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Abstract: Precision agriculture and smart farming have received significant attention due to the
advancements made in remote sensing technology to support agricultural efficiency. In large-scale
agriculture, the role of unmanned aerial vehicles (UAVs) has increased in remote monitoring and
collecting farm data at regular intervals. However, due to an open environment, UAVs can be hacked
to malfunction and report false data. Due to limited battery life and flight times requiring frequent
recharging, a compromised UAV wastes precious energy when performing unnecessary functions.
Furthermore, it impacts other UAVs competing for charging times at the station, thus disrupting the
entire data collection mechanism. In this paper, a fog computing-based smart farming framework
is proposed that utilizes UAVs to gather data from IoT sensors deployed in farms and offloads it
at fog sites deployed at the network edge. The framework adopts the concept of a charging token,
where upon completing a trip, UAVs receive tokens from the fog node. These tokens can later be
redeemed to charge the UAVs for their subsequent trips. An intrusion detection system is deployed
at the fog nodes that utilize machine learning models to classify UAV behavior as malicious or benign.
In the case of malicious classification, the fog node reduces the tokens, resulting in the UAV not
being able to charge fully for the duration of the trip. Thus, such UAVs are automatically eliminated
from the UAV pool. The results show a 99.7% accuracy in detecting intrusions. Moreover, due to
token-based elimination, the system is able to conserve energy. The evaluation of CPU and memory
usage benchmarks indicates that the system is capable of efficiently collecting smart-farm data, even
in the presence of attacks.

Keywords: precision agriculture; unmanned aerial vehicles; smart farming; intrusion detection; fog nodes

1. Introduction

With rapid advancements being made in remote sensing technology, the role of the
Internet of Things (IoT) is playing a significant role in precision agriculture. Many tech-
niques are being used to collect and analyze crop data to improve farm productivity and
maximize revenue [1]. In most cases, agriculture information is generated with the help of
deployed sensors, collected through UAVs. The role of UAVs in data gathering and field
monitoring has increased. The affordability and simplicity of operating UAVs for precision
agriculture are significant factors in their adoption [2].

In smart farming, wireless sensors are deployed to obtain field information to increase
productivity and convenience [3]. Sensors are readily available at relatively low costs and
can be used to develop applications to facilitate production management, crop security,
irrigation control, and scheduling [4]. However, UAV integration with smart farming
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creates new security challenges [5]. As UAVs navigate in an open environment, they are
increasingly susceptible to attacks that can cause them to be misguided, disrupted, or even
physically taken over. Due to the omnipresence of UAV technology, several issues with UAV
networks need to be taken into account, including communication, data collection, data
security, storage, and supervision [6]. In precision agriculture, several UAVs work together
to tackle the task of large-scale data gathering [7]. Due to the wireless nature of devices,
it is important to consider the security aspect of the entire system before deployment. In
many cases, the deployed devices are interconnected through short-range communication
and are also able to connect through the internet [8].

A consequence of this increased connectivity is that such platforms become susceptible
to vulnerabilities associated with GPS spoofing, GPS jamming, radio frequency interference,
malware infiltration, man-in-the-middle, denial of service [9], denial of sleep [10], message
replay and data feed interception [11]. If successfully exploited, these vulnerabilities can
cause these systems to become a target of cyberattacks, where an intruder can penetrate
and take control of the UAVs, interrupt activities, or modify the data gathered [12]. Be-
sides vulnerabilities in wireless connectivity, UAVs are also susceptible to physical attacks
whereby the attacker is physically adjacent and uses the close proximity to take control of
the devices [13].

In the context of UAV-assisted precision agriculture where UAVs assist in a variety
of tasks across several farms as illustrated in Figure 1, such attacks can have devastating
impact. This impact includes but is not limited to completely damaging cropland, flooding
of farm fields, and malicious spraying of pesticides, which might result in a significant
consumption of chemicals [14]. These threats are classified as agricultural terrorism.

Figure 1. UAV-assisted precision agriculture scenario.

The Federal Bureau of Investigation (FBI) is alerting the agricultural sector that at-
tackers may target farms more frequently during crucial planting and harvesting seasons
and interrupt business activities, which would have a detrimental effect on the food sup-
ply chain. In a recently released alert, the FBI warned that ransomware attacks (https:
//www.beefmagazine.com/news/fbi-warns-cyberattacks-during-critical-ag-seasons, ac-
cessed on 14 December 2022) on six agricultural organizations during the autumn 2021
harvest and well as two strikes in early 2022 might affect the planting season due to
the sabotage of seeds and fertilizer delivery. One of the largest meat processing compa-
nies, JBS, spent about USD 11 million in ransom to end a cyberattack last year (https:
//www.bbc.com/news/science-environment-61336659, accessed on 14 December 2022).
A leading US agricultural company, AGCO, was the target of a ransomware attack in
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May 2022 that majorly impacted their output. A consortium of authorized governmental
cyber security experts from the United Kingdom, United States, and Australia issued a
warning in April alerting that supply chains, a crucial component of the Western national
infrastructure, might be targeted by state-sponsored Russian attackers.

The cybersecurity of technology that enables precision agriculture is a significant
obstacle to its widespread adoption. To address this challenge, it is essential to develop a
comprehensive framework that enhances the security of precision agriculture [15]. This
research focuses on a subset of attacks that target the disruption of UAV data communica-
tion through techniques such as distributed denial-of-service (DDoS), unauthorized access,
brute force, and infiltration. Compromised UAVs can significantly reduce the efficiency of
the data collection system by reporting false data and consuming excessive energy for flight
and hovering activities. They also compete for charge times on shared charging stations,
thereby negatively impacting uncompromised UAVs.

