
Citation: Yuan, Y.; Li, C.; Yang, J. An

Improved Confounding Effect Model

for Software Defect Prediction. Appl.

Sci. 2023, 13, 3459. https://doi.org/

10.3390/app13063459

Academic Editors: Miltiadis G.

Siavvas and Erol Gelenbe

Received: 11 February 2023

Revised: 6 March 2023

Accepted: 7 March 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

An Improved Confounding Effect Model for Software
Defect Prediction
Yuyu Yuan 1,2,*, Chenlong Li 1,2 and Jincui Yang 1,2

1 School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and
Telecommunications, Beijing 100876, China

2 Key Laboratory of Trustworthy Distributed Computing and Service, Ministry of Education,
Beijing 100876, China

* Correspondence: yuanyuyu@bupt.edu.cn

Abstract: Software defect prediction technology can effectively improve software quality. Depending
on the code metrics, machine learning models are built to predict potential defects. Some researchers
have indicated that the size metric could cause confounding effects and bias the prediction results.
However, evidence shows that the real confounder should be the development cycle and number
of developers, which could bring confounding effects when using code metrics for prediction. This
paper proposes an improved confounding effect model, introducing a new confounding variable
into the traditional model. On multiple projects, we experimentally analyzed the effect extent of
the confounding variable. Furthermore, we verified that controlling confounding variables helps
improve the predictive model’s performance.

Keywords: defect prediction; code metrics; confounding effect; casual graph; half-sibling regression;
logistic regression

1. Introduction

Software defect prediction technology can effectively predict the defect proneness of
software modules. Unlike the software preventive maintenance [1–3], which is applied
after the delivery of software systems to detect and correct potential errors, software defect
prediction aims to find potential software defects before software systems are delivered.
Modules with a high defect proneness tend to be of greater concern for software testers,
which significantly improves the efficiency of the software testing process [4]. Moreover, it
also helps to find potential defects that could take more work to draw attention, thereby im-
proving the quality of the software system [5,6]. In the past two decades, many researchers
have used machine learning technology [7,8] to establish defect prediction models based on
code metrics [9–13]. Software metrics objectively reflect the attributes of software modules,
including Chidamber and Kemerer’s object-oriented metrics, Halstead’s complexity metrics
and lines of code [9–13]. These metrics have been proven to be correlated with software
defects and could be easily and automatically collected by software tools. So, researchers
use code metrics to predict software defects.

In the prediction model based on code metrics, there are confounding effects among
metrics, which will bring bias to the prediction results [14–16]. The confounding effect could
be seen as multicollinearity between the confounder and code metrics. Emam et al. [14]
strongly recommend removing confounding effects before building predictive models.
Researchers point out that the size metric could be a significant confounder, affecting the
predictive ability of other metrics. Zhou et al. [16] summarized the relevant research. Their
paper described the confounding effect model of size in the form of a causal diagram [17],
explaining the reasons for its confounding effects. Then they analyzed the extent of the
size’s confounding effects and proposed a linear-based method to remove them.
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However, Kazman et al. [18] pointed out that existing factors affect the size, and the
size is not the actual confounder. Under the analysis of multiple projects, they found that
the software development cycle and the number of developers will affect the presentation
of software code and directly affect the metrics, such as size. These factors are the actual
confounders and are outside the scope of code metrics. These factors should be considered
when analyzing the confounding effects in software defect prediction.

For the above problems, this paper proposes an improved confounding effect model
and a predictive model under the controlling confounder, which could be adapted to the
new model. Based on the causal graph theory [17], we make appropriate modifications
to the traditional confounding model reported by Zhou et al. [16]. We introduce a new
confounding variable, and the size variable is no longer considered the confounder. Due to
Kazman et al.’s research [18], it is reasonably believed that edges should be added between
the confounding variable and some software metrics variables. These edges satisfy the
theoretical interpretability under the causal inference framework. Since the value of the
confounding variable is unknown, we used the half-sibling regression method [19] to
quantify its effect. The effect extent of the confounding variable was then analyzed with
the help of logistic regression. Finally, we verified the effectiveness of the predictive model
under controlling the confounding variable.

Our main contributions include the following aspects:

1. We noticed the new confounder in software defect prediction and proposed an im-
proved confounding effect model.

2. We used half-sibling regression to quantify the confounding variable.
3. We experimentally analyzed the effect extent of the confounding variable, then verified

the effectiveness of the proposed model for prediction.

The remainder of this paper is organized as follows. We first briefly review related
work. After that, we introduce the traditional confounding effects in software defect
prediction and propose both an improved confounding effect model and a prediction
model based on it. Finally, comprehensive experiments are conducted for the analysis of
confounding effects and prediction results.

