target cell has the option to accept or reject the HO request after
it is received. Requests that are not accepted set off the HOF, which eventually results
in RLF. As an alternative, the target cell will begin preparing for the UE’s arrival.

• Execution and Completion Phase: The execution and completion phase is about
the signaling and radio link transfer process for UE mobility to the target cell from
the serving cell. In addition, the data transfer process, synchronization, network
reconfiguration and authentication have all been completed in the execution phase.
Lastly, the UE initiates the completion message to indicate the HO completion process.

Micro CellMicro CellMicro Cell

Micro CellMicro CellMicro Cell

Femto CellFemto CellFemto Cell

Micro Cell

Micro CellMicro CellMicro CellMicro Cell

Femto CellFemto Cell

Femto CellFemto Cell

LaptopLaptop

Macro CellMacro Cell

Indoor 
Femto 

Cell

Handovers

Load Balancing

Figure 3. A simple HetNets scenario.

3.2. Handover Control Parameters

The HCPs are the key decision-making parameters in HO management. The decision
of when to initiate a HO from the serving cell to the target cell is based on the values of the
HOM and the TTT. As a result, these can significantly help in keeping the connection stable
and the quality high among the UEs in communication. Previously, fixed TTT and HOM
values worked effectively for traditional mobile communication scenarios where there was
no coverage overlapping and HOs typically occurred at cell boundaries following frequent
away movement from the cell center. However, in the situation of dense deployments and
small cells, this static approach is no longer viable, as a UE with changing requirements may
regularly relocate into an area where the cell coverage of several BSs overlaps. Furthermore,
rather than having generic HO parameters for the entire scenario, HetNets and dense
networks required more diverse and customized HO parameter settings for each UE based
on their specific requirements [43–47]. If a user is moving at a high speed, for instance, they
may cross through multiple cells, leading to a too late HO. For this reason, HCPs should be
kept relatively low so as to prevent RLF. A low-speed scenario, on the other hand, results in
a shorter distance and a higher-quality signal for the user. Low HCP values may cause too
early HO, which then necessitates adjustments at higher HCP levels. Therefore, avoiding
HOPP and RLF demands for high HCP levels. Figure 4 depicts numerous scenarios of HO
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issues that are commonly caused by incorrect HCP parameters. Similarly, Table 2 displays
the various combinations of HOM and TTT and their respective dependencies.

Figure 5 summarizes the HCP parameters relevant to the handover decision. The
handover process is triggered when the RSRP from the target cell exceeds the RSRP of the
serving cell at the HOM level. The received power should be measured repeatedly at the
UE based on the TTT interval. This shows the impact of HCP settings on the handover
decision-making process.

Serving Cell
Target Cell

(a) Too-Early-HO:  RLF occurs in the target BS after HO is completed, 

and the UE attempts to reconnect with the serving BS

Serving Cell
Target Cell

(b) Too-Late-HO: RLF occurs in the serving BS before HO is initiated, 

and the UE attempts to reconnect with the target BS

Serving Cell Target Cell

(c) HO-Ping-Pong: Occur when the UE is handed over from 
serving cell to target cell but is quickly handed back to the 

original cell.

Serving Cell

Target Cell

(d) Wrong Cell HO:  RLF occurs in the target BS after HO is completed, 
and the UE attempts to re-establish its radio link in a BS, which is 

neither the serving nor the target BS.

Wrong Cell

Reconnection 
with Serving

Reconnection 
with Target

Reconnection

Figure 4. HOs scenario in HetNets.
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Figure 5. Handover decision and description of Handover Control Parameters.
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Table 2. Summary of HCP parameters for HOF and HOPP.

Serial. No UE Speed HOM TTT HOF HOPP

1 Increase Low Low Lower Lower

2 Increase Low High Higher Lower

3 Increase High High Higher Lower

4 Increase High Low Higher Lower

5 Decrease Low Low Higher Higher

6 Decrease Low High Higher Lower

7 Decrease High Low Lower Higher

8 Decrease High High Lower Lower

3.3. Self Optimization Network in HetNets

The extensive use of SON in numerous domains makes it difficult to define precisely.
However, somehow we can demonstrate it as an efficient way to manage the dynamic
requirements in a distributed environment. Similarly, it can be described as a method or
technique that allows a system to modify its organization without explicit command during
execution [48].

In 2008, Self-configuration and Self-optimization networks were introduced as a part
of LTE networks [49] and been standardized in 2009 starting from release 9 [50]. The aim
of this deployment for LTE was to achieve the expected network performance indicators
named KPIs. Such as capacity, coverage, QoS, user satisfaction, CAPEX/OPEX, etc. Later
on, this SON concept was extensively adopted in telecom sectors for performance opti-
mization techniques and worked as a fundamental part for 4G mobile networks, as well as
5G networks [51–56]. Three categories are designated for SONs: Self-configuration, Self-
optimization, and Self-healing. Self-configuration autonomously adjusts the parameters
according to the condition without human intervention. Whereas, Self-optimization is the
procedure that automatically optimizes the parameters after the configuration proposed by
the network or system. Lastly, Self-healing works to recede errors and faults from the net-
work by adopting suitable actions suggested after optimization [24]. Several autonomous
functions for self-optimization have been introduced for 4G and 5G systems. The functions
defined under this are mostly related to the optimization of [24,53,54]:

• Coverage and Capacity

• Handovers

• Interference

This article focuses on HO-based matters, so here we will discuss the SON parameters
that only relate to HO and mobility management. LBO and MRO work as HCP controlling
functions that automatically optimize the values for HOM and TTT. As HOs have a time
constraint set by the 3GPP, these SONs have to provide optimized results in a real-time
scenario to reduce the latency as well as to maintain connectivity and quality according
to the user requirements. Due to certain requirements and conditions, MRO and LBO
parameter settings may conflict or be compromised. Both functions seek to optimize the
HCPs in order to increase HO performance. For example, the MRO function adjusts HCPs
based on user mobility, whereas the LBO function adjusts HCP values to balance load
among cells, resulting in a conflict. Many authors have tried to resolve the issue [38,57–60],
but it still requires attention to produce an optimal value for HCPs.
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3.3.1. Load Balancing Optimization

Mobile communication systems employ an RSRP-based user affiliation process, with
the cell that has the highest RSRP working as the serving cell. The same RSRP-based user
affiliation approach is used in most research on HetNets. The issue with this strategy
is that it needs to consider the various aspects that affect network performance. These
aspects include the SINR, the candidate cell’s load, the future load required by the user,
the free resources of the destination cell, and overall system capacity. These issues become
more prominent in HetNets, where the transmission power and coverage area are limited.
Resultantly, fewer users will be attracted by small cells compared to macro cells, leading
to non-uniform user distribution in cells. That will create severe problems concerning
resource utilization, QoS, QoE and load balancing [61].

Load balancing refers to the equitable distribution of cell loads across neighboring cells
or the shifting of traffic from crowded cells to more vacant cells such that radio resources
are highly optimized. The bandwidth of a cell is shared by all users affiliated with that
cell. An overloaded state arises when the cell load surpasses or approaches the limit as
a result of the maximum number of users per cell being reached. At this stage, the load
balancing system begins to deliberately shift users to other less crowded cells in order to
avoid overloading or congestion, which would result in performance degradation. From
2009, 3GPP [50,62] standardized the CIO and CRE process through LBO that can address
the load balancing problem. However, non-optimal use of this value can result in even
more severe load-balancing issues. Thus, the SON function is designed to optimize and
automate HO-related problems as well as for load balancing to overcome from issues
related to cell capacity and coverage. To improve load balancing performance, all of these
studies [29,46,58,63–72] employed various combinations of HCPs and optimization tech-
niques such as PSO, clustering and utility-based clustering techniques, auto-tuning hybrid
approaches for MLB and LBO, CRE-based approaches, game theory, markov decision
processes, fuzzy logic approaches and recent ML and DL-based approaches.

3.3.2. Mobility Robustness Optimization

Inefficient HCP settings in traditional schemes become even more challenging in
HetNets and dynamic scenarios when networks become dense and conditions change
dynamically and often. These suboptimal settings result in more RLF and a higher number
of HOs. MRO, also known as handover optimization, is a Self-ptimization function that
improves the condition of handovers in the network to enable continual mobility for UEs.
It focuses on minimizing RLFs, unnecessary handovers, ping-pongs, and call dropouts
resulting from poor handover parameter settings. The serving and target cells’ RSRPs are
continually monitored, and handovers are initiated based on the triggering point defined
by the handover parameters. There are several mobility characteristics such as HOM, TTT,
CIO, and so on, and a lot of the research has focused on optimizing a triggering point
specified by HOM and TTT.

To maximize the HOM and TTT for both MRO and LBO, a variety of algorithms have
previously been suggested and implemented. The research community is very interested
in MRO. The multiple HO optimization strategies used for various radio access technolo-
gies reported in the literature illustrate this. To improve HO performance, all of these
studies [34,73–83] employed various combinations of HCPs and optimization techniques.
And the algorithms’ performance has been mainly evaluated using KPIs such as HOF, HOR,
HOPP, UHO, CDR, RLF, CBR, IT, and throughput. Table 3 lists the various key performance
indicators and the articles in which they were used for performance evaluation.
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Table 3. Research Articles based on Performance Parameters.

Serial. No. Performance Parameter Research Articles

1 Handover Ping Pong (HOPP) [37,38,44,77,79,83–100]

2 Radio Link Failure (RLF) [37,77,83–86,91–93,95,96,98,101]

3 Handover Latency (HOL) [37,44,84,102,103]

4 Handover Failure (HOF) [37,38,44,77,79,86,87,89,90,93,97,103,104]

5 Handover Probability (HOP) [37,38,44,76,85,87–92,94,98,101,105–107]

6 Handover Interupption Time (HIT) [37,38,44]

7 Throughput [68,102–105,108–117]

8 No. of Handovers [100,104,108,109,112,115–119]

9 Signal to Interference and Noise Ra-
tio (SINR)

[83,106,120]

10 Packet Loss Ratio (PLR) [103,109,116,117,121]

3.4. Handover Decision Approaches in HetNets

In HetNets, the HO processes are getting more complex, mainly when it is only based
on traditional techniques like RSRP along with some HOM value. Macro cells transmit
signals at high power and in the HetNet scenario, UEs receive these strong signals at every
point in the cell compared to small or micro cells with low transmission power and coverage
area. Resultantly, most of the HOs will be performed with macro cell, which will create
several issues, including HOs and load balancing. Therefore, in HetNet scenarios, the HO
decision must require coordination or updates from various collaborating parameters that
can be used along with RSRP to enhance this decision-making process. These parameters
and updates can be in the form of some threshold value, SINR, bandwidth, cell load, cost
function, weight function, the velocity of the UE, or some optimized values. And these
HO decision approaches perform evaluation on the basis of number of HOs, PLR, HOL,
throughput, HOPP, HOF and CDR etc. Details about these HO decision categories will be
discussed in the coming section below. Tabular categorizations are shown in Table 4, where
we collected the data according to the information collection and decision-making point
of view.

Table 4. HO Information collection and Decision making.

HO Information Collection HO Decision Making

Network Related UE Related Strategy Related Criteria Based

Coverage area Velocity ML/AI Velocity based

Link quality Location Weight function RSRP based

Cell load User preference Cost function RSRQ based

Cost RSRP Fuzzy logic SINR based

Metaheuristic
approaches Bandwidth based

Multi attribute
decisions Location based
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Table 4. Cont.

HO Information Collection HO Decision Making

Network Related UE Related Strategy Related Criteria Based

Direction based

History based

User preference

Operator preference

3.5. Handover Challenges

HetNets has significantly enhanced the network throughput, spectral efficiency and
QoS, but they also lead to several technical challenges. Due to the dense deployment of cells
and overlapping coverage areas, a UE will observe frequent HO. That will create challenges
related to interference from adjacent cells and Inter-Cells, scheduling of neighbour cells
available for target cells, load management between cells and mobility management.

