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Abstract: Previous literature on deep learning theory has focused on implicit bias with small learning
rates. In this work, we explore the impact of data separability on the implicit bias of deep learning
algorithms under the large learning rate. Using deep linear networks for binary classification with
the logistic loss under the large learning rate regime, we characterize the implicit bias effect with data
separability on training dynamics. From a data analytics perspective, we claim that depending on the
separation conditions of data, the gradient descent iterates will converge to a flatter minimum in the
large learning rate phase, which results in improved generalization. Our theory is rigorously proven
under the assumption of degenerate data by overcoming the difficulty of the non-constant Hessian of
logistic loss and confirmed by experiments on both experimental and non-degenerated datasets. Our
results highlight the importance of data separability in training dynamics and the benefits of learning
rate annealing schemes using an initial large learning rate.

Keywords: data separability; data complexity; deep learning theory; catapult phase; neural tangent
kernel

1. Introduction

Deep neural networks have proven to be highly effective in both supervised and
unsupervised learning tasks. Theoretical understanding of the mechanisms underlying
deep learning’s power is continuously evolving and expanding. Recent progress in deep
learning theory has shown that over-parameterized networks can achieve very low or
zero training error through gradient descent-based optimization [1–6]. Surprisingly, these
over-parameterized networks can also generalize well to the test set, a phenomenon known
as double descent [7]. One promising explanation for this phenomenon is implicit bias [8]
or implicit regularization [9], which is characterized by maximum margin. A large family
of works has studied exponential tailed losses, such as logistic and exponential loss, and
reported implicit regularization of maximum margin [8,10–13].

However, the current theoretical understanding of the optimization and generalization
properties of deep learning models is limited due to the assumption of small learning rates
in existing theoretical results on implicit bias. In practice, using a large initial learning rate
in a learning rate annealing scheme has been shown to result in improved performance.
The relationship between data separability and implicit bias during the large learning rate
phase remains unclear [14,15]. To address this gap, we examine the effect of the large
learning rate on deep linear networks with logistic and exponential loss.

Ref. [16] shed light on the large learning rate phase by observing a distinct phe-
nomenon that the local curvature of the loss landscape drops significantly in the large
learning rate phase and thus typically can obtain the best performance. By following [16],
we characterize the gradient descent training in terms of three learning rate regimes or
phases. (i) Lazy phase η < η0, when the learning rate is small, the dynamics of a neural
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network under a linearized dynamics regime, where a model converges to a nearby point
in parameter space called lazy training and characterized by the neural tangent kernel
[1–3,17–19]. (ii) Catapult phase η0 < η < η1, the loss grows at the beginning and then drops
until it converges to the solution with a flatter minimum. (iii) Divergent phase η > η1, the
loss diverges and the model does not train. The importance of the catapult phase increases
because the lazy phase is generally detrimental to generalization and does not explain the
practically observed power of deep learning [20,21].

While the phenomenon of the three learning rate phases is reported in a regression set-
ting with mean-squared-error (MSE) loss, it remains unclear whether this can be extended
to cross-entropy (logistic) loss along with the data separability. To fill this gap, we examine
the effect of a large learning rate on deep linear networks with logistic and exponential loss.
Contrary to MSE loss, the characterization of gradient descent with logistic loss concerning
learning rate is associated with separation conditions of the data. In addition, the major
difficulty is that a non-constant Hessian makes it difficult to draw the boundaries of the
catapult phase in the classification settings. Meanwhile, the changes in dynamics have
become more complicated, making it difficult to analyse. Our results are different from [16]
in many aspects. First, a non-constant Hessian brings more technical challenges. Second,
the appearance the catapult phase under logistic loss depends on the separability of the
dataset, while squared loss has no such condition. Third, we observed oscillations in the
dynamics of training loss in Figure 1, which is not observed in MSE loss. Finally, we
summarize our contribution as follows:
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Figure 1. Dependence of dynamics of training loss and maximum eigenvalue of the NTK on the
learning rate for a one-hidden-layer linear network, with (a,b,e,f) exponential loss and (c,d,g,h)
logistic loss in Examples 3 and 4. (a–d) In a large learning rate regime (the catapult phase), the loss
increases at the beginning and converges to a global minimum. (e–h) The maximum eigenvalue of
the NTK decreases rapidly to a fixed value which is lower than its initial position in the large learning
regime (the catapult phase).

• According to the separation conditions of the data, we characterize the dynamics of
gradient descent with logistic and exponential loss corresponding to the learning rate.
We find that the gradient descent iterates converge to a flatter minimum in the catapult
phase when the data is non-separable. The above three learning rate phases do not
apply to the linearly separable data since the optimum is towards infinity.

• Our theoretical analysis ranges from a linear predictor to a one-hidden-layer network.
By comparing the convex optimization characterized by Theorem 1 and non-convex
optimization characterized by Theorem A2 in terms of the learning rate, we show that
the catapult phase is a unique phenomenon for non-convex optimizations.
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• We find that in practical classification tasks, the best generalization results tend to
occur in the catapult phase. Given the fact that the infinite-width analysis (lazy
training) does not fully explain the empirical power of deep learning, our results can
be used to partially fill this gap.

• Our theoretical findings were supported by extensive experimentation on the MNIST [22],
CIFAR-10 [23] and CIFAR-100 datasets [24] with label noise, and the WebVision
dataset [25].

2. Related Work
2.1. Implicit Bias of Gradient Methods

Since the seminal work from [8], implicit bias has led to a fruitful line of research.
Works along this line have treated linear predictors [10,11,26,27]; deep linear networks with
a single output [28–30] and multiple outputs [31,32]; homogeneous networks (including
ReLU, max pooling activation) [12,13,33]; ultra wide networks [34–36]; and matrix factor-
ization [31]. Notably, these studies adopt gradient flow (infinitesimal learning rate) or a
sufficiently small learning rate.

2.2. Data Separability

In a recent review of data complexity measures, ref. [37] listed various measures
for classification difficulty, including those based on the geometrical complexity of class
boundaries. In a later survey by [38], most complexity measures were categorized into
six groups: feature-based, linearity, neighbourhood, network, dimensionality, and class
imbalance measures. Ref. [39] introduced the distance-based Ssparability index (DSI) to
independently evaluate the data separability of the classifier model. The DSI indicates
the degree to which data from different classes have similar distributions, which can
make separation particularly challenging for classifiers. There has been limited attention
given to combining data separability and the theory of implicit bias in deep learning.
The noisy features can also impact data separability. The feature selection process is a
type of dimensionality reduction that seeks to identify the most important features while
discarding irrelevant or noisy features. Ref. [40] summarized how swarm intelligence-
based feature selection methods are applied in different applications. Ref. [41] proposed the
AGNMF-AN method seeking to improve upon existing methods for community detection
by incorporating attribute information and using an adaptive affinity matrix.