This work proposes a smart farming framework that allows securing the use of UAVs
for data collection through deployed sensors. Comprehensive models for sensors and UAV
energy consumption and threat vectors have been developed. Furthermore, algorithms
have been developed for farm data transmission and collection utilizing a fog computing
architecture. A fog broker, a key central element that manages interactions between the
UAVs and sensors, is utilized for deploying an intrusion detection system (IDS). The IDS
that utilizes machine learning classification is developed to detect and flag compromised
UAVs based on their behaviors. Flagged UAVs are then penalized through a coin-based
system where the greater number of coins collected allows for a greater amount of charge.
UAVs lose coins and ultimately charge proportionally to the degree of malicious behavior
to minimize the level of disruption to the overall system.

The main contributions of the proposed work are listed as follows:

1. A novel toolkit was developed that supports UAV-based data collection mechanisms
in smart farming. The data were collected from sensors deployed in the fields. A fog
broker was used to manage all of the responsibilities and interactions of the UAVs,
sensors, data transmission, and data collection.

2. A machine learning model was trained at the edge station based on the UAV-to-UAV
communication logged and shared after every round. The trained model was then
deployed to the UAVs and the model outcomes were shared with the fog node for
identifying malicious behavior.

3. A coin-based recharge system was proposed to prune malicious UAVs. The UAV
charging was based on the coins it received in lieu of the activities it performed,
such as data transmission and recording during data gathering. UAVs exhibiting
suspicious behaviors received fewer coins in that cycle. UAVs consistently exhibiting
this behavior in multiple cycles were automatically removed from the system because
of a lack of coins and, thereby, charge.

4. The innovation of this study lies in a framework that combines UAVs, IoT devices,
and an IDS to enhance data collection in smart farming. Machine learning algorithms
are used to detect and prevent attacks, and UAVs and IoT devices enable efficient
and timely data collection. The IDS component addresses potential intrusion threats,
and the XGBoost algorithm provides the best results for intrusion detection accuracy.
The proposed framework has the potential to advance smart farming technology,
benefiting the agriculture industry and society.

The rest of the article is organized as follows: Section 2 presents the related work.
Section 3 covers the system model. The proposed methodology is presented in Section 4.
The evaluations and results are given in Section 5, and the discussion and conclusion are
provided in Sections 6 and 7, respectively.

2. Related Work

We are interested in related research that considers security issues in precision agricul-
ture and smart farming assisted by UAVs. UAV performances can be negatively impacted
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by malicious attacks because UAVs collect sensitive data that intruders may attempt to
intercept in data transmission. Intrusion detection systems can help detect cyber attacks on
UAVs and the data collected.

We found relatively limited research available in the use of machine learning tech-
niques for intrusion detection in UAV-assisted precision agriculture. However, we did
find related work in the general areas of smart farming, UAV-assisted smart farming, and
intrusion detection systems that benefited our research. This section summarizes the latest
research works in these areas and highlights the research gaps.

2.1. Smart Farming

Smart farming is described as a farming system in which innovative and cutting-edge
technologies are used with conventional farming practices to increase farmland production
quantity and quality while dramatically reducing manufacturing costs [16]. Smart farming
and traditional farming are completely different from one another. Traditional farming
practices include employing outdated equipment for labor and cultivating seasonal crops
without first determining market demands and prices, or taking into account weather data
from the weather service, among other things. Technological advances are used in smart
farming, including smart devices, IoT sensors, cloud/fog computing, UAV data collection,
and periodic assessments of various aspects. This makes farming simple and inexpensive
with minimum labor costs. and results in improved crop yields and increased produc-
tivity [17]. The primary emphasis is on the integrated and coordinated implementation
of new technologies into smart farms while offering sophisticated agriculture manage-
ment that draws on collective expertise and judgment. Some noteworthy attempts include
the Soil Scout [18] and Thoreau [19] projects, which monitor soil properties and farming
conditions [20] using wireless sensor nodes.

While traditional farming devices are designed to have a strong connection and low
power utilization, they are inadequate for carrying out sophisticated operations. IoT
devices, in contrast, are linked and have the potential to offload operations to the cloud or
spread them across several devices. The advantages of multiple farms linked with sensors
and actuators connected across an IoT access point that deliver smart agricultural systems
for end users are explored in [21]. The IoT devices are also linked to a server that keeps
track of all the interconnected farms. IoT gateway-based surveillance software in [22]
evaluates the leaf area index. Since the Internet of Things-based data analytics operates
with a range of sensors, solutions can only accommodate homogeneous sensors.

Despite these efforts, a significant obstacle to widespread farmer adoption of such
networked solutions remains, which is the availability of configurable hardware that can
be programmed for customized data collection. A system employing open hardware
to allow the creation of a smart farming framework is presented in [23] to address this
difficulty. Furthermore, a proposed methodology in [24] introduces a smartphone-based
smart agricultural system. Users of the system can operate the installed sensor modules or
gather and evaluate agricultural data from the environment. The overlying infrastructure
is adaptable and enables dispersed service deployment. These frameworks allow for the
creation of reproducible IoT-based farming applications.

2.2. UAV-Assisted Smart Farming

Smart farming has become a reality with the growth of the IoT and unmanned aerial
vehicles. IoT increases the value of gathered data through perceptual computation, auto-
mated data collection, and access by facilitating data flow between various sensors and
other IoT devices. As a result, smart farms may employ productivity and managerial
methods that are more timely and affordable [25]. Agricultural UAVs are notable practical
developments in smart farming and are frequently employed by farmers [26,27] for regu-
lating and supervising farming operations. Several UAVs are often intended to effectively
pour water and various pesticides into territory where personal mobility is difficult and
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the farms have varying altitudes. Recognizing the importance of this, the Massachusetts
Institute of Technology designated UAVs as a green-tech tool for smart farming in 2014 [28].

Clusters of UAVs with diverse sensors and 3D cameras can cooperate with recent
developments in swarm technologies, including mission-based administration, to provide
farmers with a complete suite of soil management tools. UAVs designed for providing
farming assistance are making it feasible for farmers to easily capture a bird’s eye perspec-
tive of their fields in order to maintain and govern the farms properly. This dramatically
lowers operating time, leading to greater steadiness in farm production, as well as precision.
Various applications have helped several aspects of agriculture [26,28], including searching
and applying fertilizer and pesticides, finding and eliminating weeds, sowing seeds, deter-
mining productivity and mapping out the land. Researchers have proposed a system [29]
that utilizes UAV pictures to identify weeds prematurely in an Australian chili crop. The
yield elevation of maize and sorghum crops in a farming field was also measured using
UAV pictures [30]. Researchers have also [31] suggested a unique approach to taking UAV
photos of farming fields and rebuilding three-dimensional images to observe the growth
characteristics of the crops. UAVs are already being equipped with smart devices to conduct
a variety of tasks in smart farming, including monitoring field conditions [32], collecting
meteorological data, including temperature, humidity, wind speed, and air movement,
among others [33], and improving crop yield [28].

In order to demonstrate real-time measurement impacting the amount and quality of
grape yield, researchers have linked wireless sensor networks with a smart UAV system [34].
A UAV equipped with smart aerial sensors was created by Hernandez et al. [35] to record
the grain volume within a trailer while forage is being harvested. Shamshiri et al. [36]
have demonstrated the use of UAVs in solving a variety of challenges relating to palm oil
plantation, including yield prediction, disease detection, and pest monitoring. Despite all of
these UAV developments, numerous problems remain that must be addressed for improved
deployment, including energy drain of UAVs, security hardening against cyber attacks,
managing long communication distances, and carrying payloads [27,37]. For instance,
since energy is a limited resource for UAVs, Islam et al. have concentrated on lowering
energy usage in UAVs [38] but security against cyber attacks to prevent intrusion is still a
critical challenge.

2.3. Intrusion Detection Systems

Network IDS: Machine learning-based approaches and, in particular, deep learning
(DL) methods [39–42], are being used to produce cybersecurity solutions for securing com-
munication for the Internet of Things and cyber-physical systems in the face of intrusions.
To detect GPS spoofing, Manesh et al. [43] used supervised learning and artificial neural
networks and Min et al. [44] developed a semi-supervised and unsupervised framework
for intrusion detection. To increase the accuracy of classification, essential characteristics,
including Doppler shift and SNRratio, have been chosen using feature engineering on
the well-known KDD Cup 99 dataset and its variations [45,46]. To give an IDS improved
generalization capabilities, Wang et al. [45] combined group convolution networks with
snapshot ensemble learning. In another work, an IDS for UAV networks was created by
Wang et al. [47] using the LSTM recurrent neural network. A further advanced strategy
that combines XGBoost and DNN was proposed by Devan et al. [46]. While the deep
neural network is used to create the classification, XGBoost is useful for extracting features
and dimensionality reductions. A hybrid optimization-driven ensemble classification was
created in [48] using a fog computing environment that combines multiple individual
classifiers in order to improve overall prediction accuracy. A hybrid approach proposed
in [49] combines association rule mining and classification methods to enhance the privacy
and security levels of the network environment and improve the accuracy of intrusion
detection. The aim of the study in [50] is to examine and assess intrusion detection systems
designed for Agriculture 4.0 cybersecurity. The focus is on discussing the cybersecurity
threats that these systems face and the metrics used to evaluate their performance.
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UAV IDS: In critical situations, UAV systems are frequently utilized to communicate
crucial data. The limits of the UAV infrastructure’s computing and communication ca-
pacities, meanwhile, make them vulnerable to intrusions and attacks. Intrusion detection
systems for UAVs or UAV IDS are often designed to recognize a variety of anomalies and
vulnerability types, including malware such as ransomware, signals, route modification,
tracking attacks, and GPS spoofing [51] in UAV systems. Bithas et al. [52] conducted a
thorough study of machine learning algorithms for dealing with different UAV challenges,
including channel modeling and resources [53], and employed LSTM and convolutional
neural network techniques to create spatial–temporal deep learning on communication
graphs. Abu et al. [41] studied an unsupervised learning-based technique to detect persis-
tent spoofing in UAV interconnected networks. In contrasting to typical machine learning
frameworks, the use of deep learning has greatly improved the detection accuracy for
recently created intrusions that are challenging to identify using conventional machine
learning methods [54]. Automated hyperparameter optimization (HPO) has grown in pop-
ularity in both research and commercial applications as a way to remove the impediments
for average consumers [55]. Intrusion detection based on hyperparameter optimization
has been previously investigated [56] and has shown to be very promising. The research
in [57] discusses an agricultural information security framework that incorporates UAV
technology and machine learning for data collection. The integration of these technologies
promotes the development of the Internet and information security. The paper also pro-
poses the use of a Double Deep Q-network algorithm to efficiently optimize the deployment
of UAVs and a smart agricultural information management system for intrusion detection.
We extended traditional hyperparameter optimization methods and used an advanced
hyperparameter optimization technique for intrusion detection in this research.

2.4. Summary of Existing Literature

Based on a thorough examination of the literature, Table 1 compares the features of
the most relevant research works to this proposed effort focusing on the mathematical
modeling of smart farming systems as well as intrusion detection. It may be noted from
the table that several studies address sensor-based smart farming frameworks, but most
frameworks lack UAV integration to collect farming data. Similarly, there is limited research
on intrusion detection in smart farming systems. The proposed framework is novel in that
it combines aspects of smart farming, UAV based data collection, as well as proposes an
advanced hyperparameter optimization-based intrusion detection system.

Table 1. Comparison of Related Work in Precision Agriculture and Intrusion Detection.

Authors Env * Int * M Intg * Supported UAV Data UAV Energy U2U *
S/R * Det * L * Env * Application Collection Model Com *

W. H. Maes [4] R × × × Remote Sensing × × ×

R. Mitchell [58] S × × Behavior
Specification × × ×

R. Dagar [17] S × × × IoT in
Agriculture × × ×

J. Doshi [20] R × × × Monitoring × × ×

A. Raghuvanshi [59] R × Risk Mitigation × × ×

A. W. Malik [60] S × × Fog
Farming
Simulation
Toolkit

×

M. Ryu [21] R × × × Connected
Farms × × ×
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Table 1. Cont.

Authors Env * Int * M Intg * Supported UAV Data UAV Energy U2U *
S/R * Det * L * Env * Application Collection Model Com *

J. Bauer [22] R × × × Monitoring
System × × ×

S. Trilles [23] R × × × Vineyard
Monitoring × × ×

N. Islam [29] R × × Weed Detection × × ×

N. Chebrolu [31] R × × Crop Monitoring × ×

D. Popescu [32] R × × × Intelligent
Monitoring × ×

N. islam [38] S × × × Delay Aware × ×

X. Gao [40] S × × × Intelligent
Monitoring × ×

Q. Abu Al-Haija [41] S × Classification
System × ×

P. Devan [46] S × Classification
Model × × ×

B. Wang [47] S × × Anomaly
Detection × × ×

V. Kanimozhi [61] S × Cloud Artificial Neural
Network × × ×

R. kumar [62] S Fog Smart
Agriculture × ×

H. Rajadurai [63] S × Stacked
Ensemble Model × × ×

Proposed Work S Fog Smart Farming

* Env: Environment, S: Simulator, R: Real, Int: Intrusion, Det: Detection, ML: Machine Learning, Intg: Integrated,
U2U: UAV to UAV, Com: Communication.

3. System Model

Consider an agricultural farm denoted as F having a width (w) and a length (l). The
farms are sub-labeled as f1, f2. . . fm ∈ F , where m represents the total number of farms.
There exist a total of n sensors S deployed to obtain field data. The framework can accom-
modate diversified sensors with different transmission times (Ts) and energy requirements
(Es). The sensor location is defined as Sxy. The sensors also serve as gateways, forwarding
data across the farm in addition to generating their own data. The UAVs are used for
data collection from sensors and offloading to the back-end server for further analysis
and decision-making. Each UAV has an energy denoted as (Eu) and a communication
range (Ru).

3.1. Ground Sensors Energy Model

It is assumed that S has two states namely active and passive. Esl and Eac are the
energies consumed in the passive and active states, respectively. Therefore, the total energy
consumed Et is given in Equation (1) [64]:

Et = Esl + Eac (1)

Esl = Psl × Tsl (2)
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Here, Psl is the power usage, and Tsl is the amount of time spent in sleep mode.
Likewise, the total energy used when in the active state Eac is computed in Equation (3).

Eac = Em + Ed + Ep + Et + Er (3)

In this case, Em represents the energy consumed due to mode change, and Ed represents
the energy consumed during data collection. Ep represents data processing energy and Et
and Er represent the data transmitting and receiving energy, respectively.

3.2. UAVs Energy Consumption Model

The model supports two basic modes of operation for UAVs, i.e., flying and hovering.
The power consumption in the flying mode is represented as Pη , and that consumed in the
hover mode as Pζ . Here, it is assumed that the UAV’s flight paths are uniform, requiring no
modification in terms of acceleration and deceleration. It is further assumed that rotary
wing UAVs are used in this scenario, flying at a speed V. Thus, the energy consumption of
the UAVs during flying, represented as Eη is defined as:

Eη =
Pη

V
(4)

Here, the V is the speed of the UAV and is defined as:

Pη = P1(1 + P2V2) + P3

(√
1 +

V4

P2
4
− V2

P4

)1/2

+ P5V2 (5)

where Pi , i = 1, . . . , 5, are the parameters for the energy model specified in [65] and

P1(1 + P2V2) is the blade profile power. P3

(√
1 + V4

P2
4
− V2

P4

)1/2
is the induced power, and

P5V2 is the parasite power. The parasite power is the element needed to counter the parasite
friction drag caused by the aircraft flying through the air, and the induced power is the
element needed to counteract the induced drag produced during lift force to keep the
aircraft in the air.

The power consumption for rotary-wing UAVs is provided by the finite value P1 + P3
for the exceptional case when the speed of the UAV is zero. Such power use is consistent
with the rotary-wing UAV hovering in one place. However, if the UAV’s flight speed is not
zero, then parasite power emerges. While the induced power reduces with UAV speed V,
both the blade profile power and the parasite power increase with UAV speed.

Hovering: The UAV interacts with each sensor only when it is hovering at one of the
optimum hovering locations. The energy consumption when UAVs hover is represented
by Eζ and is defined as:

Eζ = (Ph + Pc)Tζ (6)

where Ph is the power consumed in the hovering, Pc is the power consumed by the UAV
communicating with the ground node and Tζ is the time of hovering. These parameters are
expressed in [65].

3.3. UAV Data Collection

Notably, data are gathered from the deployed sensor by a number of N UAVs. It is
considered that the UAVs and deployed sensors communicate via uplink-based orthogonal
frequency division multiple access (OFDMA). K continuous links are supported by the
UAVs for data collection. Additionally, we provide a distributed system where UAVs share
data with surrounding fog sites. Since the inserted sensors may be portable, there may
be sporadic communication between the sensors and UAVs with significant packet loss.
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Therefore, the line of sight (LoS) must be maintained for communication to be successful.
The LoS probability is calculated as in [64].

pLoS =
1

1 + o× exp(γ[ψ− ν])
(7)

where ψ is the elevation angle between the sensor Sxy and the UAV Uxy, and o and γ are
constants and are determined by the communication frequency and range. The probability
increases with increasing UAV height; therefore, deployed sensors may only be allocated to
the jth UAV if the chance of LoS is near to 1. Consequently, the condition of the connection
between the sensor and the UAV is:

dij =
aj

sin(pLoS)
(8)

where dij is the distance between the ith ground node and the jth UAV and aj is the height
of the UAV from the ground node.

Considering there are a × b sensors spread out over the farm, the coverage time tcov
of the UAV is calculated as:

tcov = ΣaΣbTab +
2
N

ΣiΣjSij (9)

where Tab is the time required for the UAVs to travel from one ground node to the other
node, and N is the total number of UAVs that were utilized to collect the data.

We employed a set of brokers B to control the fog sites to analyze the collected data.
A fog broker was in charge of the effective use of fog services near the target consumers.
The broker distributed the resources to other brokers on the site. This supported latency-
sensitive IoT applications by reducing the communication time. Nd = dm + dn, where dm is
the network delay between the sensors and UAVs, and dn is the network delay between
the UAV and the designated fog site and is dependent upon the distance between ground
nodes. The network cost C, on the other hand, is a linear function of distance and is given as:

C = ϑ
(
dm,n + Σk∈B&n 6=odn,o

)
(10)

where ϑ is constant, dm,n is the distance between the mth UAV and its local broker n and
dn,o is the distance of the local broker renting the computation resource n ∈ B.

3.4. Threat Model

In order to detect cyberattacks, the proposed intrusion detection system is explained
in Section 4.4.2 and the attacker goals and capabilities are detailed here. The attacker’s
primary goal is to hamper the data collection process so that the farmer has an erroneous
or inaccurate picture of the state of the farm. An example of this is that the UAVs report
readings that cause the system to indicate that soil moisture is sufficient, while in reality it
is dry. To accomplish this, the attacker locates UAVs, gains access to the control system,
and tampers with the data communication. Compromised UAVs end up flying over the
farmland needlessly consuming energy, providing incorrect data to the fog broker, and
stealing valuable charging time from other legitimate UAVs at the charging station. The
attacker achieves these goals by executing one or more of the following attacks:

• Distributed denial of service attack : In a DDoS attack, the attacker attempts to
hamper the UAV’s data collection process by sending a large number of messages to
needlessly engage the UAV in processing useless packets. As a result, either the UAV
is unable to communicate with neighboring UAVs or it suffers delays in UAV-to-UAV
and UAV-to-sensor communication. Such attacks consume UAV energy significantly.

• Heart bleed : In this attack, the attacker attempts to gain unauthorized access to the
UAVs by scanning the UAV-to-UAV communication to identify vulnerabilities. For
scanning, the attacker can use specialized devices installed nearby; moreover, the



Appl. Sci. 2023, 13, 3857 10 of 23

UAVs can also be used for initiating the scans. After compromising a UAV, the attacker
injects malware and fake data into other connected UAVs; thus, trying to disrupt the
data collection process.

• Brute force : In this attack, the attacker attempts to gain unauthorized access to the
fog portal through UAVs. It is assumed that the admin portal is accessible by UAVs
through a wireless link after providing the appropriate credentials. This interface is
normally used by the administrator from the fog node to connect to multiple UAVs and
update software, configure data collection routes, and perform other administrative
tasks. After compromising a UAV the attacker injects malware and fake data into
other connected UAVs; thus, trying to disrupt the data collection process.

• Infiltration attack : The goal of the infiltration attack is to compromise the UAV
network and gain control over the UAVs themselves. Once access is achieved, the
UAVs allow for passive reconnaissance, allowing the attacker to gather information
about the network and its devices. This information can be used to plan further attacks
by identifying and exploiting vulnerabilities that can be used for privilege escalation.

The CICIDS2017 dataset [66] closely reflects actual real-world data on the following attacks:
brute force FTP, brute force SSH, dos, ddos, heart bleed, web attacks, infiltration attacks, and
botnets. Here, the observations pertinent to ddos, heart bleed, brute force, and infiltration
attacks are used. Additionally, this dataset contains network traffic evaluation performed
through CIC FlowMeter, which involved processes labeled according to the timestamp,
source, and destination IP addresses, source, and destination port numbers, protocol, and
attacks. The dataset is split into training and testing. The training models are deployed on
UAVs in a simulation framework to efficiently identify the attacks. Further, the dataset is
integrated into the simulation framework in the form of an attack module so that as the
simulation progresses the data collected by the UAVs is affected and the proposed intrusion
detection system attempts to detect this behavior and weed out the compromised UAVs.

4. Methodology

The proposed system consists of farms, unmanned aerial vehicles, deployed sensors,
fog brokers, and fog nodes, as shown in Figure 2. The framework allows the simulation
of large-scale farms with sensors deployed to monitor the farms, and UAVs are used to
gather information periodically. The information is offloaded at the connected fog node
through the fog broker. Moreover, the system detects malicious UAV behavior through a
machine-learning model deployed at the UAVs. The main modules are elaborated on below.

4.1. Smart Farms

The framework allows the user to define farms, deploy sensors and configure the data
collection process through UAVs. Here, we assumed that the farms are large-scale and
comprise flat and mountainous terrain. Therefore, due to the uneven terrain, ground-to-
ground communication is not a suitable option [67]. Therefore, data collection through
UAVs are more suitable for uneven farming lands.

4.2. Broker

The broker functionality is shown in Figure 3. A broker is a static node placed near a
fog site to manage the site’s fog resources as well as control management aspects of the
UAVs such as their scheduling. The broker node also collaborates with other brokers for
UAV sharing. Each fog node owns a few UAVs but to cover the large-scale area, they may
need additional resources from nearby fog sites. Therefore, a collaborative broker-based
design is proposed. The broker can lease resources from neighboring fog sides which
are later settled through a bartering mechanism. The brokers maintain a history of the
resources leased and allocated.
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Figure 2. Fog-based layered architecture.

4.3. Sensors

The proposed framework facilitates the deployment of both stationary and mobile
sensors to collect data to increase agricultural production. The transmission, storage, and
battery life of the sensors vary and the framework provisions the behavioral simulation of
heterogeneous sensors. Additionally, the sensors facilitate the ad hoc method of information
transmission to nearby gateway nodes. The architecture of a typical sensor node is shown
in Figure 3. In the proposed work, UAVs serve as mobile gateway nodes to collect data
from both fixed and mobile sensors. In the traditional case of a deployed wireless sensor
network, the data are sent to a cluster head of the gateway node. Furthermore, such
methods consume a great deal of energy in the leader selection and route-finding processes.
Therefore, a mobile gateway is employed to collect the data through UAVs and maximize
the usage of sensors and lengthen their lifetime.
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Figure 3. Detailed Architecture Diagram of Proposed Framework.

4.4. Unmanned Ariel Vehicles (UAVs)

The data collection process is executed with the help of unmanned aerial vehicles,
which collect data from the sensors deployed at the fog site. The path of the UAVs is
pre-configured. A fleet of UAVs flies through this pre-defined path to collect the data. On
cycle completion, UAVs return to the charging station to recharge their batteries for the
next trip.

4.4.1. UAV Behavior-Based Charging

A major limitation of UAV-assisted data collection is effectively managing UAVs’
rapidly depleting energy banks during operation. Therefore, in the proposed work, we
have integrated this aspect into the UAV behavior. The only way for the UAV to acquire a
charge is by transmitting data and recording transactions at the fog node. The algorithm
for UAV Charging is provided in Algorithm 1. The UAVs are allowed to use the charging
spot only when they have the desired coin which they acquire by completing transactions
with the fog node. The number of charging coins in this framework is assumed to be an
integer for simplicity. The forwarding and recording costs for a single message are referred
to as c f and cr, respectively. The forwarding and recording of messages is a prerequisite for
obtaining coins to participate in the charging process. The charging coin (Pc) is assigned
based on the following equation.

Pc =


i f cr == c f cr/c f
i f cr > c f c f /cr
i f c f > cr cr/c f

(11)
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Algorithm 1 UAVCharging
UAV: list of UAVs
U.Coin: reward value
U.E: reward value
U.P: Path
U.CList: Received coin list
S: list of deployed sensors
procedure UAVDATACOLLECTION

while true do
Ui ←MoveOnPath(U.P) . Moving UAVs on predefined paths
if Ui is Connected to Sj then . comm range with Sj

Ui .data← Sj . get data from sensor
end if
Ui .Communicate(UAV) . Send msgs to UAVs in swarm
Ui .Rec(msg from Uk) . Comm msgs from other UAVs
B← Ui .ModelTest(msg) . identify abnormal behavior
if B is NORMAL then . Normal behavior

Ui .send(U.Coin, 1) . send complete coin value
else

Ui .send(U.Coin, 0.5) . Otherwise reduce coin value
end if
Ui .CList = Rec(C from UAV) . Collect coin values
Ui .Coin = Accumulate(Ui .CList)
if Ui path Completed then

Ui .Upload(B) . upload data to broker
Ui .E← Recharge(Ui .Coin) . get recharge on coins value

end if
end while

end procedure

In the above equation, the UAV’s record and forward attributes are used to generate
the charging coin. In case the UAV recollect matches with the forwarding parameter, one
complete charging coin is issued. However, on any malicious behavior, the charging coin
value is determined based on the ratio of collection and forwarding. In other words, a
UAV is allowed to acquire a charge using the coin before the next trip. The flight route
of each UAV is already available with the broker node which helps determine the energy
needed to complete the trip. Therefore, if the UAV is unable to obtain the complete energy
for the next trip, the broker tags it as malicious requiring a log inspection. Apart from the
energy-based elimination from the UAV pool, the malicious activity is also monitored in
the UAV network, which is explained in the next section.

4.4.2. UAV-to-UAV Based Intrusion Detection Mechanism

During data collection, the UAVs communicate with each other and exchange trajec-
tory information along with other parameters, such as residual energy. This information is
shared periodically, assuming that UAVs have sufficient energy to bear the communica-
tion cost. The UAVs move in the form of a fleet; where each UAV is covering a different
path but is connected with other UAVs through a wireless connection. The entire UAV
communication is logged for subsequent use in model training.

The proposed intrusion detection model is trained on the collected data at the fog
broker and deployed at UAVs and attempts to identify these attacks. The proposed ar-
chitecture consists of multiple stages, i.e., data prepossessing, feature engineering, and
intrusion detection. First, a dataset is gathered to evaluate the performance of the system.
A k-means-based cluster sampling technique is used to create a highly representative subset
of the data while preventing class imbalance. The dataset is treated throughout the feature
engineering process to eliminate redundant and unnecessary features using information
gain-based and correlation-based feature selection approaches, and the kernel principal
component analysis model is used to further decrease the dimensions and noisy features.

It is suggested that a hyperparameter-based optimization IDS be used to effectively
identify both known and unidentified intrusions as discussed in [56]. The system is
composed of several tiers, where the first tier consists of four tree-based machine learners
namely decision tree, random forest, extra tree, and extreme gradient boost, which are used
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to identify known attacks. By integrating the output of the four base learners from the
first tier and optimizing the learners, the second tier uses a stacking ensemble model and
the Bayesian optimization-tree-structured Parzen estimator approach to further increase
the intrusion detection accuracy. An anomaly-based intrusion detection system is built in
the next stage to identify unknown attacks. The cluster-labeling k-means model is used as
the 3rd tier of the intrusion detection system to successfully differentiate attack data from
regular samples. The Bayesian optimization-Gaussian process technique and two biased
classifiers make up the fourth tier of the IDS, which is utilized to improve the model and
decrease classification errors in the CL-k-means. Each test sample’s detection outcome is
ultimately reported, and it may be a known attack with a type, an unidentified attack, or
typical benign traffic.

