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Featured Application: This paper presents a procedure for assessing—at the municipal scale—the
level of risk (or attention required) of stretches of roads exposed to the activity of existing or
potential slow-moving landslides. This procedure can be applied to support studies of road net-
works over large areas aimed at the prioritization of risk-mitigation measures and the identifica-
tion of road sections requiring further investigation.

Abstract: Slow-moving landslides are widespread natural hazards that can affect social and economic
activities, causing damage to structures and infrastructures. This paper aims at proposing a procedure
to analyze road damage induced by slow-moving landslides based on the joint use of landslide
susceptibility maps, a road-damage database developed using Google Street View images and
ground-displacement measurements derived from the interferometric processing of satellite SAR
images. The procedure is applied to the municipalities of Vaglio Basilicata and Trivigno in the
Basilicata region (southern Italy) following a matrix-based approach. First, a susceptibility analysis is
carried out at the municipal scale, using data from landslide inventories and thematic information
available over the entire municipalities. Then, the susceptibility index, the class of movement and
the level of damage are calculated for the territorial units corresponding to the road corridors under
investigation. Finally, the road networks are divided into stretches, each one characterized by a
specific level of risk (or attention required) following the aggregation of the information provided
by the performed analyses. The results highlight the importance of integrating all of these different
approaches and data for obtaining quantitative information on the spatial and temporal behavior of
slow-moving landslides affecting road networks.

Keywords: landslide risk; infrastructure; susceptibility; remote sensing; GIS

1. Introduction

Linear infrastructure plays a key role in the social and economic development of every
nation. Road networks are typically the primary means of Italian national transportation,
so ensuring their functionality is a challenging and, at the same time, demanding task that
central and local authorities are asked to address [1].

Italy is a country strongly affected by natural hazards, such as landslides, which
often cause casualties and physical damage to private and public property [2]. Among
these hazards, slow-moving landslides can induce considerable damage to road networks,
although they are rarely associated with the loss of human life [3–10]. Road infrastructures
often develop within complex geological contexts, where active slow-moving landslides
may generate deformation, cracks and local failures [11,12]. Moreover, the functionality
and the safety conditions of the road network may be affected by long-term negative effects,
including: (i) partial or complete destruction of a road stretch; (ii) traffic disruption due to
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the blockage of one or more road sections, which may affect the whole network, causing
traffic congestion; and (iii) isolation of certain areas that cannot be reached by alternative
routes [13]. Thus, the identification of the road sections most exposed to landslide risk
is critical for reducing the population potentially exposed to risk and for minimizing the
repair/replacement costs [14]. Several authors [15–17] also stress that the exposure of road
networks to slope instabilities could increase as a consequence of climate change.

Landslide risk analysis requires the following main steps: identification of the spatial
distribution of the landslides of interest that exist or potentially may occur in the area
(i.e., susceptibility estimation); evaluation of the probability of occurrence of the landslides
and, for existing active phenomena, of their intensity in terms of kinematic behavior
over time (i.e., hazard estimation); evaluation of the of the elements at risk and their
vulnerability in relation to the considered phenomena (i.e., consequence estimation); and
risk estimation [18]. The assessment of landslide risk along road corridors may be carried
out by using several methods according to the scale of the analysis, data availability and
the aims of the study [19].

Assessing and mapping landslide susceptibility along road corridors can be consid-
ered an established practice. Indeed, several studies evaluate landslide susceptibility by
means of expert-driven or data-driven statistical analyses, which relate known landslide
occurrences to relevant thematic layers [4–7,11–14,20–25]. Recently, the technical advances
in geographic information systems (GIS), remote sensing and soft computing allow a wider
use of machine learning (ML) algorithms to reveal the correlations between landslide
development and predisposing factors [26–28]. Different models have their advantages and
drawbacks, and the performance of each model varies according to the input data, model
structure and accuracy. Therefore, no consensus has been reached on the most suitable
and efficient technique for every single region, and the prediction capability of a model
largely depends on the available input data and local geo-environmental conditions [29].
Quantifying the level of risk along road corridors exposed to slow-moving landslides can
be very challenging, due to several aspects. Landslide inventories containing objective and
complete information regarding the past and current state of activity for the phenomena are
not always available [30]. Assessing over large areas the temporal probability of landslides
characterized by a given intensity, or the probability of damaging the elements at risk, may
be not straightforward [14]. The development of large datasets of road displacements and
damage through traditional techniques can be time-consuming, sometimes not affordable
and provided on limited time/spatial extent [5]. Consequently, the studies specifically
oriented to roads affected by existing slow-moving landslides are quite rare in the scientific
literature [7,31–34].

The present paper proposes a methodology aimed at assessing—at the municipal
scale—the level of risk (or attention required) of stretches of roads exposed to the activity
of existing or potential slow-moving landslides. Adopting a matrix-based approach, the
procedure developed herein combines the following data: landslide inventories, thematic
maps, displacement measurements derived from the interferometric processing of synthetic
aperture radar images (DInSAR) and damage records obtained from Google Street View.
The final product of the analyses is the classification into four classes —with the descriptors
“very low”, “low”, “medium” and “high”— of the level of risk (or attention required) along
the road corridors. The effectiveness of the adopted procedure was tested in two study areas
in the municipalities of Vaglio Basilicata and Trivigno (Basilicata region, southern Italy).
The two investigated road networks represent strategic nodes for these territories, as they
connect a major transportation corridor, highway SS407 Basentana, to the two urban centers.

2. Materials and Methods
2.1. Methodology

In this study, the methodology for the classification of the road stretches exposed to
slow-moving landslide risk at the municipal scale is developed considering three consec-
utive phases (Figure 1). In particular, the activities are essentially aimed at: (i) zoning
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the susceptibility to slow-moving landslides at the municipal scale, by means of a sta-
tistical model; (ii) identifying the susceptibility index, the level of damage and the class
of movement based on DInSAR-derived ground-displacement measurements along the
road network, by means of a combination model; and (iii) producing a correlation matrix
combining all of the information in order to assign a level of risk (or attention required) to
each stretch of the road network, by means of a classification model. To these aims, spatial
data must be adequately managed within a GIS environment.
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Figure 1. Procedure to study the interaction between slow-moving landslides and the road network
at the municipal level by combining information from susceptibility maps, DInSAR data analyses
and damage surveys.

2.1.1. Phase I: Statistical Model

The statistical analysis adopted in this study at the municipal scale is known in the
literature as the “information value method” [35], and it is based on bivariate correla-
tions between the independent variables (i.e., each available spatial variable derived from
significant thematic maps, such as slope, aspect, flow accumulation) and the dependent
variable (i.e., the slow-moving landslides inventoried in an official map). The resulting land-
slide susceptibility computational map is used as input for producing the final landslide
susceptibility zoning map of the area based on appropriately defined terrain zoning units.

The statistical methodology introduced herein is based on the distinction, proposed
by Calvello et al. [30], between terrain computational units, TCUs, and terrain zoning units,
TZUs. TCUs refer to the spatial domains used to define a model for landslide analyses,
while TZUs are spatial domains used to produce a landslide map for zoning purposes. The
level of discretization of the area is related, for both spatial domains, to the scale of analysis.
In particular, the size of TCUs is associated with the spatial resolution of the map, whereas
the size of TZUs is associated with the desired informative resolution of the zoning. In this
study, regular square grid cells are used as TCUs. However, the information associated
with such elementary pixels is inadequate to be directly used in a zoning map, because
the associated level of discretization of the spatial domains would be too small. Therefore,
focal statistical techniques are employed to obtain TZUs with the same dimensions of the
TCUs yet containing information related to a larger area around them [36]. The value
of the final zoning susceptibility index, ISTZU, is assigned to each TZU according to the
following equation:



Appl. Sci. 2023, 13, 3368 4 of 19

IS TZU =
∑N

k−1 ISTCU(k)

N
(1)

where ISTCU(k) is the computational susceptibility index of the kth TCU belonging to the area
of influence of the TZU, and N is the number of TCUs belonging to the area of influence of
the TZU.

The resulting zoning maps, whose number depends on the number of characteristic
dimensions of the areas of influence considered in the analyses, are comparatively evaluated
by employing ROC curves. The optimal zoning map may be considered the one that
maximizes the area under curve, AUC, of the ROC curves.

2.1.2. Phase II: Combination Model

The combination model represents a first step toward the joint use of the statistical,
displacement and damage analyses. To this aim, the TZUs intersected by the road network
under investigation, TZUroad, are identified by introducing a buffer symmetrically disposed
in the orthogonal direction with respect to the road centerline.

The road susceptibility index, ISroad, is computed considering the ISTZU derived from
the zoning susceptibility map created at the end of the first phase.

The DInSAR average velocity recorded along the line of sight (LOS) sensor-target
direction is assumed as the intensity measure of each TZU. A mean velocity value computed
as the arithmetic mean of the yearly VLOS of each coherent benchmark falling within the
kth TZU (if covered) or deriving from the interacting slow-moving landslides (for which
enough coherent benchmarks are available) is assigned to each TZU. Then, considering
a threshold velocity value fixed according to the accuracy of the used DInSAR dataset,
assumed as an indicator of movement [37–39], a “moving” or “not moving” condition
is defined.

The damages affecting the road network are assessed based on the results of virtual
surveys carried out using a Google Street view image archive. To each identified road
section (for which at least one Google Street view image is available in the time interval
under investigation), a damage severity level is assigned adapting the damage ranking scale
proposed by Ferlisi et al. [7], based on the classification provided by Mavrouli et al. [33],
considering the following classes:

• D0 (negligible): road pavement deformation and cracks are absent or rarely visible;
• D1(slight): deformation of the road pavement without the occurrence of cracks;
• D2 (moderate): cracks in the road pavement;
• D3 (severe): dislocation of the road pavement compromising its continuity.