2. Related Works

Code metrics have correlations with software defects, so researchers use these code
metrics to train machine learning models for predicting [9–13].

In the past two decades, many researchers have applied different machine learning
models as classifiers to obtain satisfactory prediction results [4,20,21]. Different classifiers
perform well in software defect prediction content [22,23], such as logistic regression
(LR) [24–27], neural network (NN) [28], support vector machines (SVMs) [29,30], naive
Bayes [31], K-nearest neighbors [32], and Bayesian networks [22]. Logistic regression is
the most commonly used classifier [33–35]. In recent years, Chi et al. [27] applied logistic
regression to deal with software defect prediction, and they paid attention to the privacy
protection issue in the prediction process. Combining logistic regression with homomorphic
encryption technology, a method that can protect the privacy of datasets and models, was
proposed. However, this method had no advantage over traditional logistic regression
models in terms of predictive ability. Hailemelekot et al. [36] used logistic regression to deal
with the problem of just-in-time defect prediction. The just-in-time defect prediction model
classified potential defect changes at the check-in point. They identified six indicators from
issue tracking systems to increase the indicator dataset and improve the performance of
the JIT defect prediction model. Eivazpour et al. [37] used logistic regression technology to
solve unbalanced data distribution challenge in the software defect prediction. Unbalanced
data could cause the serious misclassification of software defects, thereby reducing the
predictive model’s performance. The authors combined logistic regression with cost-
sensitive learning as the final classification model, effectively solving unbalanced data
distribution. Rizal et al. [38] also used the logistic regression method in their article. Their
paper was dedicated to solving unbalanced datasets and irrelevant features in software



Appl. Sci. 2023, 13, 3459 3 of 17

defect prediction. They used bagging techniques and genetic models, which can deal with
class imbalance and feature selection issues. Their method improved the classification
ability of the predictive model.

Feature selection methods are also applied in the field of software defect prediction.
(1) In using filter-based feature ranking techniques, the information gain method [39] is
an entropy-based method; the gain ratio method [40] compensates for the bias of informa-
tion gain by penalizing multivalued features. (2) In filter-based feature subset selection,
correlation-based feature subset selection [41] aims to identify subsets of features with a
high correlation to class labels and a low correlation. Consistency-based feature subset
selection [42] uses a metric called consistency to measure the quality of feature subsets.
(3) The extraction-based feature selection method, a principal component analysis (PCA)
method [43], is an extraction-based dimensionality reduction method, which converts the
original variables that may be correlated with each other into a new set of the orthogonal
variable. These new variables are called principal components.

However, Emma et al. [14] first declared that there are correlations between code
metrics, which can cause confounding effects and bias prediction results. They investigated,
identified, and examined the confounding effect of the size metric and declared that the
size metric is a strong confounder. Additionally, they recommended considering removing
the confounding effect of size before building a prediction model. Zhou et al. [15,16]
systematically analyzed the extent of the confounding effect of different size metrics and
proposed a linear regression-based method to remove the confounding effect of size. Their
work significantly advances our knowledge about code metrics and their use in fault
prediction. However, this practice is rarely taken by other researchers. We believe that
this is because the existing confounding effect model and removal method are of little
help for defect prediction. Different from their research, we focus on the confounding
effects caused by factors other than size metrics, such as the project cycle and the number
of developers mentioned by Kazman et al. [18]. These factors are outside the scope of
code metrics, and we abstract these factors as a confounder. In this paper, we analyze the
extent of the confounding effect of the proposed confounder and the help of controlling
the confounder for predictive models. The literature on the confounding effect in software
defect prediction is shown in Table 1:

Table 1. The literature on the confounding effect in software defect prediction.

No. Title Topic Study

1
The confounding effect
of size on the validity
of object-oriented metrics

investigate ,identify and
examine the confounding
effect of size in
software defect prediction

Emam et al.[14]
IEEE Transactions on
Software Engineering
2001

2

Examining the Potentially
Confounding Effect of
size on the
Associations between
Object-Oriented Metrics
and Change-Proneness

examine the potentially
confounding effects of
three size metrics on
the associations between
OO metrics and defects.

Zhou et al. [15]
IEEE Transactions on
Software Engineering
2009

3

An in-depth study of the
potentially confounding
effect of size in
fault prediction

Systematically analyze the
extent of confounding effect
of seven size metrics;
propose a linear
regression-based method to
remove the confounding
effect of size

Zhou et al. [16]
ACM Transactions on
Software Engineering
and Methodology
2014
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This paper uses LR as the basic classifier for three reasons: (1) LR is easy to understand,
and it is convenient to analyze the confounding effect using LR. (2) The previous work is
based on LR, which is convenient to compare with. (3) This is a preliminary exploration to
verify the applicability of the proposed improved confounding effect model. The follow-up
work will focus on the confounding effect removal method for other complex classifiers.