5. Evaluation

The proposed framework is evaluated for measuring the effectiveness of the hyperpa-
rameter optimization-based intrusion detection as well as the efficiency of the algorithm
executing on the UAVs.

5.1. Machine Learning Framework

For the effectiveness study, the proposed methodology is evaluated in terms of accu-
racy, precision, recall, F1 score, root mean square error, and R-squared score as evaluation
metrics. The generated dataset is provided to the intrusion detection system that utilizes
XGBoost random forest (RF), decision tree (DT), extra tree (ET), stacking, and k-means
algorithms. The detailed results of the intrusion detection effectiveness evaluation are
given in Figure 4. It can be seen that all algorithms perform well due to hyperparameter
optimization with XGBoost showing the best results with 99.77% accuracy, 0.1055 root
mean square error, and 99.81% R-Squared score. These results indicate that algorithms
perform well and fit the data model. Further, XGBoost can handle large datasets. Therefore,
performing classification or regression using XGBoost typically begins with an estimate,
determines the similarities value, and obtains a tree for each potential threshold [68].

Figure 4. Effectiveness of the Intrusion detection system using the selected machine learn-
ing algorithms.

A comparison of the effectiveness with respect to related works is shown in Table 2.
The proposed model has improved accuracy, precision, recall, and F1 score as compared to
other state-of-the-art related works.
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Table 2. Comparison with other models.

Method Accuracy Precision Recall F1 Score Time in Sec

STDG [53] 99.13 98.60 98.70 0.986 1848
SU-IDS [44] 99.13 99.65 98.60 0.991 15,243
DPMH [69] 98.95 95.82 95.81 0.958 -

DC [70] 98.55 98.22 99.59 0.983 34,986
PCA-RF [71] 99.60 99.60 99 0.996 -

Proposed 99.77 99.79 99.771 0.997 772

5.2. Simulation Framework

The proposed UAV-assisted data collection framework is evaluated using a sim-
ulation model developed in AnyLogic (www.anylogic.com, accessed on 15 December
2022)—a multi-method simulation software that allows the integration of multiple mod-
eling paradigms including discrete event, agent-based, and system dynamics modeling.
The simulation model is designed to represent the behavior of the UAVs, fog nodes, and
broker nodes, as well as their interactions in the data collection process. The simulation
model includes several components including the fog sites, brokers, sensors and UAVs,
the parameters for which are provided in Table 3. The UAVs are modeled as autonomous
agents that can move around in a 2D space, collect data from different locations, and
transmit data to the nearest fog node. The fog nodes are modeled as stationary nodes
that receive UAV data and store them temporarily before transmitting them to the broker
node. The broker node collects data from the fog nodes, processes them, and stores them in
a database.

Table 3. Simulation and System Specifications.

Parameters Values

Fog Sites 3–6
Fog Brokers 3–6
Sensors Up to 600
UAVs 5–15

CPU 3.60 GHz Inter Core i7-6700K
RAM 8 GB
OS Windows 10 Pro

Simulator AnyLogic

The simulation model is parameterized with realistic values based on existing literature
and real-world data. The energy consumption of the UAVs is modeled based on the type
of UAV, speed and the distance traveled, while the transmission range of the UAVs and
the fog nodes is modeled based on the signal strength and interference in the environment.
The charging rate of the UAVs is also modeled based on the transaction costs and the
amount of data transmitted. The simulation model is used to evaluate the performance
of the proposed framework under different scenarios and conditions. The impact of the
number of UAVs and fog nodes, the data collection rate, and the charging rate on the overall
performance of the system is evaluated. The simulation model is also used to evaluate the
robustness of the system under different types of attacks, such as denial of service attacks,
spoofing attacks, and jamming attacks.

The simulation results are analyzed and compared to existing literature to validate the
effectiveness of the proposed framework. The simulation results show that the proposed
framework can achieve higher data collection rates and better energy efficiency compared
to existing methods. The simulation results also show that the proposed framework is
robust against various types of attacks, demonstrating the effectiveness of the proposed
intrusion detection system.

www.anylogic.com
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In our proposed framework, we used the CICIDS2017 dataset to evaluate the perfor-
mance of our UAV-assisted intrusion detection system. CICIDS2017 is a publicly available
dataset for evaluating intrusion detection systems. It is a labeled dataset with various
types of network traffic, including normal traffic and several types of attacks. The dataset
contains a total of 80 features, including flow duration, protocol, source, and destination
IP addresses, source and destination port numbers, and packet and byte counts. Some of
the features are calculated from the network flow, such as the flow duration, packet count,
and byte count, while others are extracted from the packet header, such as the protocol and
port numbers. We used the flow duration, protocol, and packet count parameters from
the dataset to train and test our machine learning models. We also used the source and
destination IP addresses and port numbers to identify the type of attack.

The AnyLogic simulator was used to generate synthetic network traffic data for testing
our intrusion detection system. The simulator also allowed us to visualize the behavior of
the system and test different scenarios to evaluate the performance.

UAV energy consumption: Conserving energy is one of the critical challenges for
UAV-based systems. In the proposed UAV model, the energy is consumed when a UAV
moves, communicates, collects data, and hovers. The energy consumption in terms of speed
is shown in Figure 5 and can be seen to be relatively high when the speed of the UAV is either
too high or too low. The figure shows the energy consumption of three subsets of the energy,
i.e., parasite, induced power, and blade profile. The figure illustrates that approximately
14 m/s is the ideal speed for achieving the most efficient energy consumption.

In the proposed work, the broker initiates the data collection process on multiple
routes; therefore, Figure 6, shows the UAV residual energy with simulation time. Each
route has a variable length causing UAVs to take different times to complete the task. The
first path is the longest as it covers more area to collect data from deployed sensors; thus,
UAVs consumed more energy to collect the data. The third path is the shortest because
of the small coverage area of the fog site where the UAVs consumed less energy. In the
first route, UAVs took more time and consumed around 80% of their energy. In the case
of a benign scenario, the UAVs have full charge after every cycle. On the second route, it
takes around 60% of the residual energy and takes relatively less time to complete the path.
The same is the case with the third route. In case of malicious behavior, the UAV acquires
a lower charge after every trip and is eventually removed from the group. Moreover,
the deployed model detects the malicious behavior using the energy and communication
parameters; thus, helping to send the UAV for inspection before offloading the data at
the fog node. Figure 7 shows the residual energy when UAVs become malicious with
simulation time. It is assumed that a UAV is 80% malicious because it participates in only
20% of the required recording and transmission. In this case, the UAV will only have 20%
more charging. In the first route, the UAV does not have enough charging to complete its
route and eventually is removed from the system. Similarly, in the second and third routes,
malicious UAVs are automatically removed from the system after completing two rounds
due to zero charging.

Resource utilization—the proposed framework is benchmarked in terms of resource
usage, i.e., memory and CPU. These resources are used effectively by a well-constructed sys-
tem. The memory consumption is shown in Figure 8 with varying nodes, i.e., UAVs/sensors.
UAVs, brokers, farms, and sensors that have been deployed are included in this list of
nodes. With 200 UAVs, only 4.5% of memory is utilized, whereas with 400 UAVs, 6.4%
of memory is used. When the number of UAVs increases to 600, only 9.1% of memory is
occupied, indicating a linear increase in memory usage with the number of UAVs. Notably,
no memory leaks are noticed during the simulation run. The CPU consumption is shown
in Figure 9. CPU usage escalates as the number of sensors increases. In this scenario, with
200 UAVs, 30% of CPU is used, whereas with 400 UAVs, 35% of CPU is utilized. When
the number of UAVs increases to 600, the CPU usage reaches 39% only, which includes,
computational algorithms, mobility models, energy modules, and communication links
between the UAVs, installed sensors, brokers, and fog sites.
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Figure 5. UAV’s Consumed Energy with Respect to Speed.
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Figure 6. UAV’s residual energy with respect to time.
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Figure 7. UAV’s remaining energy when the UAV becomes malicious with respect to time.

UAV2UAV communication delay—the communication delay between UAVs is seen
in Figure 10. The average delay is calculated by increasing the number of deployed sensors
and different UAVs. Here, the UAVs gathered information from the sensors. According
to availability, either the nearby sensor or the remote sensor communicates with the UAV
for the transmission of the data. However, it has been noted that as the number of UAVs
increases, the communication delay between the UAVs also increases.
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Figure 9. CPU Utilization with Increasing UAVs.

Transmission delay—the amount of time needed to send or receive a packet is called
the transmission time or delay. When a UAV communicates with the sensor, it takes some
time to receive the packets. The typical communication delay among UAVs and deployed
sensors is seen in Figure 11. It is important to note that the delay grows as more sensors are
placed. Due to the overlapping transmission ranges, several sensors attempt to interact
with the UAVs, which causes increased channel congestion.
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Figure 10. Average UAV-to-UAV communication delay with different numbers of sensors and UAVs.
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6. Discussion

The results clearly indicate the increased security and the data-collection efficiency of
the UAV-assisted smart farming framework that utilizes energy constraints and an intrusion
detection system. The UAVs have a limited battery and are only allowed to charge by
transmitting data and recording transactions at the fog node. This approach incentivizes
the UAVs to identify malicious activities that may result in excluding the UAVs from the
trusted network.

The proposed work is evaluated with various machine learning models as well as
the other network parameters. In most of the existing works, authors are only focused
on utilizing limited features for the machine learning model; thus, overlooking critical
parameters such as UAV energy, transmission delay, and the impact of cyber-attacks on
UAV’s energy. This work presents an extensive framework that covers the data collection,
sensors integrated environment, and role of fog nodes for recharging the UAVs.

The CPU and memory are the important parameters to gauge the scalability of devices
inside the framework. With the increased number of UAVs, a linear relation is observed in
terms of CPU and memory usage. The utilization of resources reported with 600 UAVs in a
simulation framework require only 9.1% memory, and corresponding CPU utilization is
39%. Further, we observed that the speed of UAVs has a direct impact on their energy and
in order to cover large-scale areas, a 14 m/s speed needs to be maintained for maximum
utilization of UAVs. Moreover, amongst the machine learning models, adopted, XGBoost
showed the best performance with 99.77% accuracy.

7. Conclusions

In recent years, smart farming technology has rapidly advanced and has significantly
contributed to the improvement of crop yields. To further improve the efficiency of data col-
lection in smart farming, this research proposes a framework that utilizes unmanned aerial
vehicles (UAVs) and Internet of Things (IoT) devices. However, this open environment
is vulnerable to intrusions, which can hinder the data collection process and ultimately
reduce agricultural productivity. To address this potential threat, the research proposes an
intrusion detection system (IDS) integrated into a fog-based UAV-IoT farm data collection
system. The IDS utilizes machine learning algorithms that are trained on the CICIDS2017
dataset, which is publicly available, to detect and prevent intrusions. A layer-based in-
trusion detection approach is considered to detect both known and zero-day attacks. For
known attacks, a signature-based IDS is used and uses XGBoost, extra tree, random forest,
and decision tree algorithms. For zero-day attacks, clustering techniques are used, which
include the K-means algorithm. The evaluation results show that XGBoost provides the
best results, as it can detect intrusions with 99.77% accuracy, with an F1 score of 0.1055
RMSE and a 99.81% R-squared score. The modular design is developed to implement and
benchmark the proposed work in terms of UAV energy, transmission, and communication
delays. The proposed IDS integrated with the fog-based UAV-IoT farm data collection
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system can improve the security and efficiency of smart farming, which can ultimately lead
to increased crop yield and improved agricultural productivity. In the future, the research
will aim to improve the intrusion detection system using machine vision and extensive
deep learning techniques.
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