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Abstract: Background: Infrared thermography in women undergoing caesarean section has promise
to identify a surgical site infection prodrome characterised by changes in cutaneous perfusion with
concomitant influences on temperature distribution across the abdomen. This study was designed to
compare abdominal and wound regions of interest (ROI) and feature extraction agreement between
two independent users after a single training session. Methods: Image analysis performed manually
in MATLAB with each reviewer ‘blind’ to results of the other. Image ROIs were annotated via
pixel-level segmentation creating pixel masks at four time-points during the first 30 days after surgery.
Results: A total of 366 matched image pairs (732 wound and abdomen labels in total) were obtained.
Distribution of mask agreement using Jacquard similarity co-efficient ranged from 0.35 to 1. Good
segmentation agreement (coefficient ≥ 0.7) (for mask size and shape) was observed for abdomen, but
poor for wound (coefficient < 0.7). From feature extraction, wound cold spots were observed most in
those who later developed wound infections. Conclusions: Reviewer performance, with respect to
the input (image) data in the first stage of algorithm development, reveals a lack of correspondence
(agreement) of the ROI indicating the need for further work to refine the characteristics of output
labels (masks) before an unsupervised algorithm works effectively to learn patterns and features of
the wound.

Keywords: thermography; infrared; obese; abdomen; segmentation; region of interest; image features;
caesarean section; machine learning

1. Introduction

Over the last 40 to 50 years, the rate of obesity has tripled [1]. As a global health con-
cern, the prevalence of obesity has risen across race, age, and gender. Most pronounced in
women of reproductive age [2], obesity during pregnancy is a major obstetric complication
especially in view of the increased risk of a caesarean section birth. Furthermore, with
high rates of surgical site infection (SSI) affecting 28–50% of obese and morbidly obese
women, respectively [3,4], the interplay between obesity, caesarean section, and wound
infection has become a major healthcare problem for post-operative recovery. The human
and economic consequences of SSI are driving national and international organisations to
tackle the problem of rising SSI prevalence across all surgical specialities [5,6].

In our recent studies of obese women giving birth by caesarean section, rather than
waiting until infective complications present, we have focused on finding new ways to
explore a prodromal phase of incipient wound tissue breakdown at the surgical site using
long wave infrared thermography (IRT) to map the distribution of heat across the abdomen
and wound site [3,7]. As changes in cutaneous temperature are predominately influenced
by local skin blood flow, areas of high (and lower) temperature have been used to assess
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skin perfusion [8,9]. Although thermography is recognised for its diagnostic potential in
identifying locations of abnormal chemical and blood vessel activity across many medical
pathologies [10], there is a gap in knowledge of the relationship between skin temperature
and skin perfusion in the wider context of surgical wound complications [11].

However, with new approaches to wound assessment using IRT in women undergoing
caesarean section, we have shown that wound abdomen temperature differences (WATD)
predict wound complications, notably surgical site infection (SSI) as early as at day 2 and at
day 7 after surgery [3], time-points that precede overt signs of infection, typically around the
second week after surgery. Furthermore, low skin temperature in the region of the wound,
coupled with discrete ‘cold spots’ along the incision, have good predictive capability to
indicate later SSI [3,12,13]. Thus, utilising the postoperative thermal signature to identify
skin ‘cold’ spots, commensurate with low cutaneous temperature and corresponding
reduction in blood flow, is a potential clinical tool which may help shed light on the
underlying mechanisms leading to infective and non-infective wound complications.

However, identifying one (or more) surface anatomy regions of interest (ROI) from
the heat map is both labour-intensive and subjective, as is the refining and ‘fine-tuning’ of
pixel level features. Problems emerge due to ‘crowding’ of objects, whereby pixel features
are not easily assigned to the ‘correct’ bounding box or cluster group [14]. When overlap
occurs between ROIs (such as that shown in Figure 1) [15], feature extraction from a specific
ROI can be difficult and lead to misclassifications. To improve upon the reliability of our
existing, manual, image post-processing and wound outcome modelling undertaken by a
single, experienced researcher (CC) and reported previously [3], our overarching objective
was to use the acquired images to refine and improve scope in image analysis using
AI-based segmentation.