Starting from individual damaged (or undamaged) road sections, stretches of these
sections exhibiting uniform levels of damage are merged, and a unique damage severity
level is assigned to each one of them.

Finally, the three retrieved types of information are associated to each TZUroad: suscep-
tibility index, damage severity level (if the grid cell is covered) and velocity with associated
state of movement (if the grid cell is covered).

2.1.3. Phase III: Classification Model

The consistency between the information collected by the statistical, displacement and
damage analyses in the second phase is processed and crosschecked to classify the level
of risk (in the presence of a mapped landslide) or attention required (in the absence of a
mapped landslide) associated with each TZUroad (Tables 1 and 2).

The information gathered from the landslide inventory and the three indicators cal-
culated in the second phase (susceptibility index, damage severity level, velocity) have
been treated as dichotomous variables, so that only a positive or a negative outcome is
possible for each one of them: “yes” or “no” for landslide; “>0” or “<0” for susceptibility
index; “damaged” or “undamaged” for damage severity level; “moving” or “not moving”
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for velocity. Therefore, when a TZUroad is not covered by the damage survey or DInSAR
data are absent, it is conservatively considered as “damaged” or “moving”, respectively.

Table 1. Correlation matrix defining the different levels of risk.

Combination Landslide Susceptibility
Index Velocity Damage

Severity Level Risk

01r yes >0 moving damaged high
02r yes >0 not moving damaged medium
03r yes >0 moving undamaged medium
04r yes <0 moving damaged medium
05r yes <0 not moving damaged low
06r yes >0 not moving undamaged low
07r yes <0 moving undamaged low
08r yes <0 not moving undamaged very low

Table 2. Correlation matrix defining the different levels of attention required.

Combination Landslide Susceptibility
Index Velocity Damage

Severity Level Attention

01a no >0 moving damaged high
02a no >0 not moving damaged medium
03a no >0 moving undamaged medium
04a no <0 moving damaged medium
05a no <0 not moving damaged low
06a no >0 not moving undamaged low
07a no <0 moving undamaged low
08a no <0 not moving undamaged very low

The sixteen possible combinations are associated with four levels of risk (in the pres-
ence of a mapped landslide) or attention required (in the absence of a mapped landslide),
by adopting the following criteria:

• “high”, when all the three indicators are positive;
• “medium”, when two indicators are positive;
• “low”, when one indicator is positive;
• “very low”, when all the three indicators are negative.

Based on this classification, the road network is partitioned in stretches exposed to
different levels of risk (or attention) by aggregating the TZUroad. For road stretches where
the information is not univocal (i.e., road sections exhibiting different levels of risk or
attention), the highest level of risk or attention is considered.

2.2. Test Areas and Datasets

The proposed procedure was applied and tested in two study areas in the municipali-
ties of Vaglio Basilicata and Trivigno (Basilicata region, southern Italy). Both municipalities
are located in the upper part of the Basento river basin. From a geological point of view,
Vaglio Basilicata presents a complex tectonic unit mainly characterized by the outcropping
of the Flysch Rosso formation (Upper Cretaceous–Eocene) and structurally complex clayey–
marly succession referred to as the Lagonegro Unit [40]. The geological context of Trivigno
is characterized by alternating layers of competent rock and clay shale deposited during the
Oligocene–Miocene Age, then subjected to tectonic uplift. They present a highly disturbed
structure, and the clay shale component is highly fissured [41]. Therefore, both study areas
are widely affected by slow-moving landslides occurring in geological units strongly frac-
tured and severely deformed due to their severe tectonic history [42]. Indeed, the official
inventory map developed by the Interregional River Basin Authority of Basilicata region
reports 157 slow-moving landslides in Vaglio Basilicata and 724 in Trivigno (Figure 2).
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Figure 2. Aerial photos of Vaglio Basilicata (a,c) and Trivigno (b,d). (a,c) show the slow-moving land-
slides inventoried by the Interregional River Basin Authority of Basilicata and the spatial distribution
of DInSAR velocities (road sections surveyed are marked in black) within the two municipalities.
(b,d) focus on the main road stretches connecting highway SS407 Basentana to the two city centers.
The insets show the location of the two municipalities within the Basilicata region.
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The mechanical processes and the displacement time evolution of the slow-moving
landslides has caused, over time, widespread damage to the built-up environment in-
teracting with them. Particularly sensitive to the landslide-induced movements are the
two considered study areas, represented by the road networks connecting highway SS407
Basentana to the urban centers: 29.42 km with four main access points in Vaglio Basilicata
(V01, V02, V03, and V04 in Figure 2b) and 16.93 km with two main access points in Trivigno
(T01 and T02 in Figure 2d).

The input data for the statistical analysis are derived from a digital elevation model
(DEM) with grid cell sizes equal to 20 × 20 m, and from categorical vector maps, all of
them available in a regional GIS repository at https://rsdi.regione.basilicata.it/ (accessed
on 1 February 2023).

Ground-displacement measurements were obtained by processing synthetic aper-
ture radar data (SAR) via a differential interferometric (DInSAR) technique of very-high-
resolution X-band Cosmo-SkyMed images. These radar images were processed by the
e-GEOS company (partner of the MITIGO project financially supporting this research;
see Funding section) using their commercial processing chain that implements the base
concepts of the persistent scatterer interferometry (PSI) [43,44] algorithm. This required a
strict phase calibration of the measured data aimed at compensating phase errors, mainly
associated with propagation delays in the atmosphere of the electromagnetic radiation,
which cause phase mismatches with the expected linear models associated with height and
deformation contributions.

For the purpose of the present study, the processed datasets consist of 156 images
acquired on descending orbit (from May 2012 to August 2021) in Vaglio Basilicata and
124 images acquired on descending orbit (from May 2012 to August 2021) in Trivigno. These
remote sensing data provide high coverage of the observed scene with coherent reflector
benchmarks also along linear elements (i.e., infrastructure networks) [45]. Figure 2c,d show
the distribution of the DInSAR benchmarks and the measured average velocity values
along the sensor target line of sight (LOS) for the visible area in Vaglio Basilicata and
Trivigno, respectively.

The identification and assessment of the road damage severity level was carried out
using photographic images from Google Street View (Figure 2c,d).

3. Results
3.1. Statistical Model

As stated in Section 2.1.1, the proposed procedure is based on the distinction between
terrain computational units related to the spatial resolution of the map, TCU, and terrain
zoning units related to the desired informative resolution of the zoning, TZU. The variables
employed within the model have been expressed in raster format using 107,513 square
grid cells for Vaglio Basilicata and 64,441 square grid cells for Trivigno as TCU, whose
single size is equal to 20 × 20 m. The dichotomous dependent variable is derived from the
official inventory map developed by the Interregional River Basin Authority of Basilicata
region, reporting 157 slow-moving landslides for Vaglio Basilicata (21,420 TCUs covered)
and 724 for Trivigno (32859 TCUs covered). The following ten independent variables
are used in the analysis (Tables 3 and 4): distance from roads (V1); distance from river
network (V2); slope (V3); terrain ruggedness index (V4); topographic position index (V5);
aspect (V6); plan curvature (V7); flow accumulation (V8); topographic index (V9); and
stream power index (V10). All independent variables are numeric variables: eight of them
(slope, terrain ruggedness index, topographic position index, aspect, plan curvature, flow
accumulation, topographic index, stream power index) are derived from the available
digital elevation model, and the remaining two (distance from river network, distance
from roads) are derived from categorical vector maps. All variables were classified using
a quantile criterion with eight classes, i.e., each class includes about 12.5% of the total
population (Tables 3 and 4).

https://rsdi.regione.basilicata.it/
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Table 3. Classification of the independent variables employed in the statistical analyses carried out at Vaglio Basilicata.

Class V1
[m]

V2
[m]

V3
[◦]

V4
[−]

V5
[−]

V6
[−]

V7
[−]

V8
[−]

V9
[−]

V10
[−]

1v 0 to 0 0 to 0 0.05 to 5 0.05 to 1.52 −10 to −1.04 0 to 61.9 −13 to −0.022 1 to 2.81 1.8 to 4.4 0.002 to 3
2v 20 to 40 20 to 44 5.2 to 7 1.53 to 2 −1.03 to −0.53 62 to 114.98 −0.02 to −0.012 2.82 to 4.44 4.5 to 5 3.002 to 5.36
3v 44 to 63 56 to 84 7.1 to 8 2.03 to 2.42 −0.52 to −0.23 114.99 to 159 −0.01 to −0.0053 4.45 to 6.61 5.1 to 5.6 5.37 to 8.29
4v 72 to 107 89 to 128 8.5 to 9.8 2.43–2.79 −0.22 to −0.003 159.1 to 186 −0.005 to −4.6 × 10−5 6.62 to 9.73 5.61 to 6 8.3 to 12.63
5v 113 to 156 134 to 181 9.85 to 11 2.8–3.21 0.004 to 0.23 186.9 to 213 −4.5 × 10−5 to 0.0052 9.74 to 15 6.1 to 6.6 12.64 to 19.85
6v 160 to 223 184 to 244 11.3 to 13 3.22–3.76 0.24 to 0.54 213.3 to 242 0.0053 to 0.01 15.1 to 26.62 6.7 to 7.3 19.86 to 35.24
7v 226 to 341 247 to 354 13.2 to 16 3.77–4.75 0.55 to 1.06 242.7 to 282 0.011 to 0.021 26.63 to 66 7.4 to 8.5 35.25 to 89.8
8v 342 to 1394 356 to 929 16.5 to 44 4.76–15 1.07 to 14.7 282.3 to 360 0.022 to 3 66.5 to 168636 8.6 to 26 89.9 to 485968

Table 4. Classification of the independent variables employed in the statistical analyses carried out at Trivigno.

Class V1
[m]

V2
[m]

V3
[◦]

V4
[−]

V5
[−]

V6
[−]

V7
[−]

V8
[−]

V9
[−]

V10
[−]

1t 0 to 0 0 to 304 0 to 6.9 0 to 2.04 −14 to −1.41 0 to 26.86 −14 to −0.024 0 to 0 2 to 4 0 to 3
2t 20 to 40 305 to 679 6.9 to 9.3 2.05 to 2.66 −1.4 to −0.74 26.87 to 48 −0.023 to −0.013 1 to 1 4.1 to 4.6 3.6 to 6
3t 44 to 80 679.4 to 1075 9.3 to 11 2.67 to 3.15 −0.73 to −0.33 48.2 to 68.5 −0.01 to −0.006 2 to 2 4.7 to 5 6.5 to 10
4t 82 to 128 1076 to 1488 11 to 12.6 3.16 to 3.6 −0.32 to −6.1 × 10−5 68.6 to 89 −0.005 to −1 × 10−6 3 to 3 5.2 to 5.7 10.1 to 15
5t 134 to 196 1488 to 1913 12.7 to 14.5 3.63 to 4.1 0 to 0.3 89.1 to 115 0 to 0.005 4 to 5 5.8 to 6 15.2 to 23
6t 197 to 280 1914 to 2469 14.5 to 16.8 4.2 to 4.92 0.32 to 0.73 115.1 to 150 0.006 to 0.01 6 to 8 6.4 to 7 23.8 to 42
7t 282 to 423 2469 to 3257 16.9 to 20.8 4.93 to 6.1 0.74 to 1.44 150.7 to 266 0.012 to 0.024 9 to 21 7.2 to 8 42.4 to 114
8t 424 to 1164 3257 to 4702 20.9 to 51 6.2 to 19 1.45 to 13 266.4 to 360 0.03 to 20 22 to 3290 8.5 to 26 114 to 224650
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Bivariate analyses were carried out using the SZ plugin developed by Titti et al. [46].
The plugin is a collection of processing scripts in Python which run as part of the QGIS
platform. Among the available statistical approaches, the weight of evidence (WoE) method
was used. The WoE allows to quantify how prone an event occurrence is according to the
proportion of presence/absence for each class of the independent variables. Two weights
are assigned for each class: W+

i and W−
i . The weights represent, respectively, the positive

and negative influence of the independent variables on a potential landslide. They are
calculated by the following equations:

Wi
+ = ln

M1
M1+M2

M3
M3+M4

(2)

Wi
− = ln

M2
M1+M2

M4
M3+M4

(3)

Wi = Wi
+ − Wi

− (4)

where M1 is the number of TCUs where both the variable class and the event are present;
M2 is the number of TCUs where the variable class is absent, while the event is present;
M3 is the number of TCUs where the variable is present, while the event is absent; and
M4 is the number of TCUs where both the variable class and the event are absent. The
weight contrast, Wi, is the final weight assigned to each class of the variable. It evaluates
the relation between the spatial distribution of the causes (i.e., the independent variables)
and the spatial distribution of the events (i.e., the landslides).

Tables 5 and 6 report the values of the statistical weights computed for Vaglio Basilicata
and Trivigno, using Equation (4), for each class of each independent variable Vi. The
following main comments arise from the values reported in the table. The overall maximum
weight is attributed to class 8 of variable V8 at Vaglio Basilicata (W88

V = 1.12) and to
class 8 of variable V10 at Trivigno (W108

T = 1.05). High values of weights are computed
for a number of classes for variables V7, V9 and V10 at Vaglio Basilicata (W78

V = 0.54,
W98

V = 0.89, W108
V = 0.99) and for variables V2, V7 and V8 at Trivigno (W24

T = 0.68,
W78

T = 0.89, W88
T = 0.88). At Vaglio Basilicata, out of the eight classes of variable V1, only

class 8 assumes a positive weight value (W18
V = 0.49).

Table 5. Weights assigned to the independent variables in the statistical analyses carried out at
Vaglio Basilicata.

Wik(i) V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Wi1
V −0.14 0.94 −0.50 −0.52 0.41 −0.11 −0.37 −1.08 −0.51 −0.73

Wi2
V −0.07 0.45 0.20 0.17 0.34 −0.26 −0.30 −0.76 −0.47 −0.46

Wi3
V −0.05 −0.04 0.24 0.26 0.15 0.10 −0.28 −0.51 −0.44 −0.36

Wi4
V −0.06 −0.26 0.26 0.23 −0.09 0.29 −0.18 −0.35 −0.28 −0.24

Wi5
V −0.11 −0.34 0.12 0.12 −0.23 0.19 −0.07 −0.09 −0.10 −0.10

Wi6
V −0.08 −0.26 0.03 0.03 −0.24 −0.08 0.06 0.21 0.07 0.08

Wi7
V −0.06 −0.26 0.004 0.04 −0.18 −0.15 0.34 0.64 0.46 0.38

Wi8
V 0.49 −0.14 −0.51 −0.47 −0.28 −0.03 0.61 1.12 0.89 0.99

Table 6. Weights assigned to the independent variables in the statistical analyses carried out
at Trivigno.

Wik(i) V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Wi1
T −0.20 −0.41 −0.77 −0.71 0.75 −0.03 −0.59 −0.90 −0.40 −1.12

Wi2
T 0.09 0.17 0.002 −0.06 0.43 0.03 −0.42 −0.51 −0.46 −0.51

Wi3
T 0.35 0.68 0.17 0.17 0.25 −0.35 −0.29 −0.22 −0.38 −0.29

Wi4
T 0.35 0.64 0.24 0.22 −0.05 −0.55 −0.23 −0.10 −0.14 −0.12

Wi5
T 0.32 0.55 0.23 0.20 −0.33 −0.24 −0.09 0.07 0.01 0.07
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Table 6. Cont.

Wik(i) V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Wi6
T 0.41 0.38 0.15 0.11 −0.29 0.25 0.27 0.18 0.32 0.30

Wi7
T 0.05 −0.76 −0.07 −0.07 −0.36 0.42 0.50 0.31 0.54 0.62

Wi8
T −1.66 −1.32 0.03 0.13 −0.37 0.50 0.89 0.88 0.54 1.05

The sum of the weight contrasts produces the computational susceptibility index,
ISTCU, for each TCU, as follows:

ISTCU =
N

∑
I=1

Wik(i) (5)

where Wik is the weight index of the independent variable Vi related to the TCU belonging
to class k(i) of that variable.

To produce the landslide map for zoning purposes, TZU with three characteristic
dimensions (Dk)—respectively equal to 9, 49 and 121 TCUs—were developed by applying
Equation (1). The resulting six landslide susceptibility maps—three for Vaglio Basilicata
and three for Trivigno—are comparatively evaluated by computing the AUC of the ROC
curves in the sensitivity versus (1 − specificity) space (Figure 3).

A comparison between the results carried out using the three different characteristic
dimensions for the two test areas highlights that the best compromise may be considered
the ones characterized by a value of Dk equal to 49 TCU.
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Figure 3. Receiver operating characteristic curves for the landslide susceptibility zoning maps
obtained applying different focal statistic characteristic dimensions for Vaglio Basilicata (a) and
Trivigno (b).

Figure 4 reports the susceptibility zoning maps obtained for Vaglio Basilicata and
Trivigno. The three susceptibility descriptors used in the maps are defined on the basis of
the values assumed by the zoning susceptibility index, ISTZU, as follows: low susceptibility,
ISTZU ≤ 0; medium susceptibility, 0 < ISTZU ≤ 0.5; high susceptibility, ISTZU > 0.5. The
results indicate that about 40% of the municipality of Vaglio Basilicata and about 54% of the
municipality of Trivigno are characterized by medium or high susceptibility (i.e., ISTZU > 0).
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Figure 4. Landslide susceptibility maps at the municipal scale defined employing focal statistics tech-
niques with characteristic dimension equal to 7. Slow-moving landslides recorded in the two test areas
are also reported. The inset shows the location of the two municipalities within the Basilicata region.

3.2. Combination Model

With the aim to combine statistical, displacement and damage information to study
the road stretches exposed to slow-moving landslide risk at the municipal scale, first the
kinematic characteristics of the slow-moving landslides are investigated using the available
DInSAR dataset. According to the scale of analysis and the resolution of the monitoring
data, only the slow-moving landslides covered by at least three coherent benchmarks were
selected [37]. These latter are assigned an average velocity value computed as the arithmetic
mean of the yearly VLOS of each benchmark falling within the considered landslide body.
Figure 5a,b show the maps of covered slow-moving landslides with an indication of the
velocity class obtained. In both study areas, some landslides (23.7% of the total covered in
Vaglio Basilicata and 22.4% of the total covered in Trivigno) are moving (i.e., the average
velocity value exceeds the threshold, fixed in this study equal to ±1.5 mm/year) in the
observation period.

On the other hand, focusing on the road network under investigation and considering
the coherent DInSAR benchmarks (Figure 5b,d) within the TZU (see Section 2.1.2), an
average velocity value is computed as the arithmetic mean of the yearly VLOS associated
with each coherent benchmark falling within the kth TZU. Then, according to the proposed
procedure, the indicator of movement (i.e., “moving” or “not moving”) is assigned to the
TZUroad based on the velocity value of the pertaining TZU (if covered) or deriving from the
interacting slow-moving landslide (if any).
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As for the damages to the roads, several photos were collected and analyzed by
exploiting the available Google Street View archive. Then, according to the adopted
damage ranking (see Section 2.1.2), a damage severity level was assigned to the road stretch
and then to the pertaining TZUroad (if covered). Figure 6 shows the results of the damage
classification of the road stretches connecting highway SS407 Basentana to Vaglio Basilicata
(Figure 6a) and Trivigno (Figure 6b) urban centers. The chart reported in Figure 6c highlights
the presence of damage along the investigated road stretches, with higher damage severity
levels in the sections interacting with the slow-moving landslides. This confirms the slow
but continuous movement of the mapped slope instabilities, causing damage to the exposed
built-up environment whose severity progressively increases over time.
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Figure 6. Maps of damaged road stretches with severity levels resulting from the damage classification
using Google Street View imagery dated August 2021 for Vaglio Basilicata (a) and March 2021 for
Trivigno (b). Percentages of damaged road distinguished according to the four (D0–D3) damage
severity levels are also reported (c).

3.3. Classification Model

The results of the three independent analyses—i.e., susceptibility algorithm, DInSAR
data analyses and damage survey—were combined for the 3220 TZUroad identified in
Vaglio Basilicata and for the 1373 TZUroad identified in Trivigno, following the procedure
described in Section 2.1.3. Figure 7 shows two excerpts of the maps that are produced by
the procedure in two small portions of the study area in Vaglio Basilicata (a) and Trivigno
(b), as well as the correlation matrices obtained for the classification carried out over the
entire territory of the two study areas. The matrices show that about half of the TZUroad are
classified as being at risk in both study areas (1726 at Vaglio Basilicata and 689 at Trivigno),
mainly as a result of the significant presence of mapped landslides interacting with the road
network in these two municipalities. In particular, the analyses indicate that 966 TZUroad
at Vaglio Basilicata (56% of the TZUroad classified at risk) and 504 at Trivigno (73% of the
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TZUroad classified at risk) are classified at high or medium risk (i.e., presence of a mapped
landslide and two indicators positive).

Regarding TZUroad falling outside the mapped landslide bodies, and thus classified
with attention levels, 1298 TZUroad out of 1494 in Vaglio Basilicata (87%) and 541 TZUroad out
of 684 in Trivigno (79%) are classified as requiring high or medium attention. These results
should be considered as associated with possible effects on the road network caused by the
spreading of existing landslides, or by the potential activity of landslides not mapped in the
inventory. Only 22 and 8 TZUroad are classified as being at very low risk and requiring very
low attention, respectively, for the studied road network in Vaglio Basilicata, and only 4 and
8 TZUroad, respectively, in Trivigno. This can be justified by the conservative choice made
in the implemented classification matrix, which considers a TZUroad not covered by the
DInSAR data as “moving” and a TZUroad not covered by the damage survey as “damaged”.
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Figure 7. Excerpts of maps produced by the procedure in two small portions of the study area in
Vaglio Basilicata (a) and Trivigno (b). The tables below report the correlation matrices obtained for
the classification carried out over the entire territory of the two study areas.

For classification purposes, the road networks surveyed in the two municipalities
are divided in stretches, each one characterized by a specific level of risk (or attention
required) following the aggregation of the information provided by the related TZUroad.
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The aggregation is carried out by merging the TZUroad indicating the same levels of risk (or
attention) along the road network. By applying this procedure, the road networks in Vaglio
Basilicata and Trivigno are divided into 213 and 134 stretches, respectively (Figure 8a,b). For
those sections where the indication provided by the correlation matrices is not fully univocal
because the TZUroad are characterized by several different levels of risk or attention (an
example is the road track in the upper left part of Figure 8b), the highest level is considered.
Table 7 summarizes the results shown in Figure 8, reporting the total lengths of each class
of road stretch.
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Figure 8. Classification of the investigated stretches of roads in different levels of risk and attention
resulting from the application of the proposed methodology in two study areas of the municipalities
of Vaglio Basilicata (a) and Trivigno (b).

Out of a total of 29.42 km of roads investigated in Vaglio Basilicata, 17.26 km interact
with mapped landslides (about 59% of the total) and are thus classified with risk levels,
while 12.16 km do not interact with mapped landslides (about 41% of the total) and are
therefore classified with levels of attention required. The total lengths of road stretches
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characterized by high and medium levels of risk and attention are 9.73 km and 10.58 km,
respectively. Only four road stretches are classified as being at very low risk (two stretches
located in the middle part of the map) or requiring very low attention (one near the
Basentana highway and the other near the city center).

Over a total of 16.93 km of roads investigated in Trivigno, 11.29 km interact with
mapped landslides (about 67% of the total) and 5.64 km are located outside mapped
landslides (about 33% of the total). The total lengths of road stretches characterized by high
and medium levels of risk and attention are 10.14 km and 4.34 km, respectively. No road
stretches are classified at very low risk, and only one stretch near the Basentana highway in
the upper left part of the map is classified as requiring very low attention.

