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Abstract: Pseudorandomness is a crucial property that the designers of cryptographic primitives
aim to achieve. It is also a key requirement in the calls for proposals of new primitives, as in the
case of block ciphers. Therefore, the assessment of the property is an important issue to deal with.
Currently, an interesting research line is the understanding of how powerful machine learning
methods are in distinguishing pseudorandom objects from truly random objects. Moving along such
a research line, in this paper a deep learning-based pseudorandom distinguisher is developed and
trained for two well-known lightweight ciphers, Speck and Simon. Specifically, the distinguisher
exploits a convolutional Siamese network for distinguishing the outputs of these ciphers from
random sequences. Experiments with different instances of Speck and Simon show that the proposed
distinguisher highly able to distinguish between the two types of sequences, with an average accuracy
of 99.5% for Speck and 99.6% for Simon. Hence, the proposed method could significantly impact the
security of these cryptographic primitives and of the applications in which they are used.

Keywords: pseudorandomness; cryptographic primitives; deep learning; cryptanalysis

1. Introduction

Cryptographic primitives greatly rely on true randomness, a scarce and costly resource,
and are evaluated often according to the quality of the pseudorandomness they produce.
Therefore, in many cases, the challenge in realizing secure cryptographic primitives be-
comes finding design strategies which yield pseudorandom objects or behaviors. Indeed,
many systems may fall apart if the underlying primitives miss this goal.

So far, several standards and test requirements for the pseudorandomness of crypto-
graphic primitives have been presented, as well as related tools [1–4]. Roughly speaking,
statistical tests should not be able to distinguish between a truly random source and the
output of a cryptographic primitive.

Recently, deep learning (DL, for short) has made significant advances, leading some
researchers to believe in its ability to reveal patterns in random-looking objects that were
previously undetectable using conventional methods. In [5], the first usage of deep neural
networks for testing the randomness of the outputs of the Speck lightweight block cipher
was proposed. Therein, the pseudorandom distinguisher, obtained by combining neural
networks with traditional cryptanalysis techniques, provided interesting results when
compared to traditional techniques. Other works have been proposed in this direction, in
which increasingly complex networks are trained on large datasets of sequences. However,
the idea of facing the problem of distinguishing the outputs of ciphers from truly random
sequences as a “binary classification problem” can suffer from some limitations, includ-
ing the issue of how to manage the huge number of data available for the training and,
consequently, the search for ever deeper and more complex supervised models to learn
them. An alternative approach we pursue in this work could be to see the same problem
as a problem of computing a “similarity function”: if we are able to construct an efficient
method to establish whether the output of a cipher is much more similar to another output
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of the same cipher than to a truly random sequence (and vice versa), we will be able to de
facto distinguish a similarity function.

In the DL area, Siamese networks have shown to be a powerful tool for tackling
problems of similarity, with several applications since their introduction [6–8]. To date, no
application to cryptanalysis, and specifically to the randomness evaluation of cryptographic
primitives, has been proposed except for the one provided in [9], to defeat the privacy
features of the Gossamer protocol. In this work, we propose a DL-based distinguisher
which exploits a Siamese network on cryptographic primitives such as the Speck and Simon
block ciphers. As we will see in Section 5, preliminary experiments with different instances
of Speck and Simon on two datasets of 5000 sequences, one of 2500 random 32-bit sequences
and the other one of 2500 cipher outputs, have been conducted. The results obtained show
that the proposed distinguisher is able to achieve a high ability in distinguishing between
the two types of sequences, with an average accuracy of 99.5% for Speck and 99.6% for
Simon, improving on Gohr’s earlier work [5]. For a description of Speck and Simon block
ciphers, the interested reader is referred to Appendix A.

2. Pseudorandomness

In this section we introduce the fundamental notion of pseudorandomness. For further
details and a more formal treatment, the reader can consult [10].

Pseudorandom generator. A pseudorandom generator is an efficient (deterministic) algorithm
that, given short seeds, stretches them into longer output sequences, which are computa-
tionally indistinguishable from uniform ones. The term “computationally indistinguishable”
means that no efficient algorithm, the distinguisher, can tell them apart [11–13].

Pseudorandom function. A pseudorandom function F : {0, 1}n × {0, 1}` → {0, 1}n is an
efficiently computable two-input function such that, for uniform choices of k ∈ {0, 1}`,
the univariate function Fk : {0, 1}n → {0, 1}n is computationally indistinguishable from a
univariate function f : {0, 1}n → {0, 1}n, chosen uniformly at random from the set of all
univariate functions of n-bit inputs to n-bit outputs.

A pseudorandom permutation can be defined similarly.

Pseudorandom permutation. A pseudorandom permutation P : {0, 1}n × {0, 1}` → {0, 1}n

is a two-input permutation such that, for uniform choices of k ∈ {0, 1}`, the univariate
permutation Pk : {0, 1}n → {0, 1}n and its inverse P−1

k : {0, 1}n → {0, 1}n are efficiently
computable, and Pk is computationally indistinguishable from a univariate permutation
p : {0, 1}n → {0, 1}n, chosen uniformly at random from the set of permutations on
n-bit strings.

Often, in practice, block ciphers are evaluated depending on how well they approxi-
mate the behavior of a pseudorandom function or permutation.

Distinguishing experiment. Let E : {0, 1}n × {0, 1}2n → {0, 1}n be a block cipher (in our case,
it is Speck32 or Simon32 with block length n = 32 and key-size ` = 64). Let c = E(p, k)
be a n-bit ciphertext. The description of the experiment in [9], Pseudo-R, defined for any
distinguisher D for the block cipher E, can be re-phrased as follows:

Pseudo-RD,E

1. A bit b is chosen uniformly at random.
If b = 1, then a key k ∈ {0, 1}64 is chosen uniformly at random, and an oracle O(·)
is set to reply to queries using E(·, k). Otherwise, a function e : {0, 1}32 → {0, 1}32

is chosen uniformly at random, from the set of all the functions of 32 bits to 32 bits,
and O(·) is set to reply to queries using e(·).

2. D receives access to oracle O(·), and obtains replies to at most t queries.
3. D outputs a bit b′.
4. The output of the experiment is 1 if b′ = b; otherwise, it is 0.
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The block cipher E is said to be (t, ε)-pseudorandom if, for any distinguisher D, which
runs for at most t steps, there exists a small ε, such that

Pr[Pseudo-RD,E = 1] ≤ 1/2 + ε. (1)

Roughly speaking, the block cipher is pseudorandom if any efficient distinguisher D
has no better distinguishing strategy than guessing (uniformly at random).

Several methods can be employed in order to set up an efficient distinguisher. For
example, the distinguisher may employ differential cryptanalysis: given a plaintext pair
(P0, P1), with difference ∆P = P0 ⊕ P1, if the ciphertext difference ∆C = C0 ⊕ C1 is such

that Pr(∆P E−→ ∆C) > 2−n, then E is not a pseudorandom generator. Or, it may use
other algorithmic techniques to find patterns, similarities or whatever can be useful for
distinguishing. We are interested in this work in ML methods. Actually, ML methods are
quite general and provide flexibility in implementing cryptanalytic strategies. Indeed, ML
methods can also implement differential cryptanalysis, by tackling the techniques as a
binary classification issue, where the ciphertext difference ∆C is a feature used in the training
phase to define whether or not a given sequence is pseudorandom or not. Notice that
our deep Siamese network correctly differentiates cipher outputs from random sequences
without using a feature for ciphertext difference.

3. Previous Works

In 1991, Ronald Rivest presented a survey on the relationship between cryptography
and the ML field, suggesting some directions for future cross-fertilization of the fields [14].
Since then, several attempts to use neural networks as a tool for designing cryptographic
primitives and protocols have been proposed (e.g., [15,16]) as well as cryptography and,
more precisely, multiparty computation and homomorphic encryption, have been used to
set up secure and private implementations of neural networks, e.g., [17–20].

So far, few applications to cryptanalysis are also known, e.g., [5,21–23]. In this con-
text, DL has made a noticeable progress in recent years for various difficult tasks, leading
some researchers to believe that it can be used for detecting patterns in random-looking
objects that were previously undetectable using conventional methods. Gohr’s research [5],
showed that DL can generate incredibly efficient cryptographic distinguishers: precisely,
in his work, first, for 5 up to 8 rounds, a differential distribution table of round-reduced
Speck32, with a given input difference, under the Markov assumption [24], was constructed;
then, using residual neural networks and exploiting differential properties of Speck32, a
chosen-plaintext attack on 9-round Speck32 was presented. As a result, in terms of classifi-
cation accuracy, neural distinguishers outperformed multiple differential distinguishers
that made use of the full distribution table. Hence, the work showed that the neural distin-
guishers use features that are invisible to any purely differential distinguisher, even when
given unlimited data.