3.5.1. Adjacent Cell Scheduling

Handover enables seamless connectivity between UEs and BSs during movement.
To improve the quality of HOs, a process enlists and schedules all the adjacent cells
available based on the UEs measurement report. This scheduling process may become
time-consuming, affecting the HO decision process and quality. Therefore, scheduling and
minimizing adjacent cells is mandatory to improve the HO decision process and quality.
3GPP introduced and standardized Neighbor Cell List (NCL) and Automatic Neighbor
Relation (ANR) procedures in [122] to improve the operation and maintenance of HOs
in wireless networks. The target BSs can now be constrained to specific neighbour cells
with only specific quality parameters to avoid handover failure, which NCL provides.
However, due to small cells and HetNets, adjacent cell scheduling list size may become
large, affecting the handover decision as the searching time will be increased to select the
suitable target cell. Several studies have been done by the authors [123–128] to enhance
this scheduling and minimization process of neighbour lists to improve HO performance
as well as to lower signal overhead, and energy consumption.

3.5.2. Inter-Cell Interference

With the increasing data traffic and capacity requirements, HetNets are considered
an effective and efficient way to enhance user capacity and utilization of the spectrum
resources. The overlapping signal coverages at a single point and splitting cells into smaller
cells make optimization and network design even more complex due to several issues,
especially Inter-Cell Interference (ICI) at the cell edges. The handover decision in mobile
networks is mainly based on the RSRP, along with other decision-making parameters. Thus,
dense deployment of small cells inside the macro cell will decrease the signal quality with
the increase in the interference, which results in the degradation in HO performance. To
ensure a satisfying QoS in severely affected areas, 3GPP introduced Inter-Cell Interference
Coordination (ICIC) in Release 8, later on, introduced as enhanced Inter-Cell Interference
Coordination (eICIC) in Release 10. Similarly, in Release 11, 3GPP formalized Coordinated
Multipoint (CoMP) Transmission procedure for interference mitigation. To improve from
interference challenges, the authors have conducted several studies on various interference
reduction measures [129–139]. However, adapting the majority of these methods to 5G
standards with massive network sizes and capacities will be a considerable problem for
future HetNets.
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3.5.3. Centralized Handover Optimization

Many studies have focused on analyzing handover self-optimization at the base station
level without considering individual user behaviour. This is because handover decisions are
typically based on the overall network state and the signal strength of neighbouring cells
rather than on individual user characteristics such as traffic patterns or mobility behaviour.
However, it is becoming increasingly clear that individual user behaviour can play a
significant role in handover performance. Factors such as user mobility, traffic patterns,
and service requirements can all have an impact on the handover process. This implies
that the centralized handovers are causing a significant challenge to the communication
system’s performance. As they impose higher complexity and higher signalling overhead
that can cause a bottleneck or a single point of failure in the network [95,140–142].

In recent years, there have been some studies that have looked at optimizing handovers
on a per-user basis. These studies have found that by considering individual user behaviour,
it is possible to improve handover performance by reducing call drops, increasing handover
success rates, and reducing call setup times. Such approaches can include techniques
like analyzing the user’s traffic pattern, Mobility prediction and using machine learning
algorithms to learn the user behaviour and proactively trigger handover. However, these
studies are still in the investigative stages, and more research is needed to fully understand
the impact of user-centric handover optimization on network performance [143–146]. It’s
also important to note that the implementation of user-centric handover optimization may
come with some complexity, such as the need for more information from the mobile devices
and more computation and decision-making on the network side.

3.5.4. Contradiction among Handover Parameters

In 4G/5G Hetnets, MRO and LBO are the key handover optimization functions that
aim to improve handover performance and network capacity. However, there can be
a situation when the objectives of MRO and LBO may conflict with each other during
the handover process, leading to trade-offs and potential issues. For example, in some
situations, LBO may want to perform a handover to a cell that is farther away but has less
load, while MRO may want to perform a handover to a cell that is closer but has more
load in order to minimize the RLFs. Similarly, MRO and LBO can have different handover
parameters and decision algorithms, leading to different handover decisions and potential
inconsistencies. To mitigate these issues, coordination and standardization of handover
parameters across different networks and network elements are necessary [38,84,91].

3.5.5. Diverse User Requirements

In HetNets, handovers can be challenging due to diverse user requirements. As,
HetNets consists of a combination of different networks, which have different coverage
areas and capacities so they may have different requirements for handovers, such as high
throughput, low latency and minimal interruption time, etc. Additionally, the varying
characteristics of the different network types can make it difficult to ensure that handovers
are performed seamlessly and efficiently. Therefore, it is important to design and optimize
handover algorithms to meet the diverse user requirements in HetNets. For example,
some advanced handover techniques such as proactive handover, conditional handovers,
multi-attribute decision-based handovers and hybrid handover, etc, can be used to improve
handover performance in HetNets [100,147].

4. Handover Decision Techniques

In this survey, we categorized the HO decision approaches based on:

• UE Velocity
• RSRP
• FLC approach
• Metaheuristic Approach
• ML/AI
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• Spatial Information

4.1. UE Velocity-Aware HO Decision Approaches

In velocity or speed-based HOs, UEs velocity acts as an input parameter for HO
decisions. Numerous techniques added UE speed as an input parameter for the HO
procedure to reduce the number of HOPPs. The velocity-aware HO approaches work by
modifying the HCP parameters in accordance with speed depending on specified threshold
values as shown in Figure 6. In [148], they performed an experimental study on the
impact of high-speed mobilities on the HOs. The results show that UE speed has a direct
impact on HOF and overall handover timing. As the HO phenomena in HetNets is more
complex compared to base networks, we can predict and perform more accurate HOs in
these networks by using UEs speed as a HO decision parameter. This results in significant
improvement in network performance in terms of HOPP and RLFs. Numerous studies
based on UE speed have been conducted; a few of them are listed here.

UE Speed works as an input 
parameter and HCP’s will be 
modified according to speed 
and related parameters

Handover already performed 
and HCP’s allocated according 
to UE Speed

Handover already performed 
by a low speed Vehicle and 
adjusted HCP values 
accordingly

Micro Cell Micro Cell Micro Cell

Macro Cell

Macro Cell

Figure 6. Illustration of Velocity Aware Handovers in HetNets.

In [38] the authors proposed a conflict resolution approach to solve the optimization
conflict between MRO and LBO. This conflict is caused by the non-optimal HCP values
after optimization which leads to network performance degradation. To overcome the said
issue they used UE Velocity, Cell Load, and RSRP values of the serving and targeting BS
to get optimal values of HCP. This Optimization of HCP parameters is based on weight
functions for each user for each parameter. After optimization in the second stage they
adjust the HCP values according to the handover failure type. According to the results
presented in the paper, the proposed scheme is compared with MRO, LBO, and a Hybrid
of MRO and LBO. Results show that the proposed scheme outperforms the previous
schemes by a significant margin. In [85], authors proposed a Velocity Aware Handover Self
Optimization algorithm for 4G and 5G dense networks to optimize HOM and TTT values
according to the UE Velocity. Moreover, HOP, HOPP, and RLF were used to evaluate the
performance. They developed a distributed UE velocity-aware HO optimization algorithm
that works in a hybrid way. Initially, the system monitor and get the values of RSRP and
Velocity of the UE. HOM and TTT values will be adjusted based on these threshold values
(conditions) in the second phase with respect to UE speed states. These conditions or



Appl. Sci. 2023, 13, 3367 16 of 43

values were categorized on the basis of UE Velocity; however, the velocity range is only
from 40 to 160 km/h. Fixed mobility patterns, absence of LB information and use of fixed
pattern or jumping values for HCP adjustments can degrade the algorithm’s performance.
Similarly, some optimization approaches can predict more accurate HCP values instead
of manual adjustments in a jumping manner. The paper’s [86] authors proposed a robust
algorithm for the optimization of HCP parameters in an LTE-A HetNets environment
by introducing a new relationship between HOM and TTT values. By doing this, they
achieved excellent results compared to the previous literature by comparing RLF, HOPP,
and HOFs. Their proposed scheme adaptively selects the HOM and TTT values according
to the UE Velocity for each user. They assumed the locations of UE and BS to estimate the
velocity and UE’s distance from the BS. Using this location and Velocity information, they
adaptively predict the HOM Values. They also considered the RSRP and SINR from both
serving and targeting cells for predicting HOM according to UE Velocity. TTT is purely a
time-dependent phenomenon, but this article has shown a direct relationship between TTT
and HOM. It means the TTT values are dependent upon HOM as well as the velocity of
the UE, and they derived this relationship with the help of a geometric function to create
a base against fixed or unjustified steps [85] for tuning the HCPs. Similarly, the authours
in [149,150] investigates the downlink coverage and handovers by employing stochastic
geometry and SINR to enhance coverage and handover performance in 5G HetNets.

The partial optimization of HCP parameters results in inefficient HO triggering, low-
ering overall system efficiency. Similarly, Manual optimization, non-optimal analysis of
HCPs, and central optimizations are the obstacles to optimal HO triggering. This necessi-
tates the use of distributed optimization approaches because each UE needs specific HCP
values. In this research [91], the authors developed a distributed optimization strategy
for 5G networks based on weight functions. According to UE requirements, the system
automatically predicts the weight values for each unique user. The weight values for SINR,
UE load, and UE speed are first evaluated by the weighting mechanism. Following the
initial evaluation of input parameters, the outputs are transmitted to the second weight
function to produce the final output weight value, which will be utilized as an indicator
for the optimization of HCP for a particular user. The proposed weight algorithm’s results
were compared against HOPP, HOP, RSRP, and RLF. The benefit of this proposed strat-
egy is that it does not interfere with other participating UE’s HCP values, resulting in an
improvement in RSRP and a reduction in HOPP and RLF overall. Similarly, in [44], they
used a fuzzy logic approach based on UE’s velocity along with RSRP and RSRQ as input
parameters. The optimisation approach aims to introduce a robust HCP combination for 5G
and next-generation networks. They evaluated the algorithm with different mobility speed
scenarios in 5G networks for HOP, HOPP, HOF, HOL, and HIT as compared to HOPP, HOP
and RLF of their previous work [85].

HCP values for some grouped velocities cannot be fixed because these can change
rapidly with the change in velocity and other parameters. To establish these groups for
fuzzy systems, an impact of change in velocity must be measured on HCP values. In mobile
communications, HetNets and network densification are perceived as an essential approach
for handling the ever-increasing capacity and data rate demand, its impact on the handover
(HO) rate is often ignored. The benefits offered by HetNets directly affects by the number
of HO’s and delays caused by moving users. The authors in [151] developed a velocity-
aware HO skipping algorithm via stochastic geometry method, for cellular HetNets to
overcome the HO effects and to improve the data rates. The HO skipping or bypassing
scheme skips the cell that have highest SINR value along the user trajectory to prolong
the service or connection duration with the serving cell. This process resultantly reduces
the number of HOs and its related effects on the performance. Specifically, the simulation
results indicate that the velocity-aware HO skipping methods can generate up to 77%
higher data rate gains than the typical HO strategy that always maintains the optimal RSRP
based relationship. In [152], a velocity-aware HO triggering method for cellular HetNets
was developed that relied on the coordination of MIH (Media-Independent Handover)



Appl. Sci. 2023, 13, 3367 17 of 43

and PMIPv6 (Proxy Mobile IPV6) to facilitate user mobility while reducing packet loss
and HOL. They segmented the procedure into several parts, such as velocity tracking to
obtain stabilized values, updating the velocity values based on GPS tracking to obtain
UE lifespan for better decision making, and finally performing triggering choice. They
effectively improved packet loss and HOL issues but ignored HOP and HOPP.

In article [76], the authors intended to show the effect of different HCP values on the
performance of 5G network by analyzing fixed HCP settings. They used various scenarios
to explain the necessity for applying more advanced approaches in 5G networks. They
have used HOM’s and TTT’s predefined values with the predefined velocity of UE to check
the behavior of UE based on HOP, HOPP, and RLF. According to the simulation results,
lower HCP values can minimize the number of HOF while increasing the HOPP. These
results can further highlight that the medium HCP values may be the best solution when
using some fixed HCP environment for specific velocities. But for HetNets and dense
networks, the network conditions are highly dynamic, where these fixed HCP settings
will not work, resultantly requiring an adaptive solution. Similarly, in [83] same authors
investigated the performance of different MRO algorithms for 5G networks by considering
different mobile velocities. The purpose was to suggest the best MRO approach in dynamic
scenarios on the basis of HOPP, SINR and RLF. Table 5 lists the studies discussed in this
section, including their parameter selection criteria, HCPs considered for optimization,
KPI’s used for evaluation, the simulator used, the achievements and drawbacks, and the
velocity of the UE.

Table 5. Summary of Velocity-based Handover Approaches.

Ref.
No
Year

Criteria of Pa-
rameter Selec-
tion

HCP’s KPI’s Simulator Achievement Drawbacks Velocity

2021
[76]

Cell Load, UE
Velocity, RSRP,
SINR

HOM,
TTT

HOP, OP,
PPHP MATLAB

Studied the impact of different
predefined HCP settings to check
the 5G system performance

Compared different predefined
UE velocities, HOM, and TTT
values

Up to
140 Km/h

2022
[38]

UE Velocity,
Cell Load, and
RSRP

HOM,
TTT

HOP, HOPP,
HOF, HIT MATLAB

Reduced average HOPP, HOF,
and interruption time by over
90%, 46%, and 58%, respectively

Jumping values may not work
well when network conditions
change dynamically

Up to
140 Km/h

2019
[85]

RSRP, UE Ve-
locity

HOM,
TTT

HOPP, RLF,
HOP MATLAB

Remarkable reduction in HOPP
and RLF by an average of more
than 70%

They used jumped values of
HOM and TTT against some pre-
defined conditions that are show-
ing some sort of fixed behavior

Up to
160 Km/h

2022
[83]

Load Balance,
Velocity, RSRP

HOM,
TTT

RLF, SINR,
HOPP MATLAB

Weight function-based opti-
mization and distance-based
approaches work best

40 Km to
200 Km/h

2022
[44]

RSRP, RSRQ,
Velocity

HOM,
TTT

HOP, HOF,
HOPP, HOL,
HIT

MATLAB
FLC based approach compared
with [51,87] and improved by
86.78% and 95.5% respectivily

Adjustment of Output values
against FLC seems to be fixed
for fixed velocity ranges, also UE
mobility is limited in specific di-
rections

20 Km to
160 Km/h

2020
[89]

RSRP, RSRQ,
SINR, UE
Velocity

HOM
HOP, HOPP,
HOF, Data
Rate

MATLAB

The proposed model enables to
define the best time and the best
antenna to perform the HO. The
results demonstrate a decrease of
up to 43% in HOPP

HOM is the only HCP and use
of other decision parameters can
enhance the performance further

0 to
80 Km/h

2022
[90]

RSRP, RSRQ,
SINR, UE
Velocity

TTT HOP, HOPP,
HOF

Compared to the previous
[87,89], this algorithm reduced
the HOP and HOPP without
increasing HOF

RLF and HOF are relatively on
the higher sides as compared to
basic FLC models

0 to
80 Km/h

2020
[91]

SINR, UE
Velocity, Cell
Load

TTT,
HOM

HOP, HOPP,
RLF, RSRP MATLAB

Weight function estimates the
HCP values individually for ev-
ery user according to the input
parameters

0 to
140 Km/h
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Several velocity-aware HO techniques have been proposed in recent years to improve
handover performance in HetNets. UE speed has been used as a decision parameter to
modify the HCP values, resulting in reduced HOPPs and improved network performance.
The proposed techniques use weight functions, fuzzy logic, and other optimization ap-
proaches to adapt HCP values to UE velocity. The results of these studies have shown
improved performance in terms of HOPP, RLF, and HOF compared to traditional handover
techniques. Distributed optimization strategies have been developed to overcome the
limitations of manual optimization and central optimization, resulting in efficient handover
triggering and improvement in overall system performance.

4.2. RSRP-Based HO Decision Approaches

UE performs periodic or event-triggered measurements and reporting for handovers
to get signal quality and power level. 3GPP defined a few measurement parameters,
and RSRP is one of them. RSRP-based handover procedures are more practical and can
perform better in conjunction with other measurements or decision parameters to adjust
user requirements. RSRP is the average received power of a single reference signals resource
element. An illustration of the RSRP-based handover process is shown in Figure 7. In this
section, we included some literature related to RSRP-based HO decisions.

Macro 
Serving Cell

Cell with highest RSRP 
will become target cell

Micro Cell

Micro Cell

Micro Cell

Figure 7. Basic illustration of RSRP based Handovers in HetNets.

For the 4G and 5G HetNets scenario, the authors of article [92] developed a dynamic
HO control technique to optimize the HCP values and decrease HOPP and RLF. The pro-
posed algorithm was based on the type of HOF. They employed three types of HOFs named
too-early-HO, too-late-HO and wrong-cell-HO and justified that these HOFs occur due
to different speed scenarios. However, one criterion for these failures is the UE’s speed,
and other factors that contribute to HOFs include RSRP, SINR, and aberrant HCP changes.
These need to be adjusted dynamically to efficiently cover different speed scenarios and
RSRP levels. According to the proposed algorithm, the system will initially monitor input
parameters like RSRP, SINR, UE speed, etc. Following HOF occurrence, they classified
HOFs into three types and adjusted HCP parameters based on HOF type. Without taking
HOF into account, the results showed improvements in HOP, HOPP, RLF, and IT when
compared to earlier papers. Similarly, in [37] , the same authors proposed an auto-tuning
optimization algorithm with the similar approach based on RSRP and UE speed to tune
HCP values. The objective of the algorithm was to reduce HOF and HOPP, and its per-
formance was measured using HOPP, RLF, CDR, HOF, HOD, and IT. In article [68], a
penalized HO load balancing algorithm was proposed for cell edge users in LTE HetNets.
The technique was based on the optimization of the MLB algorithm by cooperative UE
selection and target cell selection along with Handover parameter optimization to achieve
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the objective of efficient load balancing along with better QoS. They used RSRP, cell load
and SINR to optimize HCPs and the comparison of the results shows a reduction in the
number of unwanted switching between UE and BS, thus increasing the throughput and
QoS of the system. In [153], the authors developed an efficient HO algorithm for load
balancing in the LTE HetNets scenario. They created a list of possible femtocells using
RSRP from neighboring cells and SINR. This possible femtocell list is divided into three
categories of neighbor cells based on the RSRP, expected RSRP, and number of free resource
blocks (RB), respectivily. To begin, the algorithm will select the femtocell with the highest
number of available resources in order to achieve the maximum possible throughput. In
the event that a candidate femtocell is unavailable, the algorithm forces users to connect
to a macro cell with adequate resource blocks. They tested the algorithm in a variety of
scenarios with varying numbers of users and UE velocity for throughput and HOPP. To
address HOPP and HOF, [154] proposed a method for adjusting the start of the handover
process using the TTT value based on the prediction of SINR in LTE HetNets. A predictive
method based on the recursive least squares algorithm was used to forecast SINR value.
The handover process selects the most appropriate triggering time with the help of the
monitoring of decay in SINR value. The results showed an improvement in the quantity of
HOF and HOPPs.

Frequent HOs degrade system performance and can be brought on by factors including
channel fading, static users, and slow-moving users. Within a small cell network, high-
speed UE are more likely to encounter HOs than low-speed users. These recurrent HOs
require adequate detection and prevention measures. In order to reduce unnecessary HOs
in HetNets, the authors suggested a frequent HO mitigation technique based on a threshold
control parameter. This is achieved by identifying users as fast-movers or HOPP based
on the frequency with which they encounter HOs. The suggested system tracks users’
dwelling times and their serving cell histories to identify intrusive HOs. The algorithm
labels a situation as "ping-pong" if the HO history data shows a pattern of repetition within
a relatively small amount of time spent at each location. It is assumed that users are always
on the move if there is no discernible trend in the HO history data over a very short dwelling
time. The problem of superfluous HOs has been effectively addressed by the suggested
approach [108]. A distributed optimization algorithm for MRO was proposed in [95] to
minimize the number of RLFs in LTE small cell scenarios. They employed RSRP for HO
decisions and adjusted the TTT, HO offset and CIO value for HCP tunings. Here TTT and
CIO act as temporal and spatial parameters for joint optimization. The simulation results
are compared on the basis of the number of RLFs, and HOPPs. They also highlighted the
impact of UE speed on RLFs. The inclusion of HOM value along with included parameters
can further enhance the efficiency of the algorithm. Table 6 presents the studies discussed
in this section, along with their selection parameters, HCPs considered for optimization,
key performance indicators, the simulator utilized, and the achievements and limitations
of each.

4.3. FLC-Based HO Decision Approaches

Fuzzy logic is a technique that attempts to find accurate solutions for problems with
imprecise data. In simple words, it allows situations, problems, or actions to be described
and processed in linguistic terms such as “low”, “medium” and “high” instead of values
like “30 kmph”, “70 kmph” and “120 kmph” [155]. It has been employed in a variety
of engineering applications. FL approaches can be used in mobile communications to
determine when and which cell to handover. These decisions can be based on multiple
criteria and attributes as shown in Figure 8 for an enhanced decision-making procedure. In
this subsection, we highlighted the recent literature that employed the FL-based approaches
for handovers in the HetNets environment.

Due to HetNets and dense cell deployment in 4G LTE and 5G networks, the probability
of HOPP, HOF and RLF on high-speed UE has increased tremendously. That is why
managing and optimizing the HCP values is required by adjusting the conflicts between
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MRO and LBO. In this article [84], the authors proposed a coordinated self-optimization
technique based on fuzzy logic to perform seamless handovers in HetNets. To manage the
HO parameters along with adjustment of MRO and LBO conflict, authors used Cell Load
instead of LBO and Weighted FLC for MRO to get optimized values of HCP according to
the input parameters. Simulation results were compared based on HOPP, RLF and HOL.
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Figure 8. Schemetic Diagram of Fuzzy Logic-based Handovers in HetNets.

Table 6. Summary of RSRP-based Handover Schemes.

Ref.
No
Year

Criteria of
Parameter
Selection

HCP’s KPI’s Simulator Achievement Drawbacks

2019
[92] RSRP HOM,

TTT
HOPP, RLF,
HOP MATLAB

Velocity aware technique HOPP, RLF
and IT by 78.31%, 49.86% and 44.94%
respectively as compared to static HCP
approach

According to the Handover types,
TTT and HOM values are adjusted,
but these step based jumping adjust-
ments in HCP shows fixed behavior

2019
[37]

RSRP, UE Veloc-
ity

HOM,
TTT

HOPP, RLF,
HOF, HOP,
HOD, HIT

MATLAB

Proposed Auto-Tunning Algorithm re-
duced HOP by 92% and 73%, RLF
by 65% and 87%, HOPP by 98.14%
and 93.21% and HIT by 90% against
[156,157] respectively

Manual definition of rules may not
be appropriate in practical scenarios

2021
[68]

Cell Load, SINR,
RSRP HOM Throughput

A cooperative distributed load balanc-
ing approach reduced call drop to 0% as
compared to 8.42% and 2.78% against
[158,159] similarly, reduced overloaded
cells to 3% and RB utilization to 99%

Must compare the results for HOPP
to show the effectiveness of the algo-
rithm against HOPP

2021
[93] RSRP, SINR

HOM,
TTT,
and
CIO

RLF, HOPP NS-3

Adaption time and user satisfaction
rates are only 4.17% and 416.7% at
5 Km/h, and 33.33% and 187.8% at
30 Km/h respectively as compared to
baseline algorithm

For the real-time scenarios this may
lead to higher RLF in case of an in-
crease in the number of UEs and
speed

2019
[101]

RSS, Velocity,
Path Prediction HOM HOP, RLF MATLAB

HOPP mitigation success rate increased
to 74% as compared to conventional
RSRP scheme from 56% and handover
success rate of 60% to 30% of Monte
Carlo method

High speed scenarios were not con-
sidered

2019
[108] RSRP Threshold No. of HO,

Throughput NS-3
FHM reduced 79.56% of the total num-
ber of HOs and network throughput
increased by 10.82%

By offloading UEs towards the
Macro cell, may overload the cell
and reduce the overall performance
also an increase in number of users
at higher speeds specifically de-
grades the throughtput

2018
[95] RSRP

CIO,
TTT,
HO
offset

HOPP, TTT,
RLF NS-3

Categorized handover failures by ratio-
nale and adaptively optimized HCPs
according to the dominant handover
failure reason

The authors used simulation to min-
imize the RLFs and HOPPs, but no
analytical justification was provided

Previously the same author in [77] employed FL by proposing a weighted fuzzy self-
optimization approach to optimize HCP parameters in HetNets. They optimize the HOM
and TTT by taking SINR, UE speed, and BS traffic load into account as input parameters.
The weighted fuzzy algorithm automatically optimizes the HCP values according to the



Appl. Sci. 2023, 13, 3367 21 of 43

input parameters. They compared the simulation results on the basis of RLF, HOPP and
HOF. In [102], authors proposed a fuzzy logic-based vertical handover decision-making
scheme for HetNets using only throughput and end-to-end delay as input parameters.
Simulation results compared on the basis of throughput, end-to-end delays, jitter and
handover decision time. The authors extended their previous work [79] in this [87] article
by employing fuzzy logic to optimize only the HOM value by using RSRP, RSRQ and UE
velocity as inputs to fuzzification system. They achieved the dynamic HOM values by
enhancing the fuzzy rules from the previous work according to the quality and velocity
of the UE. The simulation results were compared to numerous approaches based on HOF,
HOPP, number of HOs, and average connection time. A three-stage fuzzy logic handover
approach was proposed in [109] for the D2D scenario. They used RSRP, PLR and throughput
as input criteria to the fuzzification system and developed a minimum quality function
to estimate the handover necessity; the purpose was to reduce the unwanted handovers.
In the second stage, they designed a fuzzy logic-based target cell selection scheme to
process the UEs requiring handovers. Whereas in stage three, the selected target cell will
be checked for the radio resources availability. The simulation results were compared with
several TOPSIS and simple fuzzy schemes on the basis of PLR, average throughput and
number of handovers. However, in the article [88], the authors used RSRP, RSRQ and UE
velocity as inputs to a fuzzy logic system to optimize HOM as well as TTT values. But the
results were only compared on the basis of HOPP and HOP for different UE velocities. The
majority of the available literature for fuzzy logic-based handovers has used numerous
input parameters to obtain more appropriate optimization values. However, the authors
of this article [96] only used SINR as an input parameter, together with changes in SINR
value, to forecast the HOM. They defended this technique by claiming that when a UE’s
SINR value drops, the UE is likely to move away from the BS and disconnect soon. As a
result, they proposed that when the SINR is low, the HOM value be set low to initiate the
handover process early. They simply employed nine fuzzy rules to calculate HOM and
compared simulation results using RLF and HOPP.

Basic FL approaches employed in mobile communications performed well. They act
as a reliable and robust approach for optimizing HCPs based on uncertain data however,
these basic approaches have some flaws. For example, they cannot produce a reliable and
robust decision if the number of input decision criterion increases. Similarly, designing of
membership function also needs some automation instead of human experiences as, due
to dynamically changing environments these approaches may not work in all scenarios.
A fuzzy logic TOPSIS approach was presented in [89] that used RSRP, RSRQ, SINR and
UE velocity as input parameters. From these input parameters, fuzzy logic utilized three
inputs named RSRP, RSRQ and UE velocity for the fuzzification process that will help in the
handover decision process. The basic purpose was to optimize the HOM by considering
multiple input parameters. They used TOPSIS to prioritize the selected target cells from
the available list and compared the results based on the number of HOs, HOF, HOPP and
data rate. Using SINR and UE velocity helps to improve HOM optimization according
to the user requirements. Similarly, the article [94] proposed a fuzzy logic and TOPSIS-
based approach. They utilized fuzzy logic to manage dynamic input control parameters
and TOPSIS to select the best BS. In order to improve the decision criteria, they used
the concept of subtracting cluster scheme to generate membership functions based on
historical data. They utilized SINR, RSRP, jitter, and packet loss as input parameters and
compared simulation results using HOPP, the number of HOs, and the mean option score,
which is a performance indicator for algorithms. Instead of using TOPSIS, the authors
in [90] used a deep-Takagi-Sugeno-Kang fuzzy classifier (DTSK-C) for HetNets scenarios.
They named it H2RDC (heuristic handover based on RCC-DTSK-C) with the purpose to
reduce the number of HOPP. The DTSK-C classifier used a deep stack structure between
different subsystems to classify and prioritize the target cell for handovers. They considered
SINR, RSRP, RSRQ and UE velocity as input parameters for the fuzzification process to
construct the input dataset for handovers. The simulation results were compared with the
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state-of-the-art approach [89] along with two other basic approaches by considering HOPP,
HOF, number of HOs, CDR and time required for handovers. Table 7 presents the studies
discussed in this section based on FLC.

Table 7. Summary of FLC-based Handover Decision Approaches.

Ref.
No
Year

Criteria of
Parameter
Selection

HCP’s KPI’s Simulator Achievement Drawbacks Fuzzy
Rules

2022
[84]

SINR, Cell Load,
UE Velocity HOM, TTT HOPP, RLF,

HOL MATLAB

Eliminated LBO-MRO conflict by
employing Cell Load instead of
LBO and simulation results are rel-
atively better than the [89] model in
terms of HOPP, HOL and RLF

Complexity of the fuzzy model
is greater than that of the origi-
nal model

FLC 3 × 3
× 6

2019
[77]

SINR, Cell Load,
UE Velocity HOM, TTT HOPP, RLF,

HOF MATLAB

WFSO scheme calculates the
weights against input parameters,
and results reduce HOF rate by
95.9 %

HCP adjustment according to
UE requirements can further en-
hance the HO performance.

Weighted
Fuzzy
System 3
× 3 × 3

2022
[94]

RSRP, SINR, Jit-
ter, PLR TTT HOPP, HOP MATLAB

Fuzzy-TOPSIS reduced the num-
ber of handovers by 90% and
HOPP by 10% as compared to
RSRP method whereas, histori-
cal information based Clustering
Fuzzy-TOPSIS further reduce the
number of handover by 10% and
RLF by 3%

Clustering
Fuzzy-
TOPSIS 5
× 5 × 5

2020
[102]

Throughput,
End-to-End
Delay

Q-Parameter HOD, Through-
put, Latency NS-3

FL approach used E2ED and
throughput as input to HO deci-
sion maker, which gives 97% better
performance in terms of handover
delay than compared technique.

They only considered through-
put and E2ED as handover input
parameters, which may elimi-
nate a lot of handover decision-
making useful information

FLC 3 × 3

2018
[87]

RSRP, RSRQ, UE
Velocity HOM

HOP, HOF,
HOPP, Connec-
tion Time

MATLAB
Proposed scheme reduced the
HOPP and shows prominent
results for HOF and HOP

Only considered HOM as an
HCP, however, HOM along with
TTT can produce better results

FLC 3 × 3
× 4

2021
[88]

RSRP, UE Veloc-
ity, RSRQ HOM, TTT HOPP, HOP MATLAB

The proposed approach reduces
HOPP probability by 0.5% com-
pared to 50% and 10% in [51,87]

The performance evaluation can
be extended for RLF, and user
velocity support is also limited

FLC 3 × 4
× 4

2021
[96]

SINR, Delta
SINR HOM HOPP, RLF MATLAB

This algorithm dynamically deter-
mines HOM according to the SINR
and the change in SINR of a UE and
related this decay with the possible
handover in near future

Use of SINR and change in SINR
can work better if RSRP, RSRQ,
location and trajectory informa-
tion is also considered for possi-
ble handovers

FLC 3 × 3

2020
[89]

RSRP, RSRQ,
SINR, UE Veloc-
ity

HOM HOP, HOPP,
HOF, Data Rate MATLAB

This model outperforms the pre-
vious models in terms of average
number of handovers by 42% and
average HOPP by 43% due to the
inclusion of SINR and Velocity

Higher link failures as com-
pared to the other considered ap-
proaches

FLC (AHP)
and TOP-
SIS 3 × 4
× 3

2022
[90]

RSRP, RSRQ,
SINR, UE Veloc-
ity

TTT HOP, HOPP,
HOF MATLAB Reduced the handover rate by 83%

and HOPP by 76%.

RLF and HOF are relatively on
the higher sides as compared to
basic FLC models compared in
this paper

Statistical
Fuzzy
System 3
× 4 × 4 ×
3

2018
[79]

RSRP, RSRQ, UE
Velocity HOM HOF, HOPP MATLAB

Effectively enhances the handover
decisions by reducing HOF and
HOPP

The inclusion of the TTT can fur-
ther enhance the effectiveness
against handover decision pro-
cess

FLC 3× 3
× 4

2020
[109]

RSS, Through-
put, PLR NSF

Number of
HOs, PLR,
Throughput

MATLAB

This approach surpasses tradi-
tional and MADM-based fuzzy
schemes in terms of the number
of handovers and throughput
performance

FLC 3 × 3
× 3

Fuzzy logic has been widely used in mobile communication applications as a reliable
and robust approach for optimizing handover control parameters based on uncertain data.
Despite its advantages, it still has some limitations, such as its inability to produce a reliable
decision when the number of input decision criteria increases. Therefore, more research is
needed to automate the membership function design and to improve its performance in
dynamically changing environments.
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4.4. Metaheuristic Algorithms-Based HO Decision Approaches

In telecommunication, the design problem can be of large scale and complex that
requires more computational power and time. These issues become severe and more
challenging with the increase in different user requirements like data rate, speed, capacity
etc. The complexity of these real-world challenges and requirements constrains the use
of conventional methods. Metaheuristic algorithm highlights a process that is meant
to discover a satisfactory solution to a complicated and difficult-to-solve optimization
issue. For real-world problems with limited resources (e.g., processing power and time),
it is crucial to find a near-to-optimal solution based on imperfect or partial knowledge.
Metaheuristic algorithms can be classified into multiple categories: evolutionary, trajectory,
and nature-inspired approaches. We added several papers in this subsection that use nature-
inspired and evolutionary methods to address handover problems. Figure 9 illustrates
the fundamental principle of utilizing Nature-Inspired and Evolutionary algorithms in
optimizing handover procedures.

Initial Population

Compute the Fitness Function

Selection

Crossover

Mutation

Satisfy termination 
condition?

Satisfy termination 
condition?

Initialize PSO parameters

Compute Velocity and 
Location of particles

Evaluate Values

Find best Local and Global 
positions for all Particles

Initialize Population

Yes Yes

No No

Mobile HetNets

Handover Input Parameters

Metaheuristic Algorithm 
(any)

PSO GA

Best Individuals
(HOM, TTT)

Figure 9. Schemetic Diagram of Metaheuristic-based Handovers in HetNets.

Due to multiple user requirements and dynamic behaviors, HCP values cannot be
fixed to perform handovers. In article [97], the authors proposed a PSO algorithm along
with mobility load balancing to get optimized HCP values for dynamic behaviors and re-
quirements by using RSRP, UE velocity and load information. The performance evaluation
was done based on HOPP and HOF. They compared fixed HCP values, optimized TTT,
optimized HOM, and proposed scheme that utilizes TTT, HOM and offset. The simulation
results showed that the HOPP and HOF have greatly improved compared to fixed or
partial HCP optimization schemes. Using other KPIs can further validate the effectiveness
of the proposed approach. Similarly, [105] devised a hybrid technique that combined the
principles of PSO and SFO for 5G HetNets. The proposed adaptive particle-based sailfish
optimizer (APBSO) determines weights depending on input parameters such as SINR, E2E
Delay, HOP, Jitter, and Packet Loss in order to select the optimal network from a list of
potential networks. These weights are then supplied to a Deep Auto Encoder section, which
optimizes these weight values to perform handover decisions. The proposed technique
performs well in terms of delay, HOP, stay time, and throughput when compared to earlier
studies. The authors in [118] presented the PSO and PSO passive congregation (PSOPC)
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optimization algorithms to decrease handovers by relocating UEs between Macro and
Femto cells based on their speed and data requirements. When compared to the PSO
optimization approach, the PSOPC optimization technique reduces handovers by 20%.

The basic purpose of handover optimization approaches is to provide users with
seamless services during mobility such that an up-to-mark QoS is available to every user in
the network. The authors in [111] proposed an integrated optimization approach based
on grey wolf optimization (GWO) and mayfly optimization (MFO). They employed the
characteristics of GWO for network initialization and MFO for handover decisions. For
the initialization phase, they considered security level, battery level, RSRP and QoS as
input parameters for handover triggering. The Simulation results showed on the basis of
delay, call drop, energy consumption and throughput. The authors of [104] also developed
a hybrid approach to manage the frequent handovers and power consumption issues in
HetNets. They employed cuckoo search (CS) and genetic algorithm (GA) for handover
optimizations. Resultantly, they achieved better results with proper resource utilization
and mobility in terms of throughput, delay, number of HOs and HO Failure Probability.
They used the location and velocity information of the UEs to get the effective solution
population from the cuckoo search algorithm, and passed these population values to a
GA to get an optimal handover triggering value. Instead of using a hybrid approach the
authors in [112] used the basic GA for handover optimization process on the basis of data
rate, bit error rate, RSRP and delay for HetNets scenario.

The development of dense networks and HetNets has greatly increased the functional
complexity by many folds. This rise in functional and optimization complexity directly
affected the network performance in the form of KPIs degradation. Coverage and handover-
related parameters are mainly affected in HetNets, which needs to be optimized in an
efficient way such that the KPIs and QoE can be maximized. Heuristic algorithms and ML
techniques allow you to model and map out functions in the form of data that cannot be
evaluated directly or mathematically. Instead of using simple heuristic approaches, now,
most authors prefer to use these approaches with ML or DL techniques [110]. Similarly,
in [120], the author’s used ML techniques with GA to get the optimal values for HOM and
CIO that can resultantly enhance the SINR for users in the network. Firstly, they generated
the synthetic data values for possible combinations of HOM and CIO. These generated
values are forwarded to the ML model to predict the most optimal KPIs that can enhance
the system’s performance. Lastly, they used GA on the outputs of ML model for faster
convergence. The performance analysis result shows that CatBoost performs best amongst
ML techniques and GA can find the optimal convergence point more efficiently. To obtain
optimal values for HCPs, the authors [107] used a data-driven multi-objective optimization
approach. Firstly, they generated synthetic data for XGBoost, an ML model, to generate
reliable KPI values, and then they used GA to maximize the RSRP and HOSR jointly. Later
this work was extended by the same authors in [106]. The authors proposed a synthetic data-
driven self-optimization approach for inter-frequency handovers by employing XGBoost
and modified GA. They asserted that this is the first method of its kind that optimizes
handover parameters with severely time-bounded constraints using synthetic data rather
than real-time operator data. TTT, threshold1, and threshold2 are the three handover
parameters that they optimized. The performance of these parameters was justified based
on the handover success rate, RSRP, and SINR. The multi-Objective Optimization function
determined the optimal values of TTT, Th1, and Th2. This designed objective function
jointly maximizes the three KPI indicators: HOSR, RSRP, and SINR, and also maintains
the fairness among KPI defined by the operators. This Optimization process was based on
the training of Synthetic data designed with the help of SHAP implemented in the newly
developed Simulator “SyntheticNet” [160] and produced with the help of the XGBoost
gradient model. In the end, they used a Modified GA named Intelligent Mutation GA
(IMGA) on the output values of XGBoost model for faster convergence to get optimal values.
List of some of these studies have shown in Table 8 by considering different metahueristic
algorithms.
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Table 8. Summary of Metaheuristic-based Handover Schemes.

Ref.
No
Year

Criteria of
Parameter
Selection

HCP’s KPI’s Simulator Achievement Drawbacks Algorithm

2020
[105]

SINR, E2E De-
lay, HOP, Jitter,
Packet Loss

Output
(Yes/No)

Delay, HOP,
Stay Time,
Throughput

Python
Reduced handover delay to 11.37 ms, in-
creased connection/stay time to 7.79 s
and throughput to 12.72 mbps

Shows poor performance for
the seamless connectivity be-
cause of neglected handover
input parameters

APBSO
based
Autoen-
coder

2021
[110]

UE Velocity, Lo-
cation Throughput

PSO-NN hybrid approach improved
throughput upto 34.34% as compared to
previous works

Hybrid
of PSO-
NN

2022
[106]

TTT,
thresh-
old1,
thresh-
old2

RSRP, SINR,
HOSR (HOP)

Synthetic-
NET

Data driven approach having root mean
square error of 0.0635 dBm, 0.1995 dB
and 2.99% for RSRP, SINR and han-
dover success rate respectively, modi-
fied GA further improves performance
by 21 times faster

Synthetically generated data
may not exhibit much better
performance when it is ap-
plied to real-time scenario

XGBoost
with
mod-
ified
GA

2020
[120]

CIO,
HOM SINR

With limited data availability CatBoost
achieved RMSE of 1.144 dB for SINR,
GA further enhance the performance by
finding optimal values

May require a large dataset
to reach a sufficient accuracy
also the optimization of TTT
predicts more optimal results

CATBoost
with
GA

2022
[118]

RSRP, UE Speed,
UE Data Type

No. of Hos, En-
ergy Consump-
tion

MATLAB Compared to the PSO, the PSOPC re-
duced handovers by 20%.

PSO
and
PSOPC

2022
[111]

Security infor-
mation, Battery
level, QoS,
RSRP

QoS

HOD, CDP,
Throughput,
Energy Con-
sumption

NS-2

Improved energy consumption, delay,
call drop, and throughput with the val-
ues of 0.05359J, 0.0142sec, 0.0628sec,
and 104.58 kbps respectively

GWO
and
MFO

2022
[104]

Location, Dis-
tance, Velocity
of UE, Position
of UE

Cost
function

Delay, No. of
HOs, Through-
put, HOF

MATLAB

Novel scheme based on CS and GA
achieved better results in terms of
Throughput, Delay, No. of HOs and HO
Failure Probability

further investigation about
the scheme may be required
with other handover related
parameters

Hybrid
of CS
and GA

2020
[107]

TTT, th1,
th2 RSRP, HOSR Synthetic-

NET

An optimization approach used XG-
Boost that predict HOSR and RSRP with
RMSE of 2.5% and 0.074dBm respec-
tively, GA further enhanced the results
by 48 times against brute force

XGBoost
with
GA

2021
[97]

RSRP, UE, Veloc-
ity, Load

TTT,
HOM HOF, HOPP

TTT, HOM, and MLB should be ad-
justed based on UE speeds and traffic
loads

PSO

The development of metaheuristics and nature-inspired algorithms has proven to be
a crucial method in optimizing handover procedures in HetNets. A multitude of studies
have shown the effectiveness of such algorithms in reducing handovers and improving
KPI’s such as HOPP, HOF, delay, call drops, energy consumption, and throughput. The
integration of machine learning and deep learning techniques has further enhanced the
performance of these optimization algorithms.

4.5. Machine Learning/Deep Learning Based HO Approaches

In 4G and 5G network paradigms, handover management is a critical challenge in
small-cell HetNets and can negatively impact the QoS and QoE with an increase in han-
dovers. To address this challenge, deep learning and machine learning have been adopted
as effective solutions for managing mobility and handovers by optimizing HCP parameters.
These techniques have gained popularity over traditional optimization procedures due
to their robust optimization and convergence properties. As demonstrated in Figure 10,
advanced Machine/Deep/Reinforcement Learning strategies can be utilized to optimize
handover procedures in HetNets. Several articles that have utilized ML and DL methods
to tackle handover issues are highlighted in this subsection and summarized in Table 9.
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Figure 10. Schemetic Diagram of Machine Learning/Deep Learning-based Handovers in HetNets.

The authors of [161] suggest using AI-assisted mobility predictors to manage a dense
5G network, aiding in resource allocation, load prediction, and energy saving. XGBoost
was found to be more accurate in predicting mobility, achieving up to 95% accuracy with
new input features, a realistic mobility model, and HetNet with shadowing. Similarly, [162]
proposes an XGBoost algorithm to improve handover success rates in a sub-6 GHz LTE
and mmWave HetNets, improving session maintenance and meeting the demands of 5G.
To address the challenges of HetNets, the authors of [163] proposed a fuzzy logic-based
vertical handover decision algorithm. This algorithm takes into account multiple input
parameters to determine the most desirable network preference between LTE and WLAN
for handover. By using this algorithm, it’s possible to maintain QoS during the handover
process. Additionally, the authors proposed an intelligent interface activation technique
that uses an RNN model to predict network conditions and reduce unnecessary network
measurements during excellent network conditions. This technique optimizes power
consumption in mobile terminals, further enhancing the user experience in HetNets.

The authors in [164] proposed a handover algorithm for next-generation multi-tier cel-
lular networks. The proposed algorithm utilizes a look-up table, DL, and LSTM approaches
to improve user QoE and QoS requirements while reducing HOF and ping-pong rates.
Simulation results show that the proposed algorithm outperforms the current 3GPP scheme,
with a significant increase in overall network throughput 40 to 60% and a reduction in HOF
and ping-pong rates by 30% and 86%, respectively. These promising results suggest that
the proposed solution could effectively enhance handover in next-generation multi-tier
cellular networks. The authors of the article [165] proposed an adaptive approach for cell
selection in two-tier HetNets using SDN and ML. The proposed adaptive algorithm, called
adaptive two-tier based on the K-Nearest Neighbor (A2T-KNN) algorithm, intelligently
selects the best BS from the two-tier BSs based on vehicle information and the features
of the HetNet. The results demonstrate that the proposed algorithm outperforms other
related schemes in terms of the average number of handovers, achieving up to 45.83%
improvement. Additionally, the proposed algorithm improves the average achievable
downlink data rate and network energy efficiency achieved by up to 17.18% and 16.86%,
respectively.

In [93], a transfer learning (TL) and RL based robust optimization approach was
proposed for small cell networks. The TL-based first part of the approach was used for
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network topology adoption in a centralized environment. Whereas the RL-based second
part was used for HCP parameter optimization. In the topology adaption phase, they check
the topology for any change in previously available information (Similarity detection). If
there is no change, the previously selected HCP values will be forwarded to the topology.
And in case of any change, the newly estimated HCP values will be forwarded and new
topology information will be stored in the database for the next iteration. Geometry-based
computation for CIO’s upper and lower bound values was also established, representing a
maximization function of Too-Early HO (TEHO) and HOPP and a minimization function
of Too-Late HO (TLHO). Lastly, RL based HCP adaption algorithm uses prior knowledge
of the parameters and fine-tunes them to an optimal value. They optimized the HOM,
TTT and CIO values and compared the results on the basis of RLF and HOPP. In [98],
the authors developed an approach based on Q-learning (QL) algorithm to perform self-
optimization in LTE networks. The basic purpose of this approach was to perform optimal
handover configurations independently. For this, the author has used an epsilon-first
learning algorithm for cell selection. However, for distributed self-optimization, this
single learning agent has to be used on a shared learning policy in which different actions
are collected separately from these single agents and forwarded into a central Q-Table.
They created TTT and HOM tuples according to UE velocity and divided velocities into
thirteen groups. The change in velocity will be observed and depending on this change,
the suitable action or values will be selected from the centralized Q-Table. After this,
the behaviour against performed action will be monitored, and accordingly, the reward
will be updated. The simulation results were compared for cell load, user satisfaction,
HOPP, HOP and RLFs. In [103], an online reinforcement learning technique was developed
that uses Kalman filter to compute the best of the serving and target cells’ RSRP values.
Based on the projected signal quality, a state-action-reward-state-action (SARSA) based
reinforcement scheme was employed for target cell selection which results in a dynamic
handover decision that considers future network conditions. They also used an epsilon
greedy method to dynamically change the TTT and HOM levels based on the user’s
requirement. They considered different UE speed scenarios for simulation and checked the
scheme for throughput, PLR, packet delay, HOL, HOF and error rate.

In [166], the authors proposed a recurrent neural network-based trajectory prediction
mobility model. The fundamental concept is to reduce complexity by eliminating raw data
and improving the accuracy of trajectory prediction to learn the user’s mobility behavior.
The authors of [167] proposed a user mobility prediction scheme for HO management in
Cellular networks by acquiring user mobility data. After acquiring mobility data, they
utilized a hybrid deep learning algorithm known as vector autoregression and gated
recurrent unit (VAR-GRU) to estimate the UE’s future trajectory. The proposed method
is subsequently evaluated in terms of future mobile location error, HO cost, and HO
processing cost. In [168], they proposed an LSTM-based framework for single and multi-
user UE trajectory prediction. They employed a fundamental framework for single-user
trajectory predictions and a sequence-to-sequence framework for cluster-based multi-user
trajectory predictions. The simulation outcomes compared single-user and multi-user
prediction strategies. Prediction of UE’s future location can result in improved estimation
and performance in handover procedures, thereby improving HO-related issues.

The authors developed a deep neural network-based proactive conditional handover
scheme for 5G dense networks in [147]. As 5G networks are more prone to blockages
and obstacles, a robust approach that can bear the sudden signal changes is required.
With conditional handovers, multiple target BSs prepared in advance for handovers even
when the connection between the UE and its serving BS is still reliable. The proposed
proactive deep learning approach compared, different blockage densities; however, during
the preparation phase, the target BSs have to reserve radio resources for the UE, which
will cause inefficient resource utilization. The authors of [113] employed RL algorithms to
predict the proactive handover decision-making based on pedestrian movement data. They
used the location and mobility rate of pedestrians to determine the appropriate handover
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policy for maximizing the system’s throughput. They collected the position and velocity of
the users using an RGB camera. On the basis of the obtained data, a Q-learning algorithm
was implemented and a handover decision was made. The simulation results demonstrate
that the Q-learning-based handover prediction is superior to the current heuristic handover
decision-making in terms of obtaining higher throughput against service disruption times.

The authors of [114] proposed a cognitive self-optimization approach by using a
fuzzy-based Q-learning algorithm along with a load difference method to optimize the load
balancing issues. According to the authors, these cognitive approaches can perform better
for unknown parameter relationships as compared to traditional rule-based or command-
based systems in which each rule has to be defined separately for every possible scenario.
They compared the Q-learning framework with traditional approaches at different speed
scenarios for throughput, the number of unsatisfied users, and energy efficiency. Similarly,
this research [169] also emphasized that proactive and cognitive approaches based on
deep learning can assist mobile networks to provide optimal services to end customers
without sacrificing quality. They used two distinct approaches for predictive and non-
predictive handover scenarios. They developed a mathematical model to evaluate the HO
cost, which incorporates latency, signaling overhead, call dropping, etc. In addition to this
analytical method, they also proposed data-driven deep learning-based HO prediction
algorithms to further enhance the HO cost parameters. Simulation results of MLP and
deep-stacked LSTM frameworks show the dominance of LSTM over MLP for handover
prediction. The enhanced performance can be due to LSTM’s inherent recurring nature,
which facilitates a more accurate representation of time series data. The authors in [115]
proposed a two-layer approach for HO optimization in an ultra-dense network. Initially,
they performed a two-tier operation to form clusters of similar mobility types and get the
optimal controller for each cluster by using k-means clustering algorithm. Then they used
a model-free asynchronous advantage actor-critic (A3C) reinforcement learning technique
to get HO information for each cluster. Lastly, they generate the generalized weights for
every cluster on the basis of available information about clusters. In terms of handover
rate and throughput, simulated results revealed that the proposed method outperforms the
existing techniques.

Various studies have been carried out in recent years to improve handover perfor-
mance in cellular networks through the use of transfer learning, reinforcement learning,
deep neural networks, and other techniques. The approaches summarized in Table 9
demonstrate the effectiveness of using machine learning algorithms in improving handover
performance by predicting user mobility, optimizing network parameters, and balancing
network load. However, more research is needed to further optimize these techniques and
find new ways to improve handover performance in 5G HetNets.

4.6. Spatial Information Aware HO Decision Approaches

As mobile networks are proliferating, fewer communication delays, higher data rates
and higher capacities are expected in these networks. However, these factors can be com-
promised for high-speed scenarios in HetNets and small cells as they will observe frequent
handovers and high signalling overheads. Most of these handovers are unwanted or can be
avoided if the UE performs better handover decisions. Basic and conventional handover ap-
proaches only required signal strength information to perform handovers; however, these
approaches can severely affect the handover performance in HetNet scenarios. For example,
the conventional systems choose a cell with the highest signal strength as the handover
target cell even if its link would be lost within a second after the handover process. Instead,
another cell with a lower signal strength but a longer stable link could have prevented the
system from frequent handovers. So the use of proactive and conditional handover schemes
as shown in Figure 11 can be combined with location-based decision-making procedures to
predict more accurate estimation for handovers. In this section, we present a summary of
studies that utilize location and trajectory information for handover decision-making. The
findings from these studies are presented in tabular form in Table 10.
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Table 9. Summary of Handover Decision Approaches based on ML/DL.

Ref.
No
Year

Criteria of
Parameter
Selection

HCP’s KPI’s Simulator Achievement Algorithm

2022
[170]

RSRP, RSRQ,
Cell informa-
tion, Channel
Conditions,
Channel Band-
width

Based on a real-time collection of data, but more information about dataset
will be beneficial for understanding

Deep-
Mobility
an LSTM
based
approach

2021
[93] RSRP, SINR

HOM,
TTT,
CIO

RLF, HOPP NS-3
Adaption time and user satisfaction rates are only 4.17 % and 416.7% at
5Km/hr, and 33.33% and 187.8% at 30Km/hr respectively as compared to
baseline algorithm

TL, RL

2016
[98] SINR, Cell Load

HOM,
TTT,
CIO

Cell Load, User
Satisfaction,
HOPP, HOP,
RLF

C++
based LTE
Simulator

Adjust the HO configurations autonomously using reinforcement learning
for MRO and MLB

Q-
Learning,
RL

2020
[166]

Python
(Keras)

LSTM (RNN) based deep learning model to predict Mobile User trajectory,
also used line simplification method to clean data to reduce execution time LSTM

2021
[167]

UE trajectory
data

Location, HO
and Processing
Cost

Python
(Keras)

Based on a real-time dataset for user trajectory prediction and improved
the processing cost and transmission cost by 57.14% and 28.01% respec-
tively

VAR-GRU

2019
[168]

Proposed a single-user and multi-user trajectory prediction scheme for fu-
ture mobile HO management by using LSTM approach LSTM

2020
[147] RSRP TTT,

HOM HO Success rate Python,
MATLAB

Conditional HO (CHO), a deep learning-based scheme that forecast the
future target cell with an accuracy of 97.8% for upcoming HO in mmWave
scenario

DL

2018
[113]

RSSI, Velocity,
Location Throughput

A Q-Learning model for the prediction of HO in mmWave network by
utilizing the RSSI and, Velocity and Location of pedestrian and perform
better as compared to existing heuristic handover decision approaches

Q-
Learning

2020
[114]

Throughput,
No. of Unsatis-
fied UE

LTE-Sim A Fuzzy-logic based Q-Learning approach with a load difference algo-
rithm that optimize the load balancing and mobility related issues

Fuzzy Q-
Learning

2019
[169]

User Location
based on RSSI

Signaling Over-
head, Latency,
Call Dropping,
and Radio Re-
source Wastage,
User dissatisfac-
tion

An analytical model that evaluates the HO cost which includes latency, sig-
naling overhead, call dropping, etc. secondly, a data-driven deep learning-
based HO prediction approach that further enhance the HO cost parame-
ters

LSTM

2018
[115]

Throughput,
HO rate

Formed two-tier clusters of similar mobility types and get the optimal
values for each cluster by using asynchronous advantage actor-critic re-
inforcement learning technique and lastly, by using available clustering
information, the generalized weights produced for every cluster

RL, DL

2022
[103] RSRP, RSRQ TTT,

HOM

Throughput,
PLR, Packet
Delay, HOL,
HOF, Error Rate

NS-3
Used Kalman filter to compute the best RSRP of serving and neighbor cells
and applied SARSA-RL technique to best target cell according to environ-
ment characteristics

Kalman
filter with
SARSA
based RL

Optimized Handover Values

Conditional Handovers

Data Driven Handovers

Trajectory Pridiction

Location Prediction

Other Input parameters

Input States

Location

Trajectory

Velocity

SINR

Other Input parameters

Prediction/Handover 
Decision Systems

Figure 11. A Basic Illustration of Spatial Information-based Handovers in HetNets.
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Table 10. Spatial Information based Handover Decision Approaches.

Ref.
No
Year

Criteria of Param-
eter Selection HCP’s KPI’s Simulator Achievement Drawbacks

2017
[121]

UE speed, UE tra-
jectory, UE Loca-
tion, Cell Location,
RSRP

Weight
Value

Packet Delay
Ratio, Packet
Loss Ratio

LTE-Sim

Evaluation of movement direction distance
(MDD) algorithm in different dense network
scenarios that achieved better results in the
form of PDR and PLR by 85% and 60% respec-
tively

For comparison purposes, considera-
tion of HOPP, HOP, RLF, etc. can jus-
tify the performance in a much better
way

2016
[99]

HOPP, Frequent
HO, CDR, CBR,
PLR

Quality
Indicator
Weight

HOPP, CDR,
CBR, Unneces-
sary HO

MATLAB

A Spatio-Temporal Weight estimation ap-
proach that reduced the unnecessary HO,
HOP and HOPP by 35%, 37% and 17% respec-
tively

2018
[100]

RSRP, SINR, OP,
UE Location

RSRP,
SINR, OP

HOPP, No. of
HOs, PP Rate

MADM based multi-attribute scheme that con-
sidered UE location in a cell which is divided
into non-overlapping regions, results in an im-
provement in the overall throughput

Fixed mobility speed of UE seems
impractical for dynamically chang-
ing networks also the results show
an increase in the average number of
HOPP and HOs

2018
[116]

Distance, RSRP,
UE Speed, UE
Location, Cell
Location

PDR, PLR,
Throughput,
No. of HOs

LTE-Sim

movement direction distance vertical han-
dover (MDD-VHD) scheme reduced the aver-
age number of HOs, PDR, PLR, signaling cost
by 48%, 91%, 86.2% and 99% respectively in
comparison with [171]

For comparison purposes, considera-
tion of HOPP, RLF, etc. can justify the
performance in a much better way

2018
[117]

RSRP, UE Loca-
tion, Cell Location,
Cell Load

past val-
ues, thresh
values for
HO

PDR, PLR,
Throughput,
No. of HOs

LTE-Sim

A new handover procedure that was based on
two policies, the moving direction prediction
and the historical information of UEs and re-
duced the average number of HOs, PDR, PLR
and signaling cost by 19.5%, 15.6%, 42% and
99% respectively as compared to [172]

2019
[119]

RSRP, UE Speed,
UE Location, Cell
Location

distance,
trajectory
angle

No. of HOs MATLAB

Use of Lagrange interpolation to calculate the
probability of UE transition to its neighbor
cell on the basis of the velocity and the slope
of the trajectory that reduced the number of
HOs upto 30% as compared to the LTE HO ap-
proach

Only considered the number of HOs
for comparison, must be checked for
other parameters

In the article [116,121], a movement, direction and distance-based multi-criteria han-
dover decision algorithm was proposed for femto cells and dense macro cells. The proposed
algorithm employed UE speed, distance, UE trajectory, UE location, Cell location and RSRP
as input parameters for different handover scenarios. The simulation results were evaluated
for packet delay and packet loss in [121] and packet delay, packet loss, throughput and
number of HOs in [116] on different cell radius proximities. Too close and too distant from
the BS induce HOPP and HOF, respectively, and they related this in the form of packet loss
rate. Similarly, in [99], the authors used spatio-temporal information for the handover deci-
sion process. For target small cell selection, they considered a number of quality indicators
such as packet loss rate, HOPP, call drop and block rate, etc. This approach was intended
to reduce unnecessary handovers and HOPP in 5G macro and small Cell mobile networks.
They employed Kringing Interpolator with Semivariogram analysis for spatial estimation
of the collected values at the first stage. They used a k-order autoregressive model for tem-
poral estimation to get temporal values against each target cell. This temporal estimation
aimed to get more stable target cells for the mobility management process. The simulation
results were compared with the traditional handover process by considering HOPP, HOF,
CDR, CBR and PLR. The authors of [100] proposed a multi-attribute decision making QoS
aware handover technique for HetNets. They considered RSRP, co-channel interference
and outage probability on the basis of UE location for better target cell selection. They
divided the cell coverage area into three regions. On the basis of available values of input
parameters, they calculated the weight values by using the analytical hierarchy process
(AHP) to acquire handover utility of all the target cells. For analysis, they developed an
analytical model as well as a simulation model and performed the comparison based on
the number of ping pongs, number of handovers, HOPP and throughput.
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In general, humans perform geographically limited periodic movements most of the
time, which can be used to extract many useful aspects of movement behaviors. A very
basic illustration of the scheme is shown in Figure 11, which shows that by utilizing the
periodic and time-oriented movement information, the trajectory of a user can be predicted.
Which can enhance the performance of the handover approaches greatly. The authors
of [116,121] proposed a movement direction information history handover (MDIH-HD)
method in [117] that utilized the concept of historical UE trajectory information and future
location prediction for the handover process in LTE-A networks. The basic purpose of
this MDIH-HD approach was to enhance the throughput and reduce the cell searching
time, number of handovers, packet loss and delay at high speeds. Along with basic signal
measurement parameters, they used UE direction, mobility pattern history and target cell
load for this scheme. For an expected path, the UE’s historical data was utilized, while the
moving direction prediction was employed for the random route. They updated the user
historical data table based on the moving direction method, whereas the moving direction
prediction technique relies on the UE trajectory to estimate the target cell. The selection of
the target cell is based on its location, angle, and load capacity. When the UE is close to
the handover point, it will choose the target cell by looking at its past. If the UE trajectory
does not exist in the history or the target cell’s load is full, the user will begin searching
for the target cell using the distance and cosine weight function. The simulation results
show the improvement in considered parameters as compared to standard approaches.
Similarly, in [119], they proposed a UE mobility prediction method for dense networks by
using lagrange interpolation approach and calculated the probability of UE transition to
its neighbour cell on the basis of the velocity and the slope of the trajectory. They divided
the cell coverage into two tiers. No mobility prediction is required in the first tier or closed
proximities of BS. However, in the second tier, the mobility or trajectory prediction process
will be employed if a user moves away from the BS. They used random way point (RWP)
model for random topology generation with the speed and position of the users and applied
larange interpolation for the trajectory prediction. Their simulation model checked the
accuracy of the trajectory prediction and compared results for the number of unnecessary
handovers.

The findings from these studies suggest that the integration of proactive and condi-
tional handover schemes with location-based decision-making procedures can improve the
handover performance in high-speed scenarios. The use of UE speed, distance, UE trajec-
tory, UE location, Cell location, RSRP and interference information can greatly enhance the
accuracy of handover estimation and reduce unwanted handovers, packet loss, and delay.
The concept of historical UE trajectory information and future location prediction, as well
as the utilization of mobility prediction methods and spatiotemporal analysis, can further
improve the performance of handover approaches in 5G macro and small cell mobile
networks. In general, the integration of location and trajectory information in handover
decision-making can greatly enhance the performance of handover approaches in HetNets.

5. Open Issues and Future Directions

A lot of work has already been done to address the HO and mobility issues in future
mobile networks, but significant work still needs to be done in this area. Handover man-
agement is a critical aspect of wireless networks, particularly in 5G dense networks where
there is a high density of cells and a large number of devices connecting to the network
with dynamic requirements like high-speed mobility, low latency, high reliability and high
data rates, etc. Similarly, a lot of emerging technologies such as; wireless augmented reality,
gaming, high-definition video streaming, voice and video calling, ITS, V2V, V2X, IoT, HSR,
UAV, automated driving vehicles, etc. introduced new challenges in these networks. Re-
search in this area is already focusing on various techniques such as machine learning, deep
learning, network slicing, and network virtualization to improve handover management
and to make it more efficient and flexible. There are still many open areas to be addressed,
such as the need for better prediction algorithms, the need for new protocols to reduce
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HOL, HOPP, RLF, the number of handovers, and the need for solutions that can scale to
handle the large number of handovers that will be required in 5G small cell dense networks.
In this section, we will briefly highlight a few of the key points related to the future research
directions.

1. Software Defined Networking (SDN): The implementation of SDN in 5G HetNets
aims to address the dynamic and complex nature of various network architectures by
centralizing control and management. One of the key focus areas in this context is
optimizing the handover process, which is transferring a connection from one network
to another, to improve the overall performance and user experience in 5G HetNets.
Here are some of the research challenges in the context of SDN-based handover
optimization in 5G HetNets:

• Developing accurate and efficient handover decision algorithms
• Minimizing handover interruption time
• Managing network resources during handover
• Managing the load balance

SDN can play a key role in addressing the above-mentioned research challenges
by providing centralized control and management, which can be used to optimize
the handover process and improve the overall performance and reliability of 5G
HetNets [165,173–177].

2. Machine Learning: ML-based handovers in 4G/5G HetNets can improve wireless
networks’ overall performance and efficiency by making more accurate and efficient
handover decisions. However, several key research challenges need to be addressed
to fully realize the potential of machine learning in this area. These challenges include
dataset availability and quality issues, privacy and security, online and offline learning,
centralized and distributed learning, frequent handovers, signaling overhead, energy
efficiency, and load balancing. These challenges need to be addressed in order to
develop accurate and efficient machine learning algorithms for handovers in HetNets
and to ensure that these algorithms can handle the complexity and uncertainty of
real-world wireless networks [178–182].

3. Deep Learning: DL has been proposed as a solution for handover management in
4G/5G HetNets due to its ability to learn and make predictions from large amounts
of data. This can be useful in HetNet environments, where the number of possible
network states and configurations is high. Deep learning can be used to predict
the likelihood of a handover event, optimize the allocation of resources, improve
QoS and QoE, enhance security and privacy, reduce HOL and improve the real-time
performance, and make the decision-making process of the handover more transparent
and interpretable. Overall, the use of deep learning in handover management in
HetNets can enable more intelligent and efficient handover decisions, which can
improve the system’s performance and enhance the user experience.

4. Dual Connectivity (DC): DC is a technique used in HetNets to improve handover
performance. It allows a UE to simultaneously connect to multiple BS’s, typically a
macro cell and a small cell, and use both connections to transmit data. This improves
handover reliability and reduces interruption time during handover, as the device can
seamlessly switch between the two connections without losing data. Additionally, it
can also increase the overall network capacity, throughput and improve coverage in
areas with high user density. However, there are several challenges that need to be
considered, such as coordination between different base stations for fast switching
during handovers, interference management, mobility, load balancing, security, energy
efficiency, and QoS management between different macro cell and small cell users [25].
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5. Data-Driven Handovers: In 4G/5G HetNets, data-driven handover approaches are
crucial to ensure optimal performance and user experience. Future research will
focus on developing new techniques and methods to handle the complexity of these
networks, such as dealing with large amounts of data, accommodating high mobility,
supporting multiple radio access technologies, adapting to dynamic environments,
ensuring security, privacy and interoperability with other technologies. Overall, data-
driven handover approaches are an essential aspect of 5G and B5G HetNets research
and will have a significant impact on the overall performance and efficiency of these
networks.

6. Digital Twins (DT): A digital twin in mobile networks refers to a virtual representation
of a physical network infrastructure, such as a mobile device or a cellular network that
can be used to simulate and optimize the performance of handovers. By creating a
digital twin of a mobile device and the network infrastructure, network operators can
test and optimize handover procedures in a simulated environment before deploying
them in the actual network. This can help to identify and address potential issues with
handovers, such as dropped connections or delays in the transfer process, bottlenecks
and plan for capacity upgrades, and can lead to improved network performance and
a better user experience. Digital twins can also be used in real-time monitoring, this
way it can help to identify when and where handover issues are occurring in the
network and take appropriate action to resolve them [183–187]

6. Conclusions

The management of handovers in mobile networks has been recognized as a crucial
concern, particularly with the implementation of 5G dense networks and technologies that
increase capacity. In this paper, we presented a comprehensive survey of handover mech-
anisms in mobile HetNets, with a focus on providing a detailed and up-to-date analysis
of the current state of handover management. Our survey covers the basic procedures
for handovers, the impact of handover control procedures on key performance indicators,
self-optimization techniques, and the major challenges faced in handover management.
We also categorized current handover algorithms and reviewed evaluation methods for
performance.

The goal of this paper was to provide a comprehensive and updated overview of
handover management in mobile HetNets, highlighting the current research direction and
open problems in the field. Our survey presents a valuable resource for researchers in
the area of handover management, offering insights into the state of the art and future
directions for research.

In conclusion, this paper provides a valuable resource for researchers working in the
field, offering an up-to-date overview of the current state of the art and future directions
for research.
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Abbreviations
The following abbreviations are used in this manuscript:

3GPP Third Generation Partnership Project
A3C Asynchronous Advantage Actor-Critic
AHP Analytic Hierarchy Process
AI Artificial Interlligence
ANR Automatic Neighbor Relations
APBSO Adaptive Particle-based Sailfish Optimizer
B5G Beyond 5G
BS Base Station
CAPEX/OPEX Capital expenditures/Operating expenses
CATBoost Categorical Boosting
CBR Cell Blocking Ratio
CCO Coverage and Capacity Optimization
CDR Cell Dropping Ratio
CIO Cell Individual Offset
CoMP Coordinated Multipoint
CRE Cell Range Expension
CS Cuckoo Search
D2D Device-to-Device
DC Dual Connectivity
DL Deep Learning
DT Digital Twins
DTSK-C deep-Takagi-Sugeno-Kang fuzzy classifier
eICIC enhanced Inter-Cell Interference Coordination
FLC Fuzzy Logic Controler
FWA Fixed Wireless Access
GA Genetic Algorithm
GWO Grey Wolf Optimization
H2RDC Heuristic Handover based on RCC-DTSK-C
HCP Handover Control Parameters
HetNets Heterogeneous Networks
HIT Handover Intrupption Time
HO Handover
HOF Handover Failures
HOL Handover Latency
HOM Handover Margin
HOPP Handover Ping Pong
HOR Handover Rate
HOSR Handover Success Ratio
HSR High Speed Railway
ICI Inter-Cell Interference
ICIC Inter-Cell Interference Coordination
IMGA Intelligent Mutation GA
IoT Internet of Things
IT Intrupption Time
ITS Intelligent Transportation Systems
KPI key performance indicators
LBO Load Balancing Optimization
LSTM Long Short-Term Memory
MDIH-HD Movement Direction Information History Handover
MFO May-Fly optimization
MIH Media-Independent Handover
ML Machine Learning
MLP Multilayer Perceptron
mmWave millimeter wave
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MRO Mobility Robustness Optimization
NCL Neighbor Cell List
OR Outage Ratio
PLR Packet Loss Ratio
PMIPv6 Proxy Mobile IPV6
PRB Physical Resource Balancing
PSO Particle Swarm Optimization
PSOPC PSO Passive Congregation
QL Q-Learning
QoE Quality of Experience
QoS Quality of Service
RB Resource Block
RL Reinforcement Learning
RLF Radio Link Failures
RNN Recurrent Neural Network
RSRP Reference Signal Received Power
RSRQ Reference Signal Received Quality
RSS Received Signal Strength
RSSI Received Signal Strength Indicator
RWP Random Way Point
SARSA State Action Reward State Action
SDN Software Defined Networking
SFO Sail-Fish Optimization
SINR Signal-to-Interference and Noise Ratio
SON Self-Optimization Networks
TEHO Too-Early Handover
TLHO Too-Late Handover
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
TTT Time-to-Trigger
UAV Unmanned Air Vehicle
UE User Equipment
UHO Unnecessary Handovers
V2V Vehicle to Vehicle
V2X Vehicle to Everything
VAR-GRU Vector Autoregression and Gated Recurrent Unit
XGBoost eXtreme Gradient Boosting
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150. Ouamri, M.A.; Azni, M.; Oteşteanu, M.E. Coverage analysis in two-tier 5G hetnet based on stochastic geometry with interference
coordination strategy. Wirel. Pers. Commun. 2021, 121, 3213–3222. [CrossRef]

151. Arshad, R.; ElSawy, H.; Sorour, S.; Al-Naffouri, T.Y.; Alouini, M.S. Velocity-Aware Handover Management in Two-Tier Cellular
Networks. IEEE Trans. Wirel. Commun. 2017, 16, 1851–1867. [CrossRef]

152. Ait Mansour, A.; Enneya, N.; Ouadou, M. A Velocity-Aware Handover Trigger in Two-Tier Heterogeneous Networks. Future
Internet 2018, 10, 9. [CrossRef]

153. Aghazadeh, Y.; Kalbkhani, H.; Shayesteh, M.G.; Solouk, V. Cell selection for load balancing in heterogeneous networks. Wirel.
Pers. Commun. 2018, 101, 305–323. [CrossRef]

154. Bastidas-Puga, E.R.; Andrade, Á.G.; Galaviz, G.; Covarrubias, D.H. Handover based on a predictive approach of signal-to-
interference-plus-noise ratio for heterogeneous cellular networks. IET Commun. 2019, 13, 672–678. [CrossRef]

155. Roslee, M.; Alhammadi, A.; Alias, M.Y.; Anuar, K.; Nmenme, P.U. Efficient handoff spectrum scheme using fuzzy decision
making in cognitive radio system. In Proceedings of the 2017 3rd International Conference on Frontiers of Signal Processing
(ICFSP), Paris, France, 6–8 September 2017; pp. 72–75. [CrossRef]

156. Ray, R.P.; Tang, L. Hysteresis margin and load balancing for handover in heterogeneous network. Int. J. Future Comput. Commun.
2015, 4, 231. [CrossRef]

157. Nie, S.; Wu, D.; Zhao, M.; Gu, X.; Zhang, L.; Lu, L. An enhanced mobility state estimation based handover optimization algorithm
in LTE-A self-organizing network. Procedia Comput. Sci. 2015, 52, 270–277. [CrossRef]

158. Hu, H.; Zhang, J.; Zheng, X.; Yang, Y.; Wu, P. Self-configuration and self-optimization for LTE networks. IEEE Commun. Mag.
2010, 48, 94–100. [CrossRef]

159. Nasri, R.; Altman, Z. Handover adaptation for dynamic load balancing in 3gpp long term evolution systems. In Proceedings of
the International Conference on Advancnes in Mobile Computing & Multimedia (MoMM), Jakarta, Indonesia, 3–5 December
2007; pp. 145–154. [CrossRef]

160. Zaidi, S.M.A.; Manalastas, M.; Farooq, H.; Imran, A. SyntheticNET: A 3GPP Compliant Simulator for AI Enabled 5G and Beyond.
IEEE Access 2020, 8, 82938–82950. [CrossRef]

161. Manalastas, M.; Farooq, H.; Asad Zaidi, S.M.; Imran, A. Where to Go Next?: A Realistic Evaluation of AI-Assisted Mobility
Predictors for HetNets. In Proceedings of the 2020 IEEE 17th Annual Consumer Communications & Networking Conference
(CCNC), Las Vegas, NV, USA, 10–13 January 2020; pp. 1–6. [CrossRef]

http://dx.doi.org/10.1109/eSmarTA56775.2022.9935380
http://dx.doi.org/10.1109/SCORED.2016.7810036
http://dx.doi.org/10.1109/WMNC.2017.8248841
http://dx.doi.org/10.22215/etd/2015-10717
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9348215
http://dx.doi.org/10.22937/IJCSNS.2022.22.4.18
http://dx.doi.org/10.1002/ett.3642
http://dx.doi.org/10.3390/electronics11182842
http://dx.doi.org/10.1016/j.comnet.2019.04.001
http://dx.doi.org/10.1007/s00521-021-06673-5
http://dx.doi.org/10.1109/MVT.2019.2959065
http://dx.doi.org/10.11591/ijeecs.v24.i3.pp1534-1541
http://dx.doi.org/10.1016/j.phycom.2020.101037
http://dx.doi.org/10.1007/s11277-021-08870-w
http://dx.doi.org/10.1109/TWC.2017.2655517
http://dx.doi.org/10.3390/fi10010009
http://dx.doi.org/10.1007/s11277-018-5689-2
http://dx.doi.org/10.1049/iet-com.2018.5126
http://dx.doi.org/10.1109/ICFSP.2017.8097144
http://dx.doi.org/10.7763/IJFCC.2015.V4.391
http://dx.doi.org/10.1016/j.procs.2015.05.078
http://dx.doi.org/10.1109/MCOM.2010.5402670
http://dx.doi.org/10.48550/arXiv.1307.1212
http://dx.doi.org/10.1109/ACCESS.2020.2991959
http://dx.doi.org/10.1109/CCNC46108.2020.9045127


Appl. Sci. 2023, 13, 3367 42 of 43

162. Mismar, F.B.; Evans, B.L. Partially Blind Handovers for mmWave New Radio Aided by Sub-6 GHz LTE Signaling. In Proceedings
of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May
2018; pp. 1–5. [CrossRef]

163. Rubasinghe, D.; Pussella, V.; Marasinghe, M.; Silva, S.; Dampage, U. QoS Aware Energy Efficient Vertical Handover Approach in
LTE/WLAN Heterogeneous Networks. In Proceedings of the 2020 IEEE International Conference on Computing, Power and
Communication Technologies (GUCON), Greater Noida, India, 2–4 October 2020; pp. 467–472. [CrossRef]

164. Kapadia, P.; Seet, B.C. Multi-Tier Cellular Handover with Multi-Access Edge Computing and Deep Learning. Telecom 2021,
2, 446–471. [CrossRef]

165. Alablani, I.A.; Arafah, M.A. An SDN/ML-Based Adaptive Cell Selection Approach for HetNets: A Real-World Case Study in
London, UK. IEEE Access 2021, 9, 166932–166950. [CrossRef]

166. Bahra, N.; Pierre, S. RNN-Based User Trajectory Prediction using a Preprocessed Dataset. In Proceedings of the 16th International
Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Thessaloniki, Greece, 12–14 October
2020; pp. 1–6. [CrossRef]

167. Bahra, N.; Pierre, S. A Hybrid User Mobility Prediction Approach for Handover Management in Mobile Networks. Telecom 2021,
2, 199–212. [CrossRef]

168. Wang, C.; Ma, L.; Li, R.; Durrani, T.S.; Zhang, H. Exploring trajectory prediction through machine learning methods. IEEE Access
2019, 7, 101441–101452. [CrossRef]

169. Ozturk, M.; Gogate, M.; Onireti, O.; Adeel, A.; Hussain, A.; Imran, M.A. A novel deep learning driven, low-cost mobility
prediction approach for 5G cellular networks: The case of the Control/Data Separation Architecture (CDSA). Neurocomputing
2019, 358, 479–489. [CrossRef]

170. Paropkari, R.A.; Thantharate, A.; Beard, C. Deep-Mobility: A Deep Learning Approach for an Efficient and Reliable 5G Handover.
In Proceedings of International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai,
India, 24–26 March 2022; pp. 244–250. [CrossRef]

171. Deswal, S.; Singhrova, A. Handover algorithm for heterogeneous networks. In Proceedings of the 2016 3rd International
Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016; pp. 3358–3364.

172. Wang, Y.H.; Huang, G.R.; Tung, Y.C. A handover prediction mechanism based on LTE-A UE history information. In Proceedings
of the 2014 International Conference on Computer, Information and Telecommunication Systems (CITS), Jeju, Republic of Korea,
7–9 July 2014; pp. 1–5. [CrossRef]

173. Zhao, P.; Yu, W.; Yang, X.; Meng, D.; Wang, L.; Yang, S.; Lin, J. Context-Aware Multi-Criteria Handover at the Software Defined
Network Edge for Service Differentiation in Next Generation Wireless Networks. IEEE Trans. Serv. Comput. 2022, 15, 2032–2046.
[CrossRef]

174. Tong, H.; Wang, T.; Zhu, Y.; Liu, X.; Wang, S.; Yin, C. Mobility-Aware Seamless Handover With MPTCP in Software-Defined
HetNets. IEEE Trans. Netw. Serv. Manag. 2021, 18, 498–510. [CrossRef]

175. Huang, W.; Wu, M.; Yang, Z.; Sun, K.; Zhang, H.; Nallanathan, A. Self-Adapting Handover Parameters Optimization for
SDN-Enabled UDN. IEEE Trans. Wirel. Commun. 2022, 21, 6434–6447. [CrossRef]

176. Khan, S.; Iqbal, S.; Qureshi, K.N.; Ghafoor, K.Z.; Kim, P.; Jeon, G. Survivability of mobile and wireless communication networks
by using service oriented Software Defined Network based Heterogeneous Inter-Domain Handoff system. Comput. Commun.
2021, 175, 177–185. [CrossRef]

177. Basloom, S.; Akkari, N.; Aldabbagh, G. Reducing Handoff Delay in SDN-based 5G Networks Using AP Clustering. Procedia
Comput. Sci. 2019, 163, 198–208. [CrossRef]

178. Fourati, H.; Maaloul, R.; Chaari, L. A survey of 5G network systems: Challenges and machine learning approaches. Int. J. Mach.
Learn. Cybern. 2021, 12, 385–431. [CrossRef]

179. Mollel, M.S.; Kaijage, S.; Kisangiri, M.; Imran, M.A.; Abbasi, Q.H. Multi-User Position Based on Trajectories-Aware Handover
Strategy for Base Station Selection with Multi-Agent Learning. In Proceedings of the 2020 IEEE International Conference on
Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [CrossRef]

180. Kato, N.; Mao, B.; Tang, F.; Kawamoto, Y.; Liu, J. Ten Challenges in Advancing Machine Learning Technologies toward 6G. IEEE
Wirel. Commun. 2020, 27, 96–103. [CrossRef]

181. Niknam, S.; Dhillon, H.S.; Reed, J.H. Federated Learning for Wireless Communications: Motivation, Opportunities, and
Challenges. IEEE Commun. Mag. 2020, 58, 46–51. [CrossRef]

182. Chen, M.; Gündüz, D.; Huang, K.; Saad, W.; Bennis, M.; Feljan, A.V.; Poor, H.V. Distributed Learning in Wireless Networks:
Recent Progress and Future Challenges. IEEE J. Sel. Areas Commun. 2021, 39, 3579–3605. [CrossRef]

183. Nguyen, H.X.; Trestian, R.; To, D.; Tatipamula, M. Digital Twin for 5G and Beyond. IEEE Commun. Mag. 2021, 59, 10–15.
[CrossRef]

184. Mihai, S.; Yaqoob, M.; Hung, D.V.; Davis, W.; Towakel, P.; Raza, M.; Karamanoglu, M.; Barn, B.; Shetve, D.; Prasad, R.V.; et al.
Digital Twins: A Survey on Enabling Technologies, Challenges, Trends and Future Prospects. IEEE Commun. Surv. Tutor. 2022,
24, 2255–2291. [CrossRef]

185. Khan, L.U.; Saad, W.; Niyato, D.; Han, Z.; Hong, C.S. Digital-Twin-Enabled 6G: Vision, Architectural Trends, and Future
Directions. IEEE Commun. Mag. 2022, 60, 74–80. [CrossRef]

http://dx.doi.org/10.1109/ICCW.2018.8403587
http://dx.doi.org/10.1109/GUCON48875.2020.9231055
http://dx.doi.org/10.3390/telecom2040026
http://dx.doi.org/10.1109/ACCESS.2021.3136129
http://dx.doi.org/10.1109/WiMob50308.2020.9253403
http://dx.doi.org/10.3390/telecom2020013
http://dx.doi.org/10.1109/ACCESS.2019.2929430
http://dx.doi.org/10.1016/j.neucom.2019.01.031
http://dx.doi.org/10.1109/WiSPNET54241.2022.9767158
http://dx.doi.org/10.1109/CITS.2014.6878975
http://dx.doi.org/10.1109/TSC.2020.3031181
http://dx.doi.org/10.1109/TNSM.2021.3050627
http://dx.doi.org/10.1109/TWC.2022.3149415
http://dx.doi.org/10.1016/j.comcom.2021.05.010
http://dx.doi.org/10.1016/j.procs.2019.12.101
http://dx.doi.org/10.1007/s13042-020-01178-4
http://dx.doi.org/10.1109/ICCWorkshops49005.2020.9145184
http://dx.doi.org/10.1109/MWC.001.1900476
http://dx.doi.org/10.1109/MCOM.001.1900461
http://dx.doi.org/10.1109/JSAC.2021.3118346
http://dx.doi.org/10.1109/MCOM.001.2000343
http://dx.doi.org/10.1109/COMST.2022.3208773
http://dx.doi.org/10.1109/MCOM.001.21143


Appl. Sci. 2023, 13, 3367 43 of 43

186. Masaracchia, A.; Sharma, V.; Canberk, B.; Dobre, O.A.; Duong, T.Q. Digital Twin for 6G: Taxonomy, Research Challenges, and the
Road Ahead. IEEE Open J. Commun. Soc. 2022, 3, 2137–2150. [CrossRef]

187. Mozo, A.; Karamchandani, A.; Sanz, M.; Moreno, J.I.; Pastor, A. B5GEMINI: Digital Twin Network for 5G and Beyond. In
Proceedings of the NOMS 2022–2022 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 25–29
April 2022; pp. 1–6. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/OJCOMS.2022.3219015
http://dx.doi.org/10.1109/NOMS54207.2022.9789810

	Introduction
	Related Surveys
	Background
	Handovers in HetNets
	Handover Control Parameters
	Self Optimization Network in HetNets
	Load Balancing Optimization
	Mobility Robustness Optimization

	Handover Decision Approaches in HetNets
	Handover Challenges
	Adjacent Cell Scheduling
	Inter-Cell Interference
	Centralized Handover Optimization
	Contradiction among Handover Parameters
	Diverse User Requirements


	Handover Decision Techniques
	UE Velocity-Aware HO Decision Approaches
	RSRP-Based HO Decision Approaches
	FLC-Based HO Decision Approaches
	Metaheuristic Algorithms-Based HO Decision Approaches
	Machine Learning/Deep Learning Based HO Approaches
	Spatial Information Aware HO Decision Approaches

	Open Issues and Future Directions
	Conclusions
	References