LR is used as the classifier in all existing related papers about confounding problems in
software defect prediction. So, this paper also uses logistic regression as the basic classifier.

The causal graph [17] is a powerful tool for analyzing the effects of confounding. Based
on causal inference, Bernhard et al. [19] proposed HSR, a method for analyzing confound-
ing noise from unobserved variables, and they applied HSR in a challenging astronomy
application. Since this method has an excellent theoretical basis and strong applicability,
the HSR method is also applicable for solving problems in other fields. Yang et al. [44] used
HSR for denoise word embeddings. In this paper, we use half-siblingbrother regression to
quantify the confounding noise of virtual metrics.

3. Confounding Effect Model for Software Defect Prediction

Researchers have paid attention to the confounding effect in software defect predic-
tion, which will bias the prediction results. This section first introduces the traditional
confounding effect model and proposes an improved model. The data analysis method for
the confounder is then described. Finally, a predictive model is proposed.

3.1. Traditional Confounding Effect Model

In the traditional confounding effect model, size is considered a confounder, affecting
the predictive ability of software metrics and bringing bias to the prediction results. In the
study by Zhou et al. [16], a causal diagram was used to describe the confounding effect of
size, as shown in Figure 1a. In this figure, variables represent the size, metric, and defect-
proneness, respectively. The unidirectional edge represents causal belief, connecting the
cause and effect of an event. Bidirectional edges represent general relationships. According
to the graph’s connectivity, there are paths m-s-d and m-d. It is known from the nature of
the causal graph that when m is used to predict d, s will have a confounding effect and
bias the results.

Figure 1. Confounding effect model in software defect prediction.

However, according to Kazman et al.’s paper [18], there are deeper affecting factors
beyond size, as shown in Figure 1b. They concluded that those factors, such as the software
development cycle and the number of developers, cause confounding in size and software
defects. These factors affect the value of code metrics and are outside the scope of traditional
code metrics.

3.2. Improved Confounding Effect Model

This paper proposes an improved confounding effect model, represented by a causal
diagram, as shown in Figure 2.
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Figure 2. An improved confounding effect model.

In Figure 2, we introduce a new confounding variable signed by c, representing the
confounding effect caused by unknown factors other than existing code metrics, including
the development cycle and the number of developers mentioned above. Moreover, we
divide the software metrics into two sets: a and b. variable a is pointed to by the confound-
ing variable c, while variable b is not. Variable c also directly points to the software defect
signed by d. Since there are paths a-d and a-c-d, the predictive power of variable a on d is
confounded by c. We will analyze which software metrics belong to set a and which belong
to set b in the following sections.

3.3. Data Analysis Method

A simple and parsimonious approach is as follows: a measured confounding variable
can be controlled through a regression adjustment [45]. A regression adjustment entails
including the confounder as another independent variable in a regression model. Sup-
pose the regression coefficient of the metric changes dramatically with and without the
size variable. In that case, this strongly indicates that there was indeed a confounding
effect [46]. This is further elaborated below. The regression method used in this paper is
logistic regression.

The general form of logistic regression(LR) is

p =
1

1 + e−(b+a1X1+···+anXn)
(1)

where p represents the probability that a software module contains at least one potential
defect, and Xi are independent variables, which represent the software metrics. The param-
eters are estimated through the maximization of a log-likelihood [46].

Since the value of the confounding variable is unknown, we first quantified its con-
founding effect using half-sibling regression [19]. Half-sibling regression is a model used
to quantify unobserved confounding noise under causal inference, which can incorporate
causal beliefs and assumptions of empirical targets. Both the confounding variable and soft-
ware metrics are considered responsible for software defects under causal belief. Therefore,
the confounding effect can be reconstructed. We replace the value of the confounder with a
confounding effect. When we utilize software metrics for defect prediction, the discrepancy
between the predicted probability and the actual value is considered to be caused by the
unknown confounding variable. The model assumes that the prediction noise is additive.
Therefore, the following formula for variable C is obtained:

c = d− 1
1 + e−(b+a1X1+···+anXn)

(2)
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We establish univariate and bivariate logistic regression, corresponding to uncon-
trolled and controlled variable c, respectively. The effect of the confounding variable is
analyzed by analyzing the change of the X1 coefficients of the two models:

p1 =
1

1 + e−(b+a1X1)
(3)

p2 =
1

1 + e−(b+a1X1+a2C)
(4)