These results highlight that the road networks in Vaglio Basilicata and Trivigno are
highly affected by the activity of slow-moving landslides, both inside and outside the areas
already mapped with these phenomena. The classification with risk and attention levels
allowed the identification, localization, and distribution of these road stretches within the
two study areas.

Table 7. Total lengths of road stretches classified at high (H), medium (M), low (L) and very low
(VL) risk (or attention) in Vaglio Basilicata and Trivigno. The number of road stretches are reported
in parentheses.

Study Area
Road Stretches at Risk [km] Road Stretches at Attention [km]

H M L VL H M L VL

Vaglio
Basilicata

1.99
(24)

7.74
(61)

7.34
(36)

0.19
(2)

3.47
(32)

7.11
(43)

1.48
(13)

0.10
(2)

Trivigno 1.47
(14)

8.67
(32)

1.15
(17)

−
(−)

1.97
(24)

2.39
(33)

1.21
(13)

0.07
(1)

4. Discussion and Concluding Remarks

This paper shows the results of a study aimed at assessing—at the municipal scale—the
level of risk (or attention required) of stretches of road exposed to the activity of existing
or potential slow-moving landslides. The study was conducted by defining and applying
a territorial conceptual model, and thus a procedure that can be implemented in GIS, in
two study areas in the municipalities of Vaglio Basilicata and Trivigno (Basilicata region,
southern Italy). The investigated road networks represent strategic nodes of the road
system in these territories, as they connect a strategic highway located in the valley floor of
the main river of the area to the two urban centers.

Adopting a matrix-based approach, the procedure developed herein combines the
following data: landslide inventories, thematic information available over the entire inves-
tigated municipal territories, surface displacement remote sensing data and road damage
data available for the investigated roads.

The analyses highlight that the investigated road networks are affected by widespread
(real or potential) landslide risk in both study areas. In Vaglio Basilicata, about 9.73 km
(33%) of roads are classified as being at high or medium risk and about 10.58 km (36%) as
requiring high or medium attention. In Trivigno, about 9.73 km (60%) of roads are classified
as high or medium risk and about 4.36 km (26%) as high or medium attention. Looking at
the access routes from/to the Basentana highway and the city centers, i.e., four for Vaglio
Basilicata, two for Trivigno (see Figure 2), each alternative route is characterized by one
or more road stretches at high or medium risk or attention. These classification results
of the road networks at the municipal scale allow the identification of the road stretches
where mitigation measures (for road stretches classified at high and medium risk) or further
investigation (for road stretches classified at high and medium attention) may be necessary.
Out of a total of 213 road stretches in Vaglio Basilicata, 85 stretches at high and medium
risk and 75 road stretches requiring high and medium attention are identified. Similarly,
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out of a total of 134 road stretches in Trivigno, 57 stretches at high and medium risk and
46 stretches at high and medium attention are identified.

It is important to highlight that the classification results obtained in the two study areas
must be interpreted considering the municipal scale of the analysis—thus the procedure
does not aim at defining risk or attention levels locally—and that the sources of uncertainty
affecting the final accuracy of the results are many. In this regard, uncertainties can be
associated with the errors inherent to: slow-moving landslide mapping at the regional
scale (i.e., adopted landslide inventory), the nature of the road damage severity assessment
(i.e., remote evaluation with only random field validation), the qualitative assessment of
the cumulative displacements required for road sections interacting with slow-moving
landslides to be assigned a specific damage severity level, the unavailability of processed
DInSAR data in both ascending and descending orbits, and the impossibility to consider
the mechanical characteristics of both the materials composing the road pavement and
the soils on which the different road stretches are founded. Furthermore, DInSAR data
were not available for every mapped landslide, and Google Street View images were not
available for all of the road stretches under investigation; thus, the procedure was set up to
assign, respectively, the “moving” and “damage” condition to the territorial zoning units
where this information is not available. The authors are aware that this assumption may
have resulted in an overestimation of the road stretches classified with a high level of risk
or attention.

The most important positive aspect of the proposed method is that road stretches
potentially affected by the activity of slow-moving landslides may be classified and ranked
at the municipal scale, in a series of risk or attention levels, adopting a fairly simple
qualitative ranking procedure, reliable in relation to the scale of analysis, which is based on
a few data that are relatively easy to find and to manage. The proposed procedure allows
obtaining such a classification without any information on the dimension, state of activity
or volume of the landslides, and with limited hazard and vulnerability data. The outcome
of this type of analysis can be used to support studies of road networks over large areas
aimed at the prioritization of risk-mitigation measures, as well as at the identification of
road sections requiring further geomorphological surveys and geotechnical analyses, to be
conducted at a larger scale.
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