2.3. Neural Tangent Kernel

Recently, we have witnessed exciting theoretical developments in understanding the
optimization of ultra-wide networks, known as the neural tangent kernel (NTK) [1–3,5,17–19,42].
It is shown that in the infinite-width limit, NTK converges to an explicit limiting kernel, and it
stays constant during training. Further, ref. [43] show that gradient descent dynamics of the
original neural network fall into its linearized dynamics regime in the NTK regime. In addition,
the NTK theory has been extended to various architectures such as orthogonal initialization [44],
convolutions [17,45], graph neural networks [46,47], attention [48], PAC-Bayesian learning [6]
and batch normalization [49] (see [50] for a summary). The constant property of NTK during
training can be regarded as a special case of implicit bias, and importantly, it is only valid in the
small learning rate regime.

2.4. Large Learning Rate and Logistic Loss

A large learning rate with SGD training is often set initially to achieve good perfor-
mance in deep learning empirically [14,15,51]. The existing theoretical explanation of the
benefit of the large learning rate contributes to two classes. One is that a large learning rate
with SGD leads to flat minima [16,52,53], and the other is that the large learning rate acts
as a regularizer [54]. Especially, [16] find a large learning rate phase can result in flatter
minima without the help of SGD for mean squared loss. In this work, we ask whether the
large learning rate still has this advantage with logistic loss. We expect a different outcome
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because the logistic loss is sensitive to the separation conditions of the data, and the loss
surface is different from that of MSE loss [55].

3. Background
3.1. Setup

Consider a dataset {xi, yi}n
i=1, with inputs xi ∈ Rd and binary labels yi ∈ {−1, 1}. The

empirical risk of the classification task follows the form,

L =
1
n

n

∑
i=1

`( f (xi)yi), (1)

where f (xi) is the output of the model corresponding to the input xi, `(·) is the loss function,
and L is the empirical loss. Refer to Table 1 for the symbol description. In this work, we
study two exponential tail losses which are exponential loss `exp(u) = exp(−u) and logistic
loss `log(u) = log(1 + exp(−u)). The reason we look at these two losses together is that
they are jointly considered in the realm of implicit bias by default [8]. We adopt gradient
descent (GD) updates with learning rate η to minimize empirical risk,

wt+1 = wt − η∇L(wt) = wt − η
n

∑
i=1

`′( f (xi)yi), (2)

where wt is the parameter of the model at time step t.

Table 1. Key symbols and their definition.

Symbol Definition

x Input
y Label
η Learning rate
`(·) Loss function
L Empirical loss
wt Parameters of the model at time step t
β β-smooth convexity
α α-strongly convexity
Θαβ Neural Tangent Kernel

3.2. Separation Conditions of Dataset

It is known that landscapes of cross-entropy loss on linearly separable and non-
separable data are different. Thus, the separation condition plays a crucial role in under-
standing the dynamics of gradient descent in terms of the learning rate. To build towards
this, we define the two classes of separation conditions and review existing results for loss
landscapes of a linear predictor in terms of separability.

Assumption 1. The dataset is linearly separable, i.e., there exists a separator w∗ such that ∀i :
wT∗ xiyi > 0.

Assumption 2. The dataset is non-separable, i.e., there is no separator w∗ such that ∀i : wT∗ xiyi > 0.

Linearly separable. Consider the data under Assumption 1, one can examine that the loss
of a linear predictor, i.e., f (x) = wTx, is β-smooth convex with respect to w, and the global
minimum is at infinity. The implicit bias of gradient descent with a sufficient small learning
rate (η < 2

β ) in this phase was studied by [8]. They showed that the predictor converges
to the direction of the maximum margin (hard margin SVM) solution, which implies the
gradient descent method itself will find a proper solution with an implicit regularization
instead of picking up a random solver. If one increases the learning rate until it exceeds
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η < 2
β , then the result of converging to the maximum margin is not guaranteed, though

loss can still converge to a global minimum.
Non-separable. Suppose we consider the data under Assumption 2, which is not linearly
separable. The empirical risk of a linear predictor on these data are α-strongly convex, and
the global minimum is finite. In this case, given an appropriate small learning rate (η < 2

β ),
the gradient descent converges towards the unique finite solution. When the learning rate
is large enough, i.e., η > 2

α , we can rigorously show that gradient descent updates with this
large learning rate leading to risk exploding or saturating.

We formally construct the relationship between loss surfaces and learning dynamics of
gradient descent with respect to different learning rates on the two classes of data through
the following proposition,

Proposition 1. For a linear predictor f = wTx, along with a loss ` ∈ {`exp, `log}.
1 Under Assumption 1, the empirical loss is β-smooth. Then the gradient descent with constant

learning rate η < 2
β never increases the risk, and empirical loss will converge to zero:

L(wt+1)−L(wt) ≤ 0, lim
t→∞
L(wt) = 0, with η <

2
β

.

2 Under Assumption 2, the empirical loss is β-smooth and α-strongly convex, where α ≤ β.
Then the gradient descent with a constant learning rate η < 2

β never increases the risk, and
empirical loss will converge to a global minimum. On the other hand, the gradient descent
with a constant learning rate η > 2

α never decreases the risk, and empirical loss will explode
or saturate:

L(wt+1)−L(wt) ≤ 0, lim
t→∞
L(wt) = G0, with η <

2
β

,

L(wt+1)−L(wt) ≥ 0, lim
t→∞
L(wt) = G1, with η >

2
α

,

where G0 is the value of a global minimum while G1 = ∞ for exploding situation or
G0 < G1 < ∞ when saturating.

4. Theoretical Results
4.1. Convex Optimization

It is known that the Hessian of the logistic and exponential loss with respect to
the linear predictor is non-constant. Moreover, the estimated β-smooth convexity and
α-strongly convexity vary across different finite-bounded subspaces. As a result, the
learning rate threshold in Proposition A1 is not detailed in terms of optimization trajectory.
However, we can obtain more elaborate thresholds of the learning rate for a linear predictor
by considering the degeneracy assumption:

Assumption 3. The dataset contains two data points that have the same feature and opposite label,
that is

(x1 = 1, y1 = 1) and (x2 = 1, y2 = −1).

We call this assumption the degeneracy assumption since the features from opposite
label degenerate. Without loss of generality, we simplify the dimension of data and fix
the position of the feature. Note that this assumption can be seen as a special case of
non-separable data. Theoretical work has characterized general non-separable data [11],
and we leave the analysis of this setting for the large learning rate to future work. Thanks
to the symmetry of the risk function in space at the basis of degeneracy assumption, we can
construct the exact dynamics of empirical risk with respect to the whole learning rate space.
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Theorem 1. For a linear predictor f = wTx equipped with an exponential (logistic) loss under
Assumption 3, there is a critical learning rate that separates the whole learning rate space into two
(three) regions. The critical learning rate satisfies

L′(w0) = −L′(w0 − ηcriticalL′(w0)),

where w0 is the initial weight. Moreover,

1 For exponential loss, the gradient descent with a constant learning rate η < ηcritical never
increases loss, and the empirical loss converges to the global minimum. On the other hand,
the gradient descent with learning rate η = ηcritical oscillates. Finally, when the learning rate
η > ηcritical, the training process never decreases the loss and the empirical loss will explode
to infinity:

L(wt+1)−L(wt) < 0, lim
t→∞
L(wt) = 1, with η < ηcritical,

L(wt+1)−L(wt) = 0, lim
t→∞
L(wt) = L(w0), with η = ηcritical,

L(wt+1)−L(wt) > 0, lim
t→∞
L(wt) = ∞, with η > ηcritical.

2 For logistic loss, the critical learning rate satisfies the condition: ηcritical > 8. The gradient
descent with a constant learning rate η < 8 never increases the loss, and the loss converges to
the global minimum. On the other hand, the loss along with a learning rate 8 ≤ η < ηcritical
does not converge to the global minimum but oscillates. Finally, when the learning rate
η > ηcritical, gradient descent never decreases the loss, and the loss saturates:

L(wt+1)−L(wt) < 0, lim
t→∞
L(wt) = log(2), with η < 8,

L(wt+1)−L(wt) ≤ 0, lim
t→∞
L(wt) = L(w∗) < L(w0), with 8 ≤ η < ηcritical,

L(wt+1)−L(wt) ≥ 0, lim
t→∞
L(wt) = L(w∗) ≥ L(w0), with η ≥ ηcritical.

where w∗ satisfies −w∗ = w∗ − η
2

sinh(w∗)
1+cosh(w∗)

.

Remark 1. The difference between the two losses is due to the monotonicity of the loss. For
exponential loss, the function |L′(wt)/wt| is monotonically increasing with respect to |wt|, while
it is monotonically decreasing for logistic loss.

We demonstrate the gradient descent dynamics with the degenerate and non-separable
case through the following example.

Example 1. Consider optimizing L(w) with dataset {(x1 = 1, y1 = 1) and (x2 = 1, y2 = −1).}
using gradient descent with constant learning rates. Figure 2a,c shows the dependence of different
dynamics on the learning rate η for exponential and logistic loss, respectively.

Example 2. Consider optimizing L(w) with dataset {(x1 = 1, y1 = 1), (x2 = 2, y2 = −1) and
(x3 = −1, y3 = 1).} using gradient descent with constant learning rates. Figure 2b,d shows the
dependence of different dynamics on the learning rate η for exponential and logistic loss, respectively.

Remark 2. The dataset considered here is an example of a non-separable case, and the dynamics of
loss behave similarly to those in Example 1. We use this example to show that our theoretical results
on the degenerate data can be extended empirically to the non-separable data.
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Figure 2. Showing the dependence of the dynamics of the training loss on the learning rate for
linear predictors using both exponential and logistic loss functions. Examples 1 and 2 were used to
test the performance of the linear predictors. The sub-graphs (a,c) show the experimental learning
curves for separable data, consistent with the theoretical predictions. The critical learning rates were
found to be ηcritical = 1.66843 and ηcritical = 8.485 for the exponential and logistic loss functions,
respectively. Sub-graphs (b,d) show the dynamics of the training loss for non-separable data. The
dynamics of training loss regarding the learning rate for non-separable data are similar to those
of degenerate cases. Hence, the critical learning rates can be approximated by ηcritical = 0.895 and
ηcritical = 4.65, respectively.

4.2. Non-Convex Optimization

To investigate the relationship between the dynamics of gradient descent and the
learning rate for deep linear networks, we consider linear networks with one hidden layer,
and the information propagation in these networks is governed by,

f (x) = m−1/2w(2)w(1)x, (3)

where m is the width, i.e., the number of neurons in the hidden layer, w(1) ∈ Rm×d and
w(2) ∈ Rm are the parameters of the model. Taking the exponential loss as an example, the
gradient descent equations at training step t are,

w(1)
t+1 = w(1)

t −
1
n

η

m1/2 (−e−yα ft(xα))w(2)
t xαyα,

w(2)
t+1 = w(2)

t −
1
n

η

m1/2 (−e−yα ft(xα))w(1)
t xαyα,

(4)

where we use the Einstein summation convention to simplify the expression and apply this
convention in the following derivation.

We introduce the neural tangent kernel, an essential element for the evolution of
output function in Equation 8. The neural tangent kernel (NTK) originates from [1] and is
formulated as,

Θαβ =
1
m

P

∑
p=1

∂ f (xα)

∂θp

∂ f (xβ)

∂θp

. (5)

where P is the number of parameters. For a two-layer linear neural network, the NTK can
be written as,

Θαβ =
1

mn
(
(w(1)xα)(w(1)xβ) + (w(2))2(xαxβ)

)
. (6)

Here we use normalized NTK which is divided by the number of samples n. Under the
degeneracy Assumption 3, the loss function becomes L = cosh(m−1/2w(2)w(1)). Then
Equation (4) reduces to

w(1)
t+1 = w(1)

t −
η

m1/2 w(2)
t sinh(m−1/2w(2)

t w(1)
t ),

w(2)
t+1 = w(2)

t −
η

m1/2 w(1)
t sinh(m−1/2w(2)

t w(1)
t ).

(7)
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The updates of output function ft and the eigenvalue of NTK λt, which are both scalars in
our setting:

ft+1 = ft − ηλt f̃texp +
η2

m
ft f̃ 2

t exp,

λt+1 = λt −
4η

m
ft f̃texp +

η2

m
λt f̃ 2

t exp.
(8)

where f̃texp := sinh( ft) while f̃tlog := sinh( ft)
1+cosh( ft)

for logistic loss.
We have previously introduced the catapult phase where the loss grows at the begin-

ning and then drops until it converges to a global minimum. In the following theorem,
we prove the existence of the catapult phase on the degenerate data with exponential and
logistic loss.

Theorem 2. Under appropriate initialization and Assumption 3, there exists a catapult phase for
both the exponential and logistic loss. More precisely, when η belongs to this phase, T > 0 exists
such that the output function ft and the eigenvalue of NTK λt update in the following way:

1. Lt keeps increasing when t < T.
2. After the T step and its successors, the loss decreases, which is equivalent to:

| fT+1| > | fT+2| ≥ | fT+3| ≥ . . . .

3. The eigenvalue of NTK keeps dropping after the T steps:

λT+1 > λT+2 ≥ λT+3 ≥ . . . .

Moreover, we have the inverse relationship between the learning rate and final eigenvalue of the
NTK: λ∞ ≤ limt→∞

4 ft
η f̃texp

with exponential loss, or λ∞ ≤ limt→∞
4 ft

η f̃t log
with logistic loss.

We demonstrate that the catapult phase can be found in both degenerate and non-
separable data through the following examples. The weight matrix is initialized by iid
Gaussian distribution, i.e., w(1), w(2) ∼ N (0, σ2

w). For exponential loss, we adopt the setting
of σ2

w = 0.5 and m = 1000 while we set σ2
w = 1.0 and m = 100 for logistic loss.

Example 3. Consider optimizing L(w) using a one-hidden-layer linear network with dataset
{(x1 = [1, 0], y1 = 1) and (x2 = [1, 0], y2 = −1).} and exponential (logistic) loss using gradient
descent with a constant learning rate. Figure 1a,c,e,g shows how the different choices of learning
rate η change the dynamics of the loss function with exponential and logistic loss.

Example 4. Consider optimizing L(w) using a one-hidden-layer linear network with dataset
{(x1 = [1, 1], y1 = −1), (x2 = [1,−1], y1 = 1), (x3 = [−1,−2], y1 = 1) and (x4 =
[−1, 1], y4 = 1).} and exponential (logistic) loss using gradient descent with a constant learning
rate. Figure 1b,d,f,h shows how the different choices of learning rate η change the dynamics of the
loss function with exponential and logistic loss.

As Figure 1 shows, in the catapult phase, the eigenvalue of the NTK decreases to a
lower value than its initial point, while it remains unchanged in the lazy phase where
the learning rate is small. For MSE loss, the lower value of the NTK indicates a flatter
curvature given the training loss is low [16]. Yet, it is unknown whether the aforementioned
conclusion can be applied to exponential and logistic loss. Through the following corollary,
we show that the Hessian is equivalent to the NTK when the loss converges to a global
minimum for degenerate data.

Corollary 1. Consider optimizing L(w) with a one-hidden-layer linear network under Assump-
tion 3 and exponential (logistic) loss using gradient descent with a constant learning rate. For any
learning rate that loss can converge to the global minimum, the larger the learning rate, the flatter
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curvature the gradient descent will achieve at the end of training (see Corollary A1 in Appendix A
for detail).

We demonstrate that the flatter curvature can be achieved in the catapult phase
through Examples 3 and 4, using the code provided by [56] to measure the Hessian, as
shown in Figure 3. In the lazy phase, both the curvature and eigenvalue of the NTK are
independent of the learning rate at the end of training. In the catapult phase, however, the
curvature decreases to a value smaller than that in the lazy phase. In conclusion, the NTK
and Hessian have similar behaviours at the end of training on non-separable data.
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Figure 3. Top eigenvalue of the NTK (λ0) and Hessian (h0) measured at t = 100 as a function of
the learning rate, with (a,b) exponential loss and (c,d) logistic loss in Examples 3 and 4. The green
dashed line η = η0 represents the boundary between the lazy and catapult phases, while the black
dashed line η = η1 separates the catapult and divergent phases. We adopt the settings of σ2

w = 0.5
and m = 100 for exponential loss, and the settings for logistic loss are σ2

w = 0.5 and m = 200. (a,c) The
curves of the maximum eigenvalue of the NTK and Hessian coincide as predicted by the Corollary A1.
(b,d) For non-separable data, the trend of the two eigenvalue curves is consistent with the change in
the learning rate.

Finally, we compare our results from the catapult phase to the results with MSE loss
and show the summary in Table 2.

Table 2. A summary of the relationship between separation conditions of the data and the catapult
phase for different losses.

Separation Condition Linear Separable Degenerate Non-Separable

Exponential loss (this work) 7 3 3

Logistic loss (this work) 7 3 3

Squared loss ([16]) 3 3 3

5. Experiment
5.1. Experimental Results

In this section, we present our experimental results of linear networks with the logistic
loss on CIFAR-10 to examine whether flatter minima achieved in the catapult phase can
lead to better generalization in real applications. We selected two (“cars” and “dogs”) of the
ten categories from the CIFAR-10 dataset to form a binary classification problem. Training
is performed on a server with a CPU with 32 cores, and an 8 GB Nvidia 3060 GPU. The
results will be illustrated by comparing the generalization performance with respect to
different learning rates.

Figure 4 shows the performance of the two linear networks, one has one hidden layer
without bias, and the other has two hidden layers of linear network with bias, trained
on CIFAR-10. We present the results using two different stopping conditions. Firstly, we
fix the training time for all learning rates, the learning rates within the catapult phase
have the advantage of obtaining a higher test accuracy, as shown in Figure 4a,c. However,
adopting a fixed training time will result in a bias in favour of large learning rates, since
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the large learning rate naturally runs faster. To ensure a fair comparison, we then used a
fixed physical time, defined as tphy = t0η, where t0 is a constant. In this setting, as shown
in Figure 4b,d, the performance of the large learning rate phase is even worse than that of
the small learning phase. Nevertheless, we find this is achieved in the catapult phase when
adopting the learning rate annealing strategy.
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Figure 4. Test performance on the CIFAR-10 dataset with respect to different learning rate phases.
The data size is of ntrain = 2048 and ntest = 512. (a,b) A two-layer linear network without bias of
σ2

w = 0.5 and m = 500. (c,d) A three-layer linear network with the bias of σ2
w = 0.5, σ2

b = 0.01, and
m = 500. (a,c) The test accuracy is measured at the time step t = 500 and t = 300, respectively.
The optimal performance is obtained when the learning rate is in the catapult phase. (b,d) The test
accuracy is measured at the physical time step (red curve), after which it continues to evolve for a
period of time at a small learning rate (purple): tphy = 50/η and extra time t = 500 at η = 0.01 for
the decaying case. Although the results in the catapult phase do not perform as well as the lazy phase
when there is no decay, the best performance can be found in the catapult phase when adopting
learning rate annealing.

To explain the above experimental results, we refer to Theorem 2 in [30]. According
to this theorem, the data can be uniquely partitioned into the linearly separable and non-
separable parts. When we tune the learning rate to the large learning rate regime, the
algorithm quickly iterates to a flat minimum in a space spanned by non-separable data.
At the same time, for linearly separable data, the gradient descent cannot achieve the
maximum margin due to the large learning rate. As a result, for this part of the data, the
generalization performance is suppressed. This explains why when we fix the physical
steps, the performance in the large learning rate regime is worse than that of the small
learning rate phase. On the other hand, when we adopt the strategy of learning rate
annealing, for non-separable data, since the large learning rate has learned a flat curvature,
the subsequent small learning rate will not affect this result. For data with linearly separable
parts, reducing the learning rate can restore the maximum margin. Therefore, we can
see that under this strategy, the best performance can be found in the phase of a large
learning rate.

5.2. Effectiveness on Synthetic and Real-World Datasets

To further evaluate the impact of learning rate annealing strategies on model perfor-
mance, we conducted experiments using two different annealing strategies powered by
the learning rate scheduler in PyTorch: one-step annealing and exponential annealing. In
the one-step annealing strategy, we started with a relatively large learning rate of 1 and
then reduced it by a decay factor of 0.01 after 30 training steps. In the exponential anneal-
ing strategy, we started with a large learning rate of 1 and then reduced it exponentially
with a learning rate decay rate of 0.98 over time. We evaluated the performance of these
two annealing strategies on both synthetic and real-world datasets using convolutional
neural networks. Specifically, we measured the accuracy of the models trained with each
annealing strategy.

Creating synthetic data with label noise can help represent the separability of the
data by simulating a more realistic scenario in which data points may not be perfectly
separable. We synthesize the label noise on three public datasets MNIST, CIFAR-10 and
CIFAR-100 following previous works [57–59]. Symmetric noise was generated by randomly
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flipping the labels of each class to incorrect labels from other classes. Asymmetric noise
was generated by flipping the labels within a specific set of classes to a certain incorrect
class. For example, for CIFAR-10, flipping “truck”→ “automobile”, “bird”→ “airplane”,
“deer” → “horse”, “cat” ↔ “dog”. In CIFAR-100, the 100 classes were grouped into 20
super-classes, each with 5 sub-classes, and each class was flipped to the next class in a
circular fashion within the same super-class. The noise rate τ ∈ [0.1, 0.4] for both symmetric
and asymmetric noise. Regarding the models a four-layer CNN for MNIST, an eight-layer
CNN for CIFAR-10 and a ResNet-34 for CIFAR-100. We train the networks for 50, 120
and 200 epochs for MNIST, CIFAR-10, and CIFAR-100, respectively. For all training, we
used a SGD optimizer with no momentum, cross-entropy loss, and three different learning
rate schedules. Typical data augmentations including random width/height shift and
horizontal flip were applied.