The odds ratio, as shown in the Formula (5), is the ratio of the probability that an event
will happen (signed by p) to the probability that an event will not happen (signed by q).
The extent of the confounding can be expressed by the change in the odds ratio when the
X1 variable changes by one standard deviation(ϕ(X1 + σ)), denoted by ∆ϕ in Formula (7).
Since we construct two models, as shown in Formula (3) and Formula (4), which are with
and without control for the confounder, we denote the change in odds ratio as ∆ϕ1 and
∆ϕ2, respectively. As suggested in [47], we can evaluate the extent to which the change in
odds ratio (shown as Formula (8)) changes as an indication of the extent of confounding.
We operationalize this as follows:

p
q
= ϕ(X) = eb+aX (5)

ϕ(X + σ) = eb+a(X+σ) (6)

∆ϕ =
ϕ(X + σ)

ϕ(X)
= eaσ (7)

∆2 ϕ = |∆ϕ1 − ∆ϕ2

∆ϕ2
| ∗ 100% (8)

3.4. Predictive Model with Controlling Confounder

We use Y to represent the software defect, and X represents the existing software
metrics. Y has two values which are 0 and 1. Y = 1 means the relevant software model
has one defect or more than one defect, and Y = 0 stands for the relevant software model
with non-defect. When we use X to train the model for predicting Y. The prediction
model parameters are distorted due to the confounding effect. In order to revise the
model parameters, we train the prediction model under controlling the confounder. This
way, the model parameters can more accurately and appropriately reflect the relationship
between software metrics and software defects. As the formula shows,

E(Y|X, C′) =
1

1 + e−(b+a1X1+···+anXn+an+1C′)
(9)

where C′ is the transformed value of the confounding noise C. For instances that contain
at least one defect, we convert Q1 to dQ1, and for instances that do not contain defects,
we convert it to nQ1. Parameters d, n are constants. The grid search method is used
to determine the values of d and n. Under the grid search, suitable values of d, n are
determined, which helps the prediction model achieve high performance. Based on the
above, we propose the Algorithm 1 presents the pseudocode.
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Algorithm 1 Predictive model.

Input: Training data (X represents software metrics; Y represents defect-proneness; C and
C′ present confounding noise)

Output: Prediction model
1: Use logistic regression to fit Y by X, obtain Y := f (X)
2: Predict Y by X, obtain E[Y|X] := f (X)
3: Calculate C based on half-sibling regression, obtain C := Y− E[Y|X]
4: Transform C to C′. If Y==1, C′ equals to d*C; if Y==0, C′ equals to n*C
5: Determine values of d and n using the grid search method, which could get f (X, C′)

fitting Y well.
6: Establish the prediction model by logistic regression, obtain Y := f (X, C′)

4. Experiments and Results
4.1. Datasets

In this study, experimental datasets are from the Metric Data Program (MDP) reposi-
tory. MDP is widely used in the field of software defect prediction. The original version
of the datasets contains a large number of null values, wrong values. The preprocessing
strategy is that the problem instances are discarded first, and then the instances that are
not problematic but do not help improve the defect prediction are removed. For example,
instances with either implausible values or conflicting feature values are logically erro-
neous, so they are removed. The preprocessing procedure is described in detail in the [48].
Martin et al. [48] provided a cleaned version, and this paper uses this clean version of the
MDP datasets as the experimental datasets. Table 2 briefly describes the datasets. This
table includes information, such as project name, number of instances, number of metrics,
number of defective instances, number of non-defective instances, and defect rate. It is
worth noting that the scales in different projects are very different, such as the number of
instances ranging from 127 to 17001, and the defect rate ranging from 3 to 35%. Table 3
shows the metrics in the datasets.

Table 2. Datasets from MDP.

Dataset Instances Metrics Defect Non-Defect Defect Rate

CM1 344 37 42 302 12%
JM1 9593 21 1759 7834 18%
KC1 2096 21 325 1771 16%
MC2 127 39 44 83 35%
PC3 1125 37 140 985 12%
PC5 17,001 36 503 16,498 3%

Table 3. Code metrics.

No. MetricName Description

1 LOC_BLANK number of blank lines

2 BRANCH_COUNT number of branches

3 CALL_PAIRS pairs of call

4 LOC_CODE_AND_COMMENT number of lines of code and
comments

5 LOC_COMMENTS nomber ofcomment lines

6 CONDITION_COUNT number of conditional statement

7 CYCLOMATIC_COMPLEXITY cyclomatic complexity

8 CYCLOMATIC_DENSITY circle density
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Table 3. Cont.

No. MetricName Description

9 DECISION_COUNT number of decisions

10 DECISION_DENSITY decision complexity

11 DESIGN_COMPLEXITY design complexity

12 DESIGN_DENSITY design density

13 EDGE_COUNT number of boundary

14 ESSENTIAL_COMPLEXITY Intrinsic complexity

15 ESSENTIAL_DENSITY Intrinsic density

16 LOC_EXECUTABLE number of executable lines

17 PARAMETER_COUNT number of parameters

18 GLOBAL_DATA_COMPLEXITY global data complexity

19 GLOBAL_DATA_DENSITY global data density

20 HALSTEAD_CONTENT content metric

21 HALSTEAD_DIFFICULTY complexity

22 HALSTEAD_EFFORT programming efficiency

23 HALSTEAD_ERROR_EST misprediction

24 HALSTEAD_LENGTH program length

25 HALSTEAD_LEVEL programming language class

26 HALSTEAD_PROG_TIME how long wrote the program

27 HALSTEAD_VOLUME program capacity

28 MAINTENANCE_SEVERITY maintenance severity

29 MODIFIED_CONDITION_COUNT modify the number of conditional
statements

30 MULTIPLE_CONDITION_COUNT number of conditional statements

31 NODE_COUNT number of nodes

32 NORMALIZED_CYLOMATIC_
COMPLEXITY canonical cyclomatic complexity

33 NUM_OPERANDS number of operands

34 NUM_OPERATORS number of operators

35 NUM_UNIQUE_OPERANDS number of special operands

36 NUM_UNIQUE_OPERATORS number of special operators

37 NUMBER_OF_LINES number of rows

38 PERCENT_COMMENTS percent of comments

39 LOC_TOTAL total lines of code

4.2. Presence and Extent of Confounding Effect

We analyze the extent of the confounding effect on each metric using the method
introduced in Section 3.3. The data results are shown in Table 4. The indexes in Table 4
correspond to those of Table 3. Since the number of metrics collected by each project varies,
we use #NA to represent empty items, which means the metric is not included in this
project. It can be observed that the range of change in the odds ratio is widely distributed.
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The greater the change in the odds ratio, the greater the effect of the confounding variable on
the metric’s predictive ability, and the greater the change in the odds ratio, the stronger the
effect is considered to be.Conversely, the smaller the change in the odds ratio, the smaller
the extent of the confounding variable on the metric’s predictive ability, and it is considered
that the confounding effect is weaker. For example, in project CM1, we declare that the
confounding variable has a stronger effect on BRANCH_COU than LOC_BLA. We set the
threshold value to 20%. That is, when the odds ratio change is greater than 20% before
and after the confounding variable is controlled, we consider that the confounder will
have a significant effect on the metric. For example, in project CM1, the confounding
variable significantly affects HALSTEAD_DIFFICU but not HALSTEAD_EFFO. It can be
concluded from Table 4 that the confounding variable generally has confounding effects on
different metrics.

Table 4. Rate of change in odds ratio for each metric in different project.

No. of Metrics CM1 JM1 KC1 MC2 PC3 PC5

1 33.0% 100.0% 88.2% 100.0% 211.3% 48.6%
2 100.0% 6.3% 90.3% 100.0% 53.7% 134.1%
3 32.7% #N/A #N/A 96.3% 3.8% 89.2%
4 100.0% 100.0% 149.4% 100.0% 99.7% 100.0%
5 99.7% 100.0% 63.0% 100.0% 43.6% 99.9%
6 99.9% #N/A #N/A 100.0% 95.2% 133.1%
7 100.0% 18.6% 90.6% 100.0% 55.0% 119.9%
8 2.3× 1034% #N/A #N/A 73,222.6% 42.6% 73.7%
9 99.9% #N/A #N/A 100.0% 274.5% 124.7%

10 1.3× 1017% #N/A #N/A 70.0% 100.0% #N/A
11 27.8% 114.0% 85.7% 100.0% 61.0% 134.0%
12 73.3% #N/A #N/A 295.7% 70.4% 1165.0%
13 100.0% #N/A #N/A 100.0% 109.3% 76.5%
14 100.0% 35.6% 83.1% 100.0% 12.3% 139.0%
15 4.9× 105% #N/A #N/A 93.9% 63.0% 37.0%
16 100.0% 41.7% 95.9% 100.0% 145.0% 28.2%
17 100.0% #N/A #N/A 99.6% 50.8% 2.1× 105%
18 #N/A #N/A #N/A 100.0% #N/A 129.4%
19 #N/A #N/A #N/A 94.7% #N/A 81,595.0%
20 100.0% 100.0% 99.4% 100.0% 757.4% 12.3%
21 23.0% 15.9% 99.2% 100.0% 47.0% 99.7%
22 4.7% 69.4% 91.6% 100.0% 1.6× 107% 100.0%
23 11.1% 99.9% 91.7% 100.0% 248.7% 10.5%
24 10.9% 91.3% 95.3% 100.0% 276.4% 4.4%
25 4160.7% 122.7% 2.4× 1023% 1.7× 1049% 10.6% 2.6× 1033%
26 4.7% 69.4% 91.6% 100.0% 1.6× 107% 100.0%
27 11.2% 99.9% 91.6% 100.0% 250.3% 10.6%
28 11,250.5% #N/A #N/A 99.8% 66.3% 96.5%
29 99.9% #N/A #N/A 100.0% 50.9% 137.3%
30 99.9% #N/A #N/A 100.0% 23.2% 123.6%
31 100.0% #N/A #N/A 100.0% 155.6% 67.2%
32 51.5% #N/A #N/A 6086.0% 54.9% #N/A
33 11.4% 99.9% 94.0% 100.0% 184.6% 8.1%
34 11.0% 82.0% 94.3% 100.0% 471.5% 6.8%
35 100.0% 100.0% 97.4% 100.0% 205.6% #N/A
36 14.2% 1.4% 99.9% 100.0% 64.7% 100.0%
37 4.5% #N/A #N/A 100.0% 138.0% 18.3%
38 100.0% #N/A #N/A 88.9% 100.0% 100.0%
39 100.0% 100.0% 92.7% 100.0% 129.8% 28.8%
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For different projects, confounders have a general effect on metrics. This bias results
when using code metrics for prediction. The scope of confounding effects varies from project
to project. We take projects CM1 and JM1 as examples, combined with our confounding
effect model proposed in Section 3.2. The confounder significantly affects 28 metrics on
project CM1, which belong to set a corresponding to the model; 9 metrics have little effect
and belong to set b. In project JM1, 17 metrics have a significant impact and belong to set a
corresponding to the model; 4 indicators have little influence and belong to set b. Numbers
of metrics with and without confounding effects in each project are present in Figure 3.

Figure 3. No. of metrics with and without confounding effect.

The same metric is affected differently in each project. For example, LOC_BLANK is af-
fected in all six projects, and BRANCH_COUNT is significantly affected in the five projects,
except project JM1. Different metrics have distinct confounding effects in different projects.
This situation also commonly exists in the research of Kazman et al., which is related to
the metrics sets collected by each project. The metrics statistics in the different projects are
shown in Figure 4, in which the indexes correspond to Table 3. In our experiments, the size
is strongly affected by confounding variables in every project, which is also consistent with
the research conclusions of the work of Zhou et al. [16] and Kazman et al. [18].

Figure 4. No. of projects for each metric with and without confounding effect.
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4.3. Experiments for the Proposed Prediction Model
4.3.1. Experiments Set

To verify the effectiveness of the LR model under controlling the confounding variable,
we compared it with traditional LR and LR with the confounding effect removal method,
SVM and NN. The removal method was proposed by Zhou et al. and can remove the
confounding effects of size. We randomly selected 70% of the instances for training and
the remaining 30% for testing. Precision and recall rates are indicators for evaluating
classification models. The F1 score considers both precision and recall rates, which can be
regarded as a harmonic average of them. We employ the widely used F1 score as the main
indicator for objectively evaluating each predictive model. Its maximum value is 1, and its
minimum value is 0. The criterion for the F1 score is that the larger the F1 score, the better
the model performance. We run the experiments on the R platform.

The description of baselines is as follows:

1. LR: A two-step logistic regression is widely used in software defect prediction con-
tent. First, for each code metric, build a univariate logistic regression against defect
proneness; second, metrics with significant correlations (p-value < 0.05) are used to
establish a multivariate logistic regression to predict the defects.

2. LCERM+LR: Before applying the two-step LR model mentioned above, the LCERM,
a method which could remove the confounding effects of the size metric, is applied.
The LCERM uses linear regression to fit the size metric and one other metric, and this
linear relationship between them is seen as the confounding effect. The removal of the
confounding effect is achieved by subtracting the fitted value from the metric value.
More descriptions can be seen in [16]. This paper uses the LOC(line of code) metric as
the size metric.

3. SVM: To improve the predictive ability of the SVM model, we oversample the defect
instances, standardize the original data, and perform principal component analysis
transformation. The first five components are applied to the SVM model.

4. NN: To improve the predictive ability of the NN model, we oversample the defect
instances, standardize the original data, and perform principal component analysis
transformation. The first five components are applied to the NN model.

4.3.2. Parameters Selection

When controlling the confounding variables, we need to make appropriate changes
to the effect values. The values of parameters d and n will affect the transformation,
and different parameter values will lead to different model prediction performance results.
In order to choose the value of d and n reasonably, we conducted experiments. On each
dataset, we perform gridded experiments with d and n ranging from 0 to 1 with a step size
of 0.1, respectively. The experimental results for project JM1 are presented in Figure 5, which
is a heatmap, where the darker color means the larger F1 score. The abscissa represents
the value of n, and the ordinate represents the value of d. By observation, we conclude the
general rule that when n is larger than d, the models generally achieve better predictive
ability. Without loss of generality, parameter d is set to equal the defect rate, and parameter
n equals the non-defect rate in the following experiment.



Appl. Sci. 2023, 13, 3459 12 of 17

Figure 5. Heatmap for JM1 for different d and n values in strategy 2.

4.3.3. Presents of Prediction Result

This section shows the prediction results of our proposed model and the baseline
models. LR, CM-LR, SVM, and NN represent the baseline models, and HSR-LR represents
the proposed model.

Case 1: CM1
CM1 contains 344 instances with a defect rate of 12%. The prediction results of different

models on CM1 are shown in Table 5. Our proposed model outperformed the baseline
models under the F1 score.

Table 5. Results on CM1.

Model Precision Recall F1

LR 50.0% 23.1% 0.316
CM-LR 50.0% 23.1% 0.316

SVM 31.0% 62.7% 0.415
NN 29.6% 65.8% 0.408

HSR-LR 40.0% 46.2% 0.429 *
The * indicates the best performance of the models.

Case 2: JM1
JM1 contains 9593 instances with a defect rate of 18%. The prediction results of

different models on JM1 are shown in Table 6. Our proposed model outperformed the
baseline models under the F1 score.
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Table 6. Results on JM1.

Model Precision Recall F1

LR 55.7% 8.3% 0.145
CM-LR 55.7% 8.3% 0.145

SVM 29.3% 61.7% 0.397
NN 28.6% 64.2% 0.395

HSR-LR 28.4% 72.0% 0.407 *
The * indicates the best performance of the models.

Case 3: KC1
KC1 contains 2096 instances with a defect rate of 16%. The prediction results of

different models on KC1 are shown in Table 7. Our proposed model outperformed the
baseline models under the F1 score.

Table 7. Results on KC1.

Model Precision Recall F1

LR 58.6% 22.0% 0.319
CM-LR 58.6% 22.0% 0.319

SVM 29.7% 76.1% 0.427
NN 29.0% 80.0% 0.424

HSR-LR 30.7% 72.3% 0.430 *
The * indicates the best performance of the models.

Case 4: MC2
MC2 contains 127 instances with a defect rate of 35%. The prediction results of different

models on MC2 are shown in Table 8. Our proposed model outperformed the baseline
models under the F1 score.

Table 8. Results on MC2.

Model Precision Recall F1

LR 48.4% 52.1% 0.498
CM 47.5% 50.0% 0.484

SVM 52.1% 50.7% 0.502
NN 47.7% 53.6% 0.493

HSR-LR 51.7% 58.2% 0.541 *
The * indicates the best performance of the models.

Case 5: PC3
PC3 contains 1125 instances with a defect rate of 12%. The prediction results of

different models on PC3 are shown in Table 9. Our proposed model outperformed the
baseline models in the F1 score.

Table 9. Results on PC3.

Model Precision Recall F1

LR 52.0% 22.6% 0.312
CM-LR 52.0% 22.6% 0.312

SVM 27.7% 77.0% 0.407
NN 25.1% 77.4% 0.375

HSR-LR 34.1% 61.5% 0.436 *
The * indicates the best performance of the models.
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Case 6: PC5
PC5 contains 17,001 instances with a defect rate of 3%. The prediction results of

different models on PC5 are shown in Table 10. Our proposed model outperformed the
baseline models in the F1 score.

Table 10. Results on PC5.

Model Precision Recall F1

LR 56.0% 29.4% 0.384
CM-LR 56.1% 29.4% 0.384

SVM 20.5% 91.4% 0.334
NN 28.1% 91.7% 0.429

HSR-LR 32.7% 80.0% 0.463 *
The * indicates the best performance of the models.

The above results present the performance of our proposed model and baseline models.
We have the following observations and analysis:

(1) Compared with all baseline models, our proposed HSR-LR model performs best
under the F1 score, and it does not obtain the best performance in precision and recall
rate. Compared with the best baseline model, the F1 score of HSR-LR increases 1% in
CM, 1.1% in JM1, 0.3% in KC1, 3.9% in MC2, 2.9% in KC3 and 3.4% in KC5, with an
average of 2.2%.

(2) HSR-LR performs better than LR, which verifies that the confounding effects men-
tioned in this paper affect the LR prediction ability. With the help of HSR, we can
quantify the confounding effect. Under controlling the confounding effect, LR signifi-
cantly improves.

(3) Tables 5–10 show that HSR-LR and LR have similar precision rates, and each has wins
and losses but not much difference. However, HSR-LR has better recall performance
than that of LR. These points are why HSR-LR has better F1 values; that is to say,
controlling the confounder can effectively increase the recall rate of LR, thereby
increasing the F1 value of the LR model.

(4) HSR-LR performs better than CM-LR, indicating that our proposed confounding effect
model is more suitable for software defect prediction content than the traditional
confounding effect model. CM-LR performs similarly to lR, indicating that the existing
confounding removal methods are unsuitable for software defect prediction, which
further illustrates the necessity of this paper. Based on the proposed model, HSR-LR
could help solve this issue.

(5) Compared to SVM and NN, our model also achieves better performance. Both SVM
and NN are commonly used classifiers in the field of software defect prediction. On six
projects, our model outperforms SVM by an average of 3.7% and outperforms NN by
an average of 2.5% under F1 scores.

5. Internal and External Validity

Here, we consider threats to our study’s internal and external validity. Internal validity
is the degree to which confounding noise accurately measures the intended concept of
confounding effect and the degree to which conclusions can be drawn about its causal
effect on code metrics. External validity is the degree to which research findings can be
generalized to the study population and other research settings.

The most important threat to the internal validity of this study is the impact of the
method of computing confounding noise on the analysis of confounding effects. Before ana-
lyzing the confounding effect, we quantify its value using half-sibling regression. Under the
definition of half-sibling regression, there are other existing noise effects, whereas these
noises are ignored, and their effects are assumed to be caused by the confounder. This
allows the quantified value to correlate with the code metrics’ predictive ability, affecting
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the conclusions obtained.In future work, we will investigate more appropriate methods for
quantifying the effect of confounding.

The most important threat to the external validity of this study is that our results
may not generalize to other systems. Although our research investigates some systems,
the definition of the effects of confounding noise beyond code metrics in this paper is
relatively simple, and it can be more specific when facing different project contexts and
human factors. In subsequent research, we will focus on this issue.

6. Conclusions and Future Work

This confounding effects analysis is intended as a first step and certainly not a final
decision. With an in-depth understanding of the confounding effect, the prediction model’s
performance is bound to be further improved. Moreover, we could unravel the underlying
causal dynamics if we collect longitudinal data on similar variables. However, the critical
point we made here is the introduction of unknown confounding effects in code metrics-
based software defect prediction for the first time.

In future, we will further analyze the confounding effects in software defect predic-
tion and focus on suitable methods to quantify and remove the confounding effects for
different classifiers. Additionally, we will attempt to apply the research conclusions to
other applications.

Author Contributions: Conceptualization, Y.Y. and J.Y.; methodology, C.L. and Y.Y.; software C.L.;
writing—original draft preparation, C.L., Y.Y. and J.Y.; writing—review and editing, C.L. and J.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Social Science Fund of China (No. 21CGJ006).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jiang, Y.; Li, X. Broadband cancellation method in an adaptive co-site interference cancellation system. Int. J. Electron. 2022,

109, 854–874. [CrossRef]
2. Lei, W.; Hui, Z.; Xiang, L.; Zelin, Z.; Xu-Hui, X.; Evans, S. Optimal remanufacturing service resource allocation for generalized

growth of retired mechanical products: Maximizing matching efficiency. IEEE Access 2021, 9, 89655–89674. [CrossRef]
3. Ban, Y.; Liu, M.; Wu, P.; Yang, B.; Liu, S.; Yin, L.; Zheng, W. Depth estimation method for monocular camera defocus images in

microscopic scenes. Electronics 2022, 11, 2012. [CrossRef]
4. Wahono, R.S. A systematic literature review of software defect prediction. J. Softw. Eng. 2015, 1, 1–16.
5. Kitchenham, B.; Pfleeger, S.L. Software quality: The elusive target [special issues section]. IEEE Softw. 1996, 13, 12–21. [CrossRef]
6. Gruhn, V. Validation and verification of software process models. In European Symposium on Software Development Environments;

Springer: Berlin/Heidelberg, Germany, 1991; pp. 271–286.
7. Heckman, J.J. Sample selection bias as a specification error. Econom. J. Econom. Soc. 1979, 47, 153–161. [CrossRef]
8. Huang, J.; Gretton, A.; Borgwardt, K.; Schölkopf, B.; Smola, A. Correcting sample selection bias by unlabeled data. Adv. Neural

Inf. Process. Syst. 2006, 19, 601–608.
9. Catal, C.; Diri, B. A systematic review of software fault prediction studies. Expert Syst. Appl. 2009, 36, 7346–7354. [CrossRef]
10. Catal, C. Software fault prediction: A literature review and current trends. Expert Syst. Appl. 2011, 38, 4626–4636. [CrossRef]
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