With regards to the cryptanalysis of Speck and Simon, other works followed. Zahedne-
jhad et al. [25] applied the DL methodology proposed by Gohr to construct a neural-based
integral distinguisher scheme for several block ciphers, including Speck32, Present, RECT-
ANGLE, and LBlock. The neural-based integral distinguisher increased the number of
distinguished rounds of most block ciphers by at least one round, when compared to the
state-of-the-art integral distinguishing method. This clearly showed the potential of com-
bining integral cryptanalysis and DL. Inspired by Gohr’s work, Baksi et al [26] attempted to
simulate differential cryptanalysis on non-Markov ciphers such as 8-round Gimli-Hash and
3-round Ascon-Permutation, showing that an attacker can use a multilayer perceptron (MLP,
for short) and reduce the complexity of finding a pattern in the cipher outputs. In [27],
the authors proposed a new technique and improved the performance of Gohr’s neural
distinguisher. Specifically, they employed an MLP rained on ciphertext differences rather
than ciphertext pairs across Speck and Simon. In the case of Speck32, they achieved 98% of
accuracy for distinguishing 9-round Speck. Given that data complexity is a major barrier to
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practical key recovery attacks utilizing differential cryptanalysis, this novel technique is
quite suitable in terms of round number and data complexity.

Hou et al., in [28], trained 8-round and 9-round differential distinguishers for Simon32,
based on deep residual neural networks, and explored the impact of the input difference
patterns on the accuracy of the distinguisher, with a success rate of over 90%. However,
compared to the traditional approach, the time and data complexity of their DL-method are
lower. Later on, Hou et al. [29] proposed a new method to improve neural distinguishers
in terms of accuracy and number of rounds. Based on their new model, which is obtained
with the help of the SAT/SMT solver [30], neural distinguishers for Simon and Speck were
constructed. They enabled to better distinguish reduced-round Simon or Speck from a
pseudorandom permutation.

However, all previous attacks leave it unclear which features or internal structures
affect the success probabilities of those attacks. Benamira et al. [31] and Chen et al. [32]
addressed this question by analyzing Gohr’s findings, but they were unable to identify any
DL-specific features that would affect the success probabilities of DL-based cryptanalysis,
apart from the features related to linear dependencies or differential ones. Indeed, in [31],
the authors showed that the neural distinguisher generally relies on the differential distri-
bution of the ciphertext pairs, especially in the third and second-last rounds. The impact of
features related to the cipher’s round function was confirmed by [32]. Later on, Kimura
et al. [33] were able to identify DL-specific features. They proposed DL-based output
prediction attacks on several tiny block ciphers, including substitution-permutation based
ciphers and Feistel-network based ones. Their work showed that, unlike linear/differential
attacks, swapping or altering the internal parts of the target block ciphers has an impact on
the average success probabilities of the proposed attacks.

Notice that the works briefly described have in common the idea to face the prob-
lem of distinguishing truly random sequences from outputs of ciphers as a “binary
classification problem”.

4. DL-Based Distinguisher

This section describes a distinguisher based on the one introduced in [9] but adapted
to a 32-input feature vector, trained on two datasets of both random sequences and Speck32
(resp. Simon32) outputs. We start with a description of the Siamese network and of its
learning method. Then, we present the DL-based distinguisher. For further details on
Siamese networks, the interested reader is referred to [8].

4.1. Siamese Network

A Siamese network with two hidden layers and a logistic prediction p is shown in
Figure 1. As can be seen, the Siamese network consists of two identical sub-networks
that run side by side, where each one takes an N-bit binary sequence bi,1, . . . , bi,N as
input, for i = 1, 2. The twin networks share the weights at each layer (i.e., w1,1, . . . , wN,M).
Each network computes the features of its input, i.e., (h1,1, . . . , h1,M) and (h2,1, . . . , h2,M),
respectively. Then, in the next layer, it uses a distance function, such as the L1 distance or
the L2 distance, and calculates the distance (d1, . . . , dN) between the twin feature vectors.
The similarity of these feature vectors is then computed based on the sum of their weighted
distances, passed over an activation function. The output of the entire Siamese network, p,
is, therefore, a similarity measure of the two inputs.

One-shot learning. Siamese networks are based on the so-called one-shot learning [8]. Such
a learning strategy has the advantage that the network is able to classify objects even given
only one training example for each category of objects. Indeed, during the training phase,
instead of receiving pairs (object, class), the Siamese network receives (object1, object2,
same-class/different-class ) as input and learns to produce a similarity score, denoting the
chances that the two input objects belong to the same category. Typically, the similarity
score is a value between 0 and 1, where the score 0 denotes no similarity, while the score 1
denotes full similarity.
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Figure 1. A simple Siamese neural network architecture.

4.2. Model Definition

Our proposal for a DL-based distinguisher is based on a convolutional Siamese neural
network, whose architecture is depicted in Figure 2. It consists of two main parts: a feature
learning part and a similarity learning part. For the sake of conciseness, in the description, a
certain familiarity with neural networks is assumed. The reader with no background can
consult any introductory textbook to the field.

Figure 2. Our convolutional Siamese neural network architecture.

The feature learning part learns a function c, which maps our binary inputs into a
high-level feature space. Let si and s′i be the input sequences of the network, and let Fi
and F′i be the outputs of the feature learning part, that is, Fi = c(si) and F′i = c(s′i). The
function c(·) is implemented by a convolutional neural network (CNN, for short) [34,35].
Previous experience in the field, intuition, and trials and errors, guided us to the following
choices: in each sub-network, our CNN architecture consists of three one-dimensional
convolutional layers, with filters and kernels of varying sizes: in order, 16 filters with size
(5× 1), 32 filters with size (5× 1), and 64 filters with size (3× 1). The network applies
a ReLU activation function to the output feature maps, followed by a one-dimensional
max-pooling layer with size (2× 1). Each layer of the sub-networks receives the output
from its immediate previous layer as its input, and passes its output (as input) to the next
layer. Higher-layer features are derived from features propagated from lower layers. As
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the features propagate to the highest layer, the dimensions are reduced, depending on the
size of the kernel. The number of feature maps is increased to better represent the input
sequence and ensure similarity accuracy. The output of the final convolutional layer is then
flattened into a single vector.

The similarity learning part learns how similar two input sequences are. Precisely,
the output vectors of the feature learning part, Fi and F′i , are used as the inputs to the
fully-connected feed-forward layers. The fully-connected layers are then followed by one
more distance layer, which computes the L1 distance metric, by summing the absolute
differences of the components of the vectors. The distance value is then passed to a single
sigmoidal output unit, which maps the value into the interval [0, 1]. Score 0 denotes no
similarity, while score 1 denotes full similarity.

4.3. Loss Functions

Loss functions are used, during the training process, for evaluating the model instances
and selecting the most suitable one. Precisely, the loss functions quantify how well the
siamese network made the correct decision. The lower the loss value, the better decisions
were. Several loss functions have been proposed in the literature. In this work, both the
binary cross-entropy loss function and the contrastive loss function have been exploited to
train the network showed in Figure 2. The results obtained are provided in the next section.

A cross-entropy loss function is usually used in classification problems. It measures
the difference between the desired probability distribution and the predicted probability
distribution. In our specific context, binary cross-entropy is a valid choice because what we
are essentially doing is 2-class classification: (i) either the two sequences given as input to
the network are of the same type, random or cipher output (i.e., class 1), (ii) or the two
sequences are of different types (i.e, class 2). Binary cross-entropy loss is mathematically
defined as:

binary cross-entropy loss = − 1
N

N

∑
i=1

yi log pi + (1− yi) log(1− pi), (2)

where yi is the label of the i-th training sample (pair of sequences), i.e., yi = 1 if the i-th
training sample, given as input to the network, belongs to class 1; otherwise, yi = 0.
Furthermore, pi is the probability that the i-th training sample belongs to class 1, while N
denotes the number of training samples.

However, state-of-the-art Siamese networks exploit contrastive loss functions when
training. Usually, these functions are better suited for such a kind of networks, and tend
to improve accuracy. The idea is that the goal of a Siamese network is not to classify a set
of sequence pairs but, instead, to differentiate them, by computing a similarity measure.
Essentially, a contrastive loss function evaluates how good the Siamese network is in
distinguishing between the sequence pairs. Contrastive loss is mathematically defined as:

contrastive loss =
1
N

N

∑
i=1

(1− yi)×
1
2

d2
i + yi ×

1
2
{max(0, m− di)}2, (3)

where yi is the label of the i-th training sample, that is, as in the previous case, yi = 1 if
the i-th training sample belongs to class 1; otherwise, yi = 0. The value di represents the
Euclidean distance between the outputs of the two twin sub-networks, when given in input
the i-th training sample, for i = 1 . . . N. Furthermore, m > 0 is a value called the margin.
When yi equals 0, the amount of loss caused by similar pairs is quantified only by the first
term and is minimized. Conversely, if yi equals 1, the loss is quantified only by the second
term and is maximized by m. Thus, there is no loss when input pairs are non-similar and
their distance exceeds m.
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5. Experiments

To assess the effectiveness of our DL-method for distinguishing the outputs of different
instances of Speck and Simon from random sequences, two ground datasets of 5000 samples
have been considered for our experiments. Each ground dataset includes the same propor-
tion of cipher outputs (Speck or Simon, respectively) and random sequences, i.e., a set of
2500 cipher outputs, computed by choosing random inputs and key values, and a set of
2500 random 32-bit sequences. Python’s os.urandom() function has been used to generate
the random numbers. The datasets are available on Github [36].

The following subsection describes the use of each ground dataset to create a dataset
of similar and non-similar objects for training the Siamese network.

5.1. Datasets

Let D be a 5000-element ground dataset. We split D in the following disjoint subsets:

1. Gtr ⊆ D, consisting of the 50% of samples randomly chosen (i.e., 2500 samples), and
used as training set generator, i.e., to build the training set for the Siamese network.

2. Gvd ⊆ D, consisting of the 30% of samples randomly chosen (i.e., 1500 samples), and
used as validation set generator, i.e., to build the validation set for the Siamese network.

3. Gte ⊆ D, consisting of the remaining 20% of samples (i.e., 1000 samples), and used as
test set generator, i.e., to build the test set for the Siamese network.

The training set T is formally defined as T = T1 ∪ T0, where:

T1 = {(si, sj) | si, sj ∈ Gtr, l(si, sj) = 1}, T0 = {(si, sj) | si, sj ∈ Gtr, l(si, sj) = 0}

where l(si, sj) = 1 (resp. l(si, sj) = 0) indicates that si and sj are similar (resp. non-similar).
We remark that T1 (resp. T0) is a set of pairs of similar (non-similar) sequences from Gtr.

In our experiments, we have generated T such that |T | = 10, 000 in two different ways:

• 200-Gtr: T1 = R1 × R1 ∪ C1 × C1, and T0 = C2 × R2 + R2 × C2, where Ri ⊆ Gtr
(resp. Ci ⊆ Gtr) consists of random (resp. cipher output) sequences randomly chosen
from Gtr, with |Ri| = 50 (resp. |Ci| = 50), for i = 1, 2. Observe that |R1| + |R2| + |C1|
+ |C2| = 200.

• 300-Gtr: T1 = R1 × R1 ∪ C1 × C1, and T0 = C2 × R2 + R3 × C3, where Ri ⊆ Gtr
(resp. Ci ⊆ Gtr) consists of random (resp. cipher output) sequences randomly chosen,
with |Ri| = 50 (resp. |Ci| = 50), for i = 1, 2, 3. Observe that |R1| + |R2| + |R3| + |C1| +
|C2| + |C3| = 300.

5.2. Experimental Setting

After creating one dataset for each cipher, the network has been trained for 1000 epochs,
with a batch size of 24, and using the Adam optimizer [37], with a learning rate of 0.00005,
and with the two chosen loss functions: the binary cross-entropy loss function and the
contrastive loss function. Then, the network was validated using 1000 different one-shot
learning tasks. Specifically, at every 10 epochs (one-shot evaluation interval), for every
one-shot task, our model first chooses a test sequence s1 from the validation set. Then, it
creates two pairs, a similar pair and a non-similar pair, as follows:

• the similar pair < s1, s2 >, includes the test sequence s1 and a sequence s2 from the
same category,

• the non-similar pair < s1, s′2 >, includes the test sequence s1 and a sequence s′2 from
the other category.

The obtained two pairs are used to compare the same object with two different ones,
out of which only one of them is in the same category. For each of these two pairs, the
network generates a similarity score, denoted with S1 and S2. Now, if the model is trained
properly, then S1 is expected to be the maximum. If it happens, then it is treated as a correct
prediction; otherwise, it is an incorrect one.
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Repeating this procedure for ` different one-shot tasks, the accuracy is computed as

one-shot accuracy = ncorrect/`, (4)

where ` equals 1000, and ncorrect is the number of correct predictions out of the ` tasks.

5.3. Results

As mentioned, the validation set is evaluated every 10 epochs, with the best model
being chosen to be tested on the test set at the end. This experiment was carried out a
total of 10 times. The validation and train accuracies for the last run of the experiment
using a binary cross-entropy loss defined by Equation (2) on the Speck dataset are shown in
Figure 3.

As shown in Figure 3a, for this run of the experiment with a dataset built using
200 different samples, the validation accuracies range from 50% to 85%, and converge
to 85% within the first 600 epochs, therefore choosing the model with higher validation
accuracy as the final model for evaluation on the test set, results in a test accuracy of
83%. However, as shown in Figure 3b, with 300 different samples, the Siamese network
outperforms the one using 200 samples. Hence, 300 different samples are our choice for
building the datasets. The accuracies of 10 runs of the experiment, for 1000 different one-
shot tasks on the test set using the binary cross-entropy loss, are computed according to
Equation (4) and are provided in Table 1. As indicated, they resulted in an approximate
average accuracy of 94% for both the Speck and Simon ciphers.

Based on the above findings, going back to our main goal, we can set up the following
distinguisher D for the experiment Pseudo-RD,E:

Distinguisher D

1. Builds the dataset as described before and selects the best DL-Model to distinguish
(Simon/Speck) from a random permutation.

2. Sends a query x to the oracle O(·), obtaining in response y = O(x).
3. Chooses y′ uniformly at random.
4. Constructs the pair (y, y′) and gives it in input to the DL-Model.
5. If the DL-Model finds y and y′ similar, then D gives in output 0 (i.e., O(·) imple-

ments a random permutation); otherwise, D gives in output 1 (i.e., O(·) imple-
ments Simon or Speck).

The distinguisher D, a one-query distinguisher, succeeds with probability:

Pr[Pseudo-RD,E = 1] = Pr(b = 0) · Pr(D outputs 0|b = 0) +

+Pr(b = 1) · Pr(D outputs 1|b = 1)

=
1
2
· 0.94 +

1
2
· 0.94 >

9
10

.

As a result, according to Equation (1), D succeeds with an advantage of at least 4
10 over

a random guess. Hence, both ciphers do not yield a pseudorandom behavior. Note that
a dataset of 5000 sequences is considered for the experiment, however, only 300 samples
are chosen to create a training dataset of 10,000 elements for the Siamese network, for each
experiment run. Considering 10 different runs of the experiment, at least t = 3000 ≈ 211

steps are required to set up the best DL-Model. A similar conclusion applies to the cases of
the contrastive loss function, presented in the following.
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(a)

(b)

Figure 3. One-shot training and validation accuracy over epochs, for Speck, with a binary cross
entropy loss. (a) With 200 samples, test accuracy 83%. (b) With 300 samples, test accuracy 91%.

Table 1. One-shot test accuracies with a binary cross-entropy loss, Speckn indicates “on Speck dataset
with 100 ∗ n numbers of samples”.

Cipher 1 2 3 4 5 6 7 8 9 10 Avg

Speck2 0.81 0.76 0.82 0.9 0.87 0.84 0.8 0.74 0.87 0.83 0.82
Speck3 0.93 0.94 0.91 0.92 0.97 0.95 0.97 0.93 0.97 0.91 0.94

Simon 0.92 0.95 0.92 0.93 0.95 0.93 0.96 0.97 0.98 0.91 0.942

The experiment was repeated once more for a total of ten times, using a contrastive
loss, as defined by Equation (3) with a margin value of 0.3. Table 2 provides the accuracy
results. These findings show that a Siamese network with a contrastive loss outperforms
the one with cross-entropy loss, and it reaches an average test accuracy of over 99% for
both ciphers. Figure 4 shows the train and validation accuracies for the last run of the
experiment on the Speck dataset. As it is clear for the first 100 epochs, accuracies are 100%
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or close to it, and as the number of epochs increases, the accuracy drops to 84%. Thus, the
best model is chosen at the first epochs.

Figure 4. One-shot training and validation accuracy over epochs, for Speck, with a contrastive loss,
given the evaluation accuracy of 100%.

Table 2. One-shot test accuracies with a contrastive loss.

Cipher 1 2 3 4 5 6 7 8 9 10 Avg

Speck 1 0.99 1 1 0.99 0.99 0.99 0.99 1 1 0.995

Simon 1 1 1 0.99 1 1 0.99 0.99 0.99 1 0.996

The obtained findings demonstrate that our proposed deep learning distinguisher,
based on a Siamese network with a contrastive loss and the one-shot learning technique,
provides an accurate solution for pseudorandomness evaluation. Our best models achieve
an average accuracy of 99.5% for Speck, and 99.6% for Simon. In the case of Speck, Gohr’s
approach reached an accuracy of roughly 93% for five rounds of Speck.

As a follow-up research plan, the above findings encourage us to employ Siamese
networks to differentiate among various ciphers. To begin, the distinguishability of Speck
from Simon has been investigated and, using a binary cross-entropy loss, Speck and Simon
outputs are distinguishable with an average accuracy of 94.4% (on 10 experiments, with
accuracies in each experiment equal to 0.96, 0.93, 0.94, 0.94, 0.96, 0.95, 0.96, 0.95, 0.93, 0.92).
Additional experiments, for example focusing on mixed ciphers, that connect the outputs
of the Speck round function to Simon’s inputs, or the other way around, could be helpful in
assessing the effectiveness of Siamese networks. Future works might analyze such variants.

6. Conclusions

This paper investigated how to build a DL-based distinguisher for Simon32 and
Speck32. Indeed, the two lightweight block ciphers are commonly used in several applica-
tions, e.g., in multi-round identification, authentication, and access control schemes, espe-
cially in computational limited environments, populated by cheap and resource-constrained
devices. Assessing their security is therefore crucial. Although a convolutional Siamese
network has proven effective for our task, it is critical to provide adequate training samples
to the network (similar and non-similar pairs). For network optimization, two different loss
functions have been considered: a binary cross-entropy loss and a contrastive loss function.
With a data complexity of 211 ≈ 3000, the network with a binary cross-entropy loss has
shown an average test accuracy of 94%. The contrastive loss outperformed the binary
cross-entropy loss, and gave a higher evaluation accuracy. The results of this paper seem to
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be quite promising. They need some further evaluation on other primitives, on different
datasets and, maybe, on different parameters. However, if the trend is confirmed, Siamese
networks would be configured as an important tool to consider in future cryptanalytic
tool packets.
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Appendix A

Simon and Speck. In 2013, the National Security Agency (NSA) published the Speck
and Simon block cipher families. These block ciphers are intended to provide security on
limited devices with a focus on design simplicity [38].

There are 10 different versions for each cipher family based on the block and key
size combinations (as shown in Table A1), making them suitable for a broad range of
applications. Speck2n/mn will denote Speck with n-bit block size and mn-bit key size. A
similar notation is used for Simon. Operations used by Simon and Speck are: modular
addition and subtraction ± mod 2n, bitwise xor ⊕, and &, left circular shift <<< m
and right circular shift >>> m by m positions. Modular addition and bitwise and &
bring non-linearity and confusion for Speck and Simon, respectively, whereas diffusion is
achieved using cyclic rotation and xor.

Any cipher version shares the same Feistel-structure and round function as shown in
Figures A1 and A2.

Figure A1. Speck round function.

The Feistel-structure runs the round function a fixed number of times, depending on
the block and key size (presented in Table A1). Each round function takes as input two
n-bit intermediate ciphertext words, Li and Ri, and an n-bit round key Ki. Then, it applies
the round function and outputs two words Li+1 and Ri+1, that are the input words for the
next round. The outputs of the last round represent the ciphertext.



Appl. Sci. 2023, 13, 3372 12 of 13

Figure A2. Simon round function.

Table A1. Variants of Speck and Simon. The parameters α and β, as seen in Figure A1, count the
number of positions for the right and left shifts, respectively. The values α = 7 and β = 2 are for
Speck32/64, while other variants of Speck use α = 8 and β = 3.

Block Size Key Size Speck Rounds Simon Rounds

32 64 22 32
48 72, 96 22, 23 36, 36
64 96, 128 26, 27 42, 44
96 96, 144 28, 29 52, 54

128 128, 192, 256 32, 33, 34 68, 69, 72
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