The classification accuracies under symmetric label noise are reported in Table 3. As
can be seen, the learning rate annealing methods achieved better results across all datasets.
The superior performance of the learning rate annealing methods is more pronounced
when the noise rates are extremely high and the dataset is more complex. Results for
asymmetric noise are reported in Table 4. Comparing the results in both Tables 3 and 4, we
find that learning rate annealing is quite consistent across different noise types and rates.
Overall, this demonstrates a consistently strong performance across different datasets.

Table 3. Test accuracy (%) of different methods on benchmark datasets with clean or symmetric label
noise (τ ∈ [0.1, 0.4]). The results (mean±std) are reported over three random runs. SL refers to a
training schedule with a small learning rate that remains constant throughout the training process.
OS (one-step) denotes a training schedule where the learning rate starts at a high value and then
drops to a smaller value after a specified number of training steps. Exp refers to a training schedule
where the learning rate decreases exponentially as the training progresses.

Datasets Methods Clean (τ = 0.0) Symmetric Noise Rate (τ)
0.1 0.2 0.3 0.4

MNIST
SL 99.09± 0.02 98.60± 0.04 98.29± 0.08 97.88± 0.12 97.57± 0.09
OS 99.33± 0.04 99.22± 0.57 98.71± 0.10 98.34± 0.07 97.96± 0.16

EXP 99.40± 0.03 98.85± 0.21 98.84± 0.10 98.63± 0.20 98.48± 0.03

CIFAR-10
SL 86.37± 0.05 82.01± 0.19 78.70± 0.29 75.83± 0.28 71.58± 0.08
OS 91.38± 0.07 86.87± 0.15 83.95± 0.24 81.72± 0.08 78.70± 0.25

EXP 91.63± 0.15 85.52± 0.22 82.94± 0.32 81.57± 0.99 79.66± 2.20

CIFAR-100
SL 48.10± 0.14 42.31± 0.44 38.10± 0.65 34.10± 0.25 31.21± 1.01
OS 70.50± 1.07 62.66± 1.51 57.31± 2.09 52.08± 1.63 47.22± 0.88

EXP 70.14± 0.82 63.67± 0.26 55.70± 0.24 49.67± 1.95 43.39± 1.11

To further enhance our theoretical finding and complement the effectiveness of the
general annealing methods, we conducted experiments on the large-scale real-world dataset
WebVision [25] as it is a large-scale dataset of images that has been specifically designed
to evaluate the performance of computer vision algorithms under noise. We followed the
“Mini” setting in [24,59] that only takes the first 50 classes of the resized Google image subset.
We evaluated the trained networks on the same 50 classes of the WebVision validation set,
considered as a clean validation.

We trained a ResNet-50 [14] using SGD for 250 epochs with a Nesterov momentum of
0.9, a weight decay of 3× 10−5, and a batch size of 512. We resized the images to 224× 224.
Typical data augmentations, including random width/height shift, colour jittering and
random horizontal flip, were applied. The accuracies on the clean WebVision validation set
(e.g., only the first 50 classes) are reported in Table 5. As a result, the large learning rate
annealing methods (one-step annealing and exponential learning rate annealing) provided
better generalization.
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Table 4. Test accuracy (%) of different methods on benchmark datasets with clean or asymmetric
label noise (τ ∈ [0.1, 0.4]). The results (mean±std) are reported over three random runs. SL refers to a
training schedule with a small learning rate that remains constant throughout the training process.
OS (one-step) denotes a training schedule where the learning rate starts at a high value and then
drops to a smaller value after a specified number of training steps. Exp refers to a training schedule
where the learning rate decreases exponentially as the training progresses.

Datasets Methods Clean (τ = 0.0) Asymmetric Noise Rate (τ)
0.1 0.2 0.3 0.4

MNIST

SL 99.09± 0.02 98.52± 0.07 98.25± 0.01 97.89± 0.16 97.45± 0.01
OS 99.33± 0.04 98.86± 0.16 98.98± 0.71 98.35± 0.14 98.24± 0.17

EXP 99.40± 0.03 98.85± 0.09 98.63± 0.09 98.46± 0.13 98.24± 0.15

CIFAR-10
SL 86.37± 0.05 81.91± 0.25 78.87± 0.11 75.85± 0.17 72.02± 0.59
OS 91.38± 0.07 86.61± 0.32 83.90± 0.41 81.41± 0.41 78.77± 0.40

EXP 91.63± 0.15 85.26± 0.79 83.53± 0.37 81.38± 1.05 78.82± 0.45

CIFAR-100
SL 48.10± 0.14 42.15± 0.13 37.93± 0.95 34.80± 0.28 30.97± 0.54
OS 70.50± 1.07 62.65± 0.91 57.66± 0.97 50.42± 1.06 47.07± 1.74

EXP 70.14± 0.82 63.51± 1.20 56.35± 0.55 48.09± 0.44 44.34± 0.40

Table 5. Test accuracies (%) on the clean WebVision validation set of ResNet-50 models trained
on WebVision. SL refers to a training schedule with a small learning rate that remains constant
throughout the training process. OS (one-step) denotes a training schedule where the learning
rate starts at a high value and then drops to a smaller value after a specified number of training
steps. Exp refers to a training schedule where the learning rate decreases exponentially as the
training progresses.

Loss SL OS EXP

Acc 60.38 66.04 65.92

In terms of computational complexity, the actual process of changing the magnitude
of the learning rate during training is typically straightforward and computationally inex-
pensive. The real computational cost of learning rate annealing comes from the additional
training iterations required to allow the model to converge more precisely towards the
optimal solution. Overall, the actual computational cost of learning rate annealing can
depend on a variety of factors, including the size of the dataset, the complexity of the
model, and the specific annealing schedule used. However, in general, the computational
cost of learning rate annealing is relatively small compared to the overall cost of training a
deep learning model.

6. Discussion

In this work, we characterized the dynamics of deep linear networks for binary
classification trained with gradient descent in a large learning rate regime, inspired by the
seminal work by [16]. We present a catapult effect in the large learning rate phase depending
on separation conditions associated with logistic and exponential loss. According to our
theoretical analysis, the loss in the catapult phase can converge to the global minimum like
the lazy phase. However, from the perspective of the Hessian, the minimum achieved in the
catapult phase is flatter. We empirically show that even without SGD optimization, the best
generalization performance can be achieved in the catapult stage phase for linear networks,
while this works in the large learning rate for linear networks in binary classification, there
are several remaining open questions. For non-linear networks, the effect of a large learning
rate is not clear in theory. In addition, the stochastic gradient descent algorithm also needs
to be explored when the learning rate is large. We leave these unsolved problems for
future work.

Future work could investigate the theoretical impact of data separability on a wider
range of deep learning models, including convolutional neural networks or recurrent neu-
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ral networks, and for different types of loss functions. Additionally, it would be beneficial
to explore the effect of data separability on the design of neural network architectures,
such as varying the number of layers, hidden unit size, or connectivity patterns. Fur-
thermore, our study assumes degenerate data, which simplifies the analysis. As new
mathematical analytical methods become available, future research could extend the results
to non-degenerate datasets and explore how the relationship between data separability
and training dynamics/model performance changes in this setting. Finally, practical appli-
cations of this research could be explored, such as utilizing data separability to guide the
design of neural networks or the development of learning rate annealing schemes.
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Appendix A

This appendix is dedicated to proving the key results of this paper, namely Proposition A1,
Theorems A1 and A2, and Corollary A1 which describe the dynamics of gradient descent with
logistic and exponential loss in different learning rate phase.

Proposition A1. For a linear predictor f = wTx, along with a loss ` ∈ {`exp, `log}.
1 Under Assumption 1, the empirical loss is β-smooth. Then the gradient descent with constant

learning rate η < 2
β never increases the risk, and empirical loss will converge to zero:

L(wt+1)−L(wt) ≤ 0, lim
t→∞
L(wt) = 0, with η <

2
β

2 Under Assumption 2, the empirical loss is β-smooth and α-strongly convex, where α ≤ β.
Then the gradient descent with a constant learning rate η < 2

β never increases the risk, and
empirical loss will converge to a global minimum. On the other hand, the gradient descent
with a constant learning rate η > 2

α never decreases the risk, and empirical loss will explode
or saturate:

L(wt+1)−L(wt) ≤ 0, lim
t→∞
L(wt) = G0, with η <

2
β

L(wt+1)−L(wt) ≥ 0, lim
t→∞
L(wt) = G1, with η >

2
α

where G0 is the value of a global minimum while G1 = ∞ for exploding situation or
G0 < G1 < ∞ when saturating.

https://data.vision.ee.ethz.ch/cvl/webvision/dataset2017.html
https://www.cs.toronto.edu/~kriz/cifar.html
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Proof. 1 We first prove that empirical loss L(u) regrading data-scaled weight ui ≡ wTxiyi
for the linearly separable dataset is smooth. The empirical loss can be written as
L = ∑n

i=1 `(ui), then the second derivatives of logistic and exponential loss are,

L′′exp =
n

∑
i=1

`′′exp(ui) =
n

∑
i=1

exp′′(−ui) =
n

∑
i=1

exp(−ui)

L′′log =
n

∑
i=1

`′′log(ui) =
n

∑
i=1

log′′(1 + exp(−ui)) =
n

∑
i=1

exp(−ui)

(1 + exp(−ui))2

when wt is limited, there will be a β such that L′′ < β. Furthermore, because there
exists a separator w∗ such that ∀i : wT∗ xiyi > 0, the second derivative of empirical loss
can be arbitrarily close to zero. This implies that the empirical loss function is not
strongly convex.
Recalling a property of the β-smooth function f [60],

f (y) ≤ f (x) + (∇x f )T(y− x) +
1
2

β‖y− x‖2

Taking the gradient descent into consideration,

L(wt+1) ≤ L(wt) +
(
∇wtL(wt)

)T
(wt+1 − wt

)
+

1
2

β‖wt+1 − wt‖2

= L(wt) +
(
∇wtL(wt)

)T(− η∇wtL(wt)
)
+

1
2

β‖−η∇wtL‖2

= L(wt) +
(
∇wtL(wt)

)T(− η∇wtL(wt)
)
+

1
2

β‖−η∇wtL‖2

= L(wt)− η(1− ηβ

2
)‖∇wtL‖2

when 1− ηβ
2 > 0, that is η < 2

β , we have,

L(wt+1) ≤ L(wt)− η(1− ηβ

2
)‖∇wtL‖2 ≤ L(wt)

We now prove that empirical loss will converge to zero with learning rate η < 2
β . We

changing the form of the above inequality,

L(wt)−L(wt+1)

η(1− ηβ
2 )

≥ ‖∇wtL(wt)‖2

this implies,

T

∑
t=0
‖∇wtL(wt)‖2 ≤

T

∑
t=0

L(wt)−L(wt+1)

η(1− ηβ
2 )

=
L(w0)−L(wT)

η(1− ηβ
2 )

< ∞

therefore, we have limt→∞‖∇wtL(wt)‖ = 0.
2 When the data is not linear separable, there is no w∗ such that ∀i : wT∗ xiyi > 0. Thus,

at least one wT∗ xiyi is negative when the other terms are positive. This implies that the
solution of the loss function is finite and the empirical loss is both α-strongly convex
and β-smooth.
Recalling a property of the α-strongly convex function f [60],

f (y) ≥ f (x) + (∇x f )T(y− x) +
1
2

α‖y− x‖2
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Taking the gradient descent into consideration,

L(wt+1) ≥ L(wt) +
(
∇wtL(wt

)T(wt+1 − wt
)
+

1
2

α‖wt+1 − wt‖2

= L(wt) +
(
∇wtL(wt

)T(− η∇wtL(wt)
)
+

1
2

α‖−η∇wtL‖2

= L(wt)− η(1− ηα

2
)‖∇wtL‖2

when 1− ηα
2 < 0, that is η > 2

α , we have,

L(wt+1) ≥ L(wt)− η(1− ηα

2
)‖∇wtL‖2 ≥ L(wt).

Theorem A1. For a linear predictor f = wTx equipped with exponential (logistic) loss under
Assumption 3, there is a critical learning rate that separates the whole learning rate space into two
(three) regions. The critical learning rate satisfies

L′(w0) = −L′(w0 − ηcriticalL′(w0)),

where w0 is the initial weight. Moreover,

1 For exponential loss, the gradient descent with a constant learning rate η < ηcritical never
increases loss, and the empirical loss will converge to the global minimum. On the other hand,
the gradient descent with learning rate η = ηcritical will oscillate. Finally, when the learning
rate η > ηcritical, the training process never decreases the loss and the empirical loss will
explode to infinity:

L(wt+1)−L(wt) < 0, lim
t→∞
L(wt) = 1, with η < ηcritical,

L(wt+1)−L(wt) = 0, lim
t→∞
L(wt) = L(w0), with η = ηcritical,

L(wt+1)−L(wt) > 0, lim
t→∞
L(wt) = ∞, with η > ηcritical.

2 For logistic loss, the critical learning rate satisfies a condition: ηcritical > 8. The gradient
descent with a constant learning rate η < 8 never increases the loss, and the loss will
converge to the global minimum. On the other hand, the loss along with a learning rate
8 ≤ η < ηcritical will not converge to the global minimum but oscillate. Finally, when the
learning rate η > ηcritical, gradient descent never decreases the loss, and the loss will saturate:

L(wt+1)−L(wt) < 0, lim
t→∞
L(wt) = log(2), with η < 8,

L(wt+1)−L(wt) ≤ 0, lim
t→∞
L(wt) = L(w∗) < L(w0), with 8 ≤ η < ηcritical,

L(wt+1)−L(wt) ≥ 0, lim
t→∞
L(wt) = L(w∗) ≥ L(w0), with η ≥ ηcritical.

where w∗ satisfies −w∗ = w∗ − η
2

sinh(w∗)
1+cosh(w∗)

.

Proof. 1 Under the degeneracy assumption, the risk is given by the hyperbolic function
L(wt) = cosh(wt). The update function for the single weight is,

wt+1 = wt − η sinh(wt).
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To compare the norm of the gradient ‖ sinh(wt)‖ and the norm of loss, we introduce
the following function:

φ(x) = ηL′(x)− 2x = η sinh(x)− 2x, for x ≥ 0. (A1)

Then it is easy to see that

L(wt+1) > |L(wt)| ⇐⇒ φ(|wt|) > 0.

In this way, we have transformed the problem into studying the iso-surface of φ(x).
Define Phase1 by

Phase1 = {x|φ(x) < 0}.
Let Phase2 be the complementary set of Phase1 in [0,+∞). Since sin x

x is monotonically
increasing, we know that Phase2 is connected and contains +∞.
Suppose η > ηcritical, then φ(w0) > 0, which implies that

L(w1) > L(w0) and |w1| > |w0|.

Thus, the first step becomes trapped in Phase2:

φ(w1) > 0.

By induction, we can prove that φ(wt) > 0 for arbitrary t ∈ N, which is equivalent to

L(wt) > L(wt−1).

Similarly, we can prove the theorem under another toe initial conditions: η = ηcritical
and η < ηcritical.

2 Under the degeneracy assumption, the risk is governed by the hyperbolic function
L(wt) =

1
2 log(2 + 2 cosh(wt)). The update function for the single weight is,

wt+1 = wt −
η

2
sinh(wt)

1 + cosh(wt)
.

Thus,

φ(x) = ηL′(x)− 2x =
η

2
sinh(x)

1 + cosh(x)
− 2x, for x ≥ 0. (A2)

Unlike the exponential loss, sinh(x)
x(1+cosh(x)) is monotonically decreasing, which means

that Phase2 of φ(x) does not contain +∞ (see Figure A1).
Suppose 8 < η < ηcritical, then w0 lies in Phase2. In this situation, we denote the
critical point that separates Phase1 and Phase2 by w∗. That is

−w∗ = w∗ − η
sinh(w∗)

1 + cosh(w∗)
.

Then it is obvious that before wt arrives at w∗, it keeps decreasing and will eventually
become trapped at w∗:

lim
t→∞

wt = w∗,

and we have limt→∞ L(wt)−L(wt−1) = 0. When η < 8, Phase2 is empty. In this case,
we can prove by induction that φ(wt) > 0 for arbitrary t ∈ N, which is equivalent to
L(wt) > L(wt−1).
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Theorem A2. Under appropriate initialization and Assumption 3, there exists a catapult phase for
both the exponential and logistic loss. More precisely, when η belongs to this phase, there exists a
T > 0 such that the output function ft and the eigenvalue of the NTK λt update in the following
way:

1. Lt keeps increasing when t < T.
2. After the T step and its successors, the loss decreases, which is equivalent to:

| fT+1| > | fT+2| ≥ | fT+3| ≥ . . . .

3. The eigenvalue of NTK keeps dropping after the T steps:

λT+1 > λT+2 ≥ λT+3 ≥ . . . .

Moreover, we have the inverse relation between the learning rate and the final eigenvalue of the
NTK: λ∞ ≤ limt→∞

4 ft
η f̃texp

with exponential loss, or λ∞ ≤ limt→∞
4 ft

η f̃t log
with logistic loss.
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Figure A1. Graph of φ(x) for the two losses. (a) Exponential loss with learning rate η = 10.
(b) Logistic loss with learning rate η = 10.

Proof. Exponential loss
f̃exp satisfies:

1. | f̃exp(x)| = | f̃exp(−x)|.
2. limx→0

f̃exp(x)
x = 1.

3. f̃exp(x) has exponential growth as x → ∞.

By the definition of the normalized NTK, we automatically obtain

λt ≥ 0.

From the numerical experiment, we observe that at the ending phase of training, λt does
not increase. Thus, λt must converge to a non-negative value, which satisfies

η2

m
λ f̃ 2

t −
4η

m
ft f̃t ≤ 0. (A3)

Thus,λ ≤ limt→∞
4 ft
η f̃t

.
Since the output f converges to the global minimum, a larger learning rate will lead to a
lower limiting value of the NTK. As it was pointed out in [16], a flatter NTK corresponds
to a smaller generalization error in the experiment. However, we still need to verify that a
large learning rate exists.
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Note that during training, the loss function curve may experience more than one wave of
uphill and downhill. To give a precise definition of a large learning rate, it should satisfy
the following two conditions:

1. | fT+1| > | fT |, this implies that
LT+1 > LT .

For the T + 1 step and its successors,

| fT+1| > | fT+2| ≥ | fT+3| ≥ . . . .

2. The norm of the NTK keeps dropping after T steps:

λT > λT+1 ≥ λT+2 ≥ . . . .

If we already know that the loss keeps decreasing after T + 1 step, then

∆λ =
η

m
f̃ · (ηλ f̃ − 4 f ). (A4)

Since | f̃ || f | ≥ 1 and is monotonically increasing when f̃ = sinh f , we automatically have

λT > λT+1 > λT+2 ≥ . . . ,

If
λT <

4 fT

η f̃T
and λT+1 <

4 fT+1

η f̃T+1
.

This condition holds if the parameters are initially close to zero.
To check Condition (1), the following function which plays an essential role as in the
non-hidden layer case:

φλ(x) = ηλ sinh(x)− η2

m
x sinh2(x)− 2x, for x ≥ 0.

Notice that an extra parameter λ emerges with the appearance of the hidden layer. We call
this the control parameter of the function φ(x).
For a fixed λ, since now φ(x) becomes linear, the whole [0,+∞) is divided into three phases
(see Figure A2):

Phase1 := the connected component of {x| φλ(x) < 0} that contains 0;

Phase2 := {x| φλ(x) > 0};
Phase3 := the connected component of {x| φλ(x) < 0} that contains + ∞.

It is easy to see that Lexp( fT+1) > Lexp( fT) if, and only if,

φλT ( fT) > 0.

That is, fT lies in Phase2 of φλT . Similarly,

Lexp( fT+2) < Lexp( fT+1) ⇐⇒ φλT+1( fT+1) < 0.

That is, fT+1 jumps into Phase1 of φλT+1 . Denote the point that separates Phase1 and Phase2
by x∗, then form the graph of φλ(x) with different λ, we know that

x∗(λ′) > x∗(λ) if λ′ < λ.

Therefore, Condition (1) is satisfied if

x∗(λT+1) > fT + φλT ( fT) (A5)
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and at the same time,
λT+1 − λT > 0.

For simplicity, we reset T as our initial step, and write the output function ft as

ft+1 = ft(1 +At), (A6)

where At =
η2

m f̃ 2
t − ηλt f̃t/ ft. Thus, φλ0( f0) > 0 is equivalent to A0 < −2.

Similarly, write the update function for λt as

λt+1 = λt(1 + Bt), (A7)

where Bt =
η2

m f̃ 2
t −

4η
m f̃t ft/λt. To fulfil the above condition on the NTK, we need

B0 < 0.

To check (A5), let the initial output f0 be close to X∗(λ0) (this can be performed by adjusting
w0):

0 < f0 − X∗ < ε.

Then by the mean value theorem,

x∗(λ1)− x∗(λ0) =
∂x∗
∂λ∗

(λ∗) · ∆λ.

The derivative ∂x∗
∂λ∗ can be calculated by the implicit function theorem:

∂x∗
∂λ

= −∂φλ(x∗)
∂λ

/
∂φλ(x∗)

∂x∗

= −η sinh(x∗)/
∂φλ(x∗)

∂x∗
.

It is easy to see that | ∂x∗
∂λ | is bounded away from zero if the initial output is in Phase2 and

near x∗ of φλ0(x) (see Figure A2).
On the other hand, we have the freedom to move f0 towards x∗ of φλ0(x) without breaking
the ∆λ < 0 condition. Since

|ηλ f̃
4 f
| < |ηλ f̃ ′

4 f ′
| if f < f ′.

Therefore, we can always find ε > 0 such that 0 < f0 − x∗ < ε and (A5) is satisfied.
Combining the above, we have demonstrated the existence of the catapult phase for the
exponential loss.

logistic loss
When considering the degeneracy case for the logistic loss, the loss will be

L =
1
2

log(2 + 2 cosh(m−1/2w(2)w(1))). (A8)

Much of the argument is similar. For example, Equation (A3) still holds if we replace f̃exp
by

f̃log(x) :=
sinh(x)

1 + cosh(x)
.

f̃log satisfies
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Figure A2. Different colours represent different λ(NTK) values. (a) Graph of φλ(x) equipped with the
exponential loss. (b) Graph of the derivative of φλ(x) equipped with the exponential loss. (c) Graph
of φλ(x) equipped with the logistic loss. (d) Graph of the derivative of φλ(x) equipped with the
logistic loss. Notice that the critical point of the exponential loss moves to the right as λ decreases.

1. | f̃log(x)| = | f̃log(−x)|.
2. | f̃log(x)| ≤ 1 for x ∈ (−∞, ∞).

This implies that

| f̃
f
| ≤ 1

2
.

Then by (A4), we have ∆λ < 0 if λ ≤ 8
η . Thus, Condition 2 is satisfied for both loss

functions. Now, φλ(x) becomes:

φλ(x) := ηλ
sinh(x)

1 + cosh(x)
− η2

m
x

sinh2(x)
(1 + cosh(x))2 − 2x,

along with its derivative:

φ′λ(x) :=ηλ
cosh(x)

1 + cosh(x)
− ηλ sinh2(x)

(1 + cosh(x))2 − 2

−2
η2

m
sinh(x)

1 + cosh(x)
[ cosh(x)

1 + cosh(x)
− sinh2(x)

(1 + cosh(x))2

]
−η2

m
sinh2(x)

(1 + cosh(x))2 .

The method of verifying Condition 1 is similar with the exponential case, except that
φλ(x) has only Phase1 and Phase2 (see Figure A2). As the NTK λ decreases, Phase1 will
disappear and at that moment, and the loss will keep decreasing. Let λ∗ be the value such
that φ′λ∗(x) = 0, then

λ∗ = 4/η.

During the period when 4/η < λt < 8/η, the NTK keeps dropping and the loss may
oscillate around x∗. However, we may encounter the scenario where both the loss and λt
are increases before dropping down simultaneously (see the first three steps in Figure A2).
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Theoretically, it corresponds to the jump from Phase2 to Phase3 and then to Phase1 of φλ1(x)
in the first two steps. This is possible since f̃log is decreasing when x > 0. This implies that

|ηλ f̃ ′

4 f ′
| < |ηλ f̃

4 f
| if f < f ′.

So an increase in the output will cause the NTK to drop faster.

Corollary A1. Consider optimizing L(w) with a one-hidden-layer linear network under Assump-
tion 3 and exponential (logistic) loss using gradient descent with a constant learning rate. For any
learning rate that loss can converge to the global minimum, the larger the learning rate, the flatter
curvature the gradient descent will achieve at the end of training.

Proof. The Hessian matrix is defined as the second derivative of the loss with respect to
the parameters,

Hαβ =
∂2L

∂θα∂θβ

where θα, θβ ∈ {w(1), w(2)} for our linear network settings. For logistic loss,

Hαβ =
1
n ∑

i

∂2 exp(−yi fi)

∂θα∂θβ

=
1
n ∑

i

[ ∂2 fi
∂θα∂θβ

exp(−yi fi)(−yi) +
∂ fi
∂θα

∂ fi
∂θβ

exp(−yi fi)
]

We want to make a connection from the Hessian matrix to the NTK. Note that the second
term contains ∂ fi

∂θα

∂ fi
∂θβ

, which can be written as J JT , where J = vec[ ∂ fi
∂θj

], while the NTK can

be expressed as JT J. It is known that they have the same eigenvalue. Furthermore, under
Assumption 3, we have n = 2 and f1 = f2, thus,

Hαβ =
1
n ∑

i

[ ∂2 fi
∂θα∂θβ

∂L
∂ fθ

+
∂ fi
∂θα

∂ fi
∂θβ
L
]

Suppose at the end of gradient descent training we can achieve a global minimum. Then
we have, ∂L

∂ fθ
= 0, and L = 1. Thus, the Hessian matrix reduces to,

Hαβ =
1
n ∑

i

∂ fi
∂θα

∂ fi
∂θβ

In this case, the eigenvalues of the Hessian matrix are equal to those of the NTK. Combine
with Theorem A2, we can prove the result.

For logistic loss,

Hαβ =
1
n ∑

i

∂2 log(1 + exp(−yi fi))

∂θα∂θβ

=
1
n ∑

i

[ ∂2 fi
∂θα∂θβ

exp(−yi fi)(−yi)

1 + exp(−yi fi)
+

∂ fi
∂θα

∂ fi
∂θβ

exp(−yi fi)

(1 + exp(−yi fi))2

]
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Under Assumption 3, we have n = 2 and f1 = f2, thus,

Hαβ =
1
n ∑

i

[ ∂2 fi
∂θα∂θβ

∂L
∂ fθ

+
∂ fi
∂θα

∂ fi
∂θβ

exp(−yi fi)

(1 + exp(−yi fi))2

]

Suppose at the end of gradient descent training we can achieve a global minimum. Then
we have, ∂L

∂ fθ
= 0, and fi = 0. Thus, the Hessian matrix reduces to,

Hαβ =
1

4n ∑
i

∂ fi
∂θα

∂ fi
∂θβ

In this case, the eigenvalues of the Hessian matrix and NTK have the relation 1
4 λNTK =

λHessian.
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