Figure 1. An illustration of overlapping ROI masks.

The aim of this study therefore was twofold: (a) to compare instance segmentation
and feature extraction agreement between two new and independent users after a single
training session and (b) to determine the occurrence of thermal cold regions and ‘spots’
across abdomen and wound, respectively.

2. Materials and Methods

Abdominal skin and incisional wound thermal maps previously obtained from 50
obese postpartum women who underwent caesarean section birth were analysed. The in-
ternational guidelines for conducting clinical thermographic imaging were followed (https:
//iactthermography.org/standards/medical-infrared-imaging/, accessed on 15 March
2023). Thermal camera T450sc uncooled microbolometer (FLIR, Taby, Sweden) specifica-
tions were the following: detector 320 × 240 pixel size, Field of View (FOV) 25.0◦ × 19◦,
thermal sensitivity NETD 30 mK, spectral range 7.5–13 microns, with accuracy of ±1 ◦C

https://iactthermography.org/standards/medical-infrared-imaging/
https://iactthermography.org/standards/medical-infrared-imaging/
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or ±1% of reading for limited temperature range, which in this study was physiological
temperatures in the range of 30–40 ◦C

Before imaging commenced, emissivity was set to 0.98 and focused at a distance of 1 m
from the abdominal/wound surface. Acclimation with ambient conditions was achieved
by exposure of the abdomen for 15 min before imaging. This was particularly of importance
for those women for whom an abdominal panniculus created a large skin fold.

Postoperative images were obtained at four nominal time-points after surgery, provid-
ing a total of 732 images (366 pairs for reference of abdomen and wound’ sites). Images
were obtained on day 2 (in hospital) and after discharge to the community with follow-up at
days 7, 15, and day 30. Wound outcome assessment (healed, slow healing, infection) was de-
termined at day 30, using a validated SSI wound assessment criteria [12] with confirmation
from the General Practitioner regarding need for wound treatment, antibiotic prescribing
and, from hospital records, the need for surgical readmission for wound management and
or surgical revision.

2.1. Selection of Regions of Interest (ROIs)

Camera orientation and position, at approximately 1 metre from the body surface,
focused on the umbilicus centrally and anatomical boundaries; costal margin (superiorly)
to iliac crest (inferiorly).

A second IRT image was usually required to identify ROI 2 at the site of Pfannenstiel
wound incision [16] where the presence of a large abdominal panniculus obscured the
wound view. For wound site, on lifting of the abdominal panniculus, surface anatomy was
broadly identified between iliac and pubic crest. Inferiorly, a cotton sheet was placed at
the level of the pubic symphysis. On occasions (and in the absence of a large panniculus),
ROI 1 and RO2 were visible from one single image. Areas excluded from the field of view
(FOV) include skin folds of the breasts and lateral aspects of the abdomen.

2.2. Segmentation and Image Annotation

The aim of the segmentation procedure was manual identification and labelling of the
abdomen and wound areas for determining the usefulness and feasibility of training an
artificial intelligence-based segmentation algorithm and thus automating the identification
of both abdomen (ROI 1) and wound (ROI 2) regions.

One graduate engineer and one doctoral student in biomedical sciences were appointed
to review the images and to undertake image analysis. Neither had previous experience of
the surgical specialty nor wound assessment. One training event consisting of two separate,
online meetings were undertaken one week apart. Although both researchers attended
the same session, they were not acquainted with each other and did not communicate
directly during the study. Both researchers received the same information regarding the
segmentation process, the details required to identify the abdomen and, separately, wound
ROI. Both received digital images which matched each thermal image.

The manual segmentation procedure was performed in MATLAB (R2020a: Math-
works). The image labeller application was used to annotate each ROI label via pixel-level
segmentation and creation of pixel masks for the series of 50 abdominal (Figure 1) and
wound sites (Figure 2). The segmentation process was performed by two independent
researchers, ‘blinded’ to the segmentation process of the other, and was broadly achieved
in two stages to

(i). manually segment abdomen from wound to produce two separate image masks, and
(ii). undertake per-pixel cluster and grouping of observable objects; in this study, ‘objects’

are the appearance and number of areas of ‘cold spots’, areas appearing on abdomen
and wound maps as darker regions (commensurate with lowest temperature values
(◦C) in the extracted image).
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Figure 2. (A) Infrared image showing segmentation of the abdomen (ROI 1) and white bounding box.
(B) Binary mask of abdomen (ROI 1).

The overarching objective was to produce a fully annotated image data set and ground
truth masks reflecting both the ROIs themselves and the high and low skin perfusion loci
across both ROIs.

2.3. Analysis

Distribution of agreement of mask pairs was calculated using Jaccard similarity coeffi-
cient (see Equation). In this case, the Jaccard Similarity coefficient measures the intersection
over the union of the mask pairs (that is, it provides the ratio of the overlapping masks vs.
the separate).

J(A, B) =
|A ∩ B|
|A ∪ B| . (1)

2.4. Abdomen and Wound Segmentation

For abdomen (Figure 2A,B) and wound segmentation (Figure 3A,B), the respective
regions were identified in infrared and the ROI was selected and cropped. With respect to
the surgical site, ROI 2, determining the extent of the area, was often difficult to identify
in infrared due to lack of clear anatomical landmarks. To help discern wound area from
surrounding healthy skin, reference was made to the corresponding digital image.

Figure 3. (A) Pixel-based wound segmentation (ROI 2). (B) Binary mask of wound region (ROI 2).

2.5. Segmentation of ‘Object’ Clusters

To identify pixel clusters of low temperature, shown qualitatively by the (rainbow)
colour palette on the thermal image (Figure 4), automated minima regions were selected
using MATLAB (by choosing continuous regions within the ROIs that are 0.5 degrees or
more cooler than the surrounding areas) to produce pixel masks within the image bounding
box (abdomen and wound).
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Figure 4. ‘Object’ labels identify extent and site of abdominal skin ‘cold regions’ (A) and wound ‘cold
spot’ clusters, (B) (shown in white for clarity in this image).

2.6. Impact of Agreement Outcomes on Wound Complication Prognosis

Data extracted from thermal maps obtained in 50 women recruited during the original
study [3] were used to calculate temperature over abdominal and wound regions as well as
the temperature difference between wound and abdomen sites.

Using logistic regression, temperature difference (wound minus abdomen tempera-
ture) at day 2 was shown to have good prognostic performance; 74% accurate in surgical site
infection (SSI) prediction with improved accuracy when analysed at day 7 (79% accurate).
However, at day 2 and day 7, there were 12 and 9 false positives, respectively, for SSI.

These data were collected by one individual only throughout the study. For the current
report, differences in the masks obtained by two independent reviewers were compared
for the extracted temperature data from the masks obtained.

Ethical approval was obtained from Derby Research Ethics Committee 14/EM/0031,
for the original study with an amendment to protocol (January 2021) to include additional
data and image analysis.

2.7. Segmentation Agreement

Of 366 matched image pairs for both wound and abdomen sites (732 labels in total),
the distribution of agreement ranged from 0.35 to 1. Whilst overall the average agreement
was 0.74 (standard deviation 0.141), the average agreement for the abdomen was much
better (0.85, with standard deviation 0.070) than the average agreement for the wound site
(0.63, with standard deviation 0.107).

Good segmentation agreement (Jacquard similarity coefficient ≥ 0.7) of mask size and
shape was observed for abdomen in all but four image label pairs (Figure 5), indicating
that manual segmentation agreement of less than 70% between two observers occurred in
just 1.1% of abdomen pairs only. Examples of the best agreement between reviewers in this
study are shown in Figure 6 and agreement in the range of 50–70% in Figure 7. We can see
from Figure 7 that the four cases of worst agreement in the segmentation of the abdomen
ROI occurred mainly due to confounding factors (such as the inclusion of hands for patient
29 at day 15, disjoint temperature areas for patient 10 at day 16, and a colostomy bag in the
abdomen ROI image for patient 42 at day 7).
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Figure 5. Distribution of segmentation agreement for abdomen masks between two reviewers.

Figure 6. Best agreement (over 95%) reveals the potential for near identical mapping of mask outline
at abdomen site. Left column shows temperature scale and thermal image of abdomen of two women;
middle column shows segmentation masks produced by reviewer 1, and end column presents
segmentation mask produced by reviewer 2.
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Figure 7. Thermal image (with temperature scale, left) and agreement co-efficient for abdomen pairs
(reviewer 1 vs reviewer 2), all with coefficients of 50–70% * image shows position of colostomy bag.

However, distribution of agreement between reviewer 1 and 2 was mainly poor for
wound site (Figure 8), with 128/183 (70%) of mask pairs with similarity coefficient < 0.7
and with 21/183 mask pairs (11.5%) having less than 50% agreement. Good agreement
(Jaccard similarity coefficient ≥ 0.7) was observed in just 30% of masks for the wound site.
Seven examples for wound agreement varying from poor (A) to good (B) are provided
in Figure 9. The main cause of lack of agreement in the segmentation of the wound site
ROI appears to be differences in opinion between the two reviewers in regard to how
closely to follow temperature profiles, with reviewer 2 choosing to follow the temperature
contours more closely during the segmentation process and reviewer 1 choosing to focus
on the broader shape of the wound site ROI. This is an area that can be addressed through
additional training.
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Figure 8. Distribution of segmentation agreement for wound masks between two reviewers.

Figure 9. Cont.
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Figure 9. Differences in agreement: (A) poor (less than 50%); (B) agreement between observers (in
the range 80–85%).

Results from the original study [3] using logistic regression between subjectively
drawn ROIs for wound and abdomen were calculated at days 2, 7, 15 and 30 after surgery.
For each 1 ◦C widening of temperature between wound and abdomen sites (wound minus
abdomen temperature difference, WATD), there was a two-fold raised odds of SSI at day 2
(odds ratio (OR) 2.25, 95% CI 1.07–5.15; p = 0.034) with 70.1% of cases correctly classified.
Improved model performance was noted at later times after surgery such that by day 7;
78.7% of cases were correctly classified (OR 2.45; 95% CI, 1.13–5.29 p = 0.023).

By comparison, results from the present study revealed that temperature extracted
from abdomen and wound masks provided by two reviewers showed variable impact
on model performance. For example, at day 2, temperature differences between the two
ROIs (WATD) extracted from masks created by reviewer 1 showed 76% accuracy at day
2 (a difference of 5% compared with the original result, 70.9%). For reviewer 2, day 2
results obtained from the masks for abdomen and wound were 74% accurate to predict SSI
outcome, a difference of 3% with respect to the original prediction for development of SSI.

2.8. Feature Extraction

(a) ROI features

The key temperature features extracted from masked areas were: mean, maximum,
and minimum values of abdomen and wound ROIs as well as the average temperature
difference between the two ROIs (WATD) (Table 1). Poor agreement between the two
reviewers particularly affected the mean of wound ROIs.



Appl. Sci. 2023, 13, 3992 10 of 14

Table 1. Difference in ROI features for abdomen and wound ROIs between reviewer 1 and reviewer
2 for data extracted at day 2 and day 7.

Feature Mean Difference
between Reviewers (◦C) Standard Deviation (◦C)

Day 2 Abdomen Mean 0.04 0.04

Day 2 Wound Mean 0.12 0.10

Day 2 ROI Temperature Difference 0.11 0.09

Day 7 Abdomen Mean 0.07 0.07

Day 7 Wound Mean 0.10 0.08

Day 7 ROI Temperature Difference 0.12 0.109

(b) Cold spot features

One hypothesis was that women who proceeded to develop SSI after caesarean section
would show the appearance of cold spots within the wound (as an early signature or
prodrome of SSI). To test this hypothesis, the combined masks of both reviewers were
used to determine the wound region of interest, and then the regional minima (i.e., spots
within the ROI that were notably cooler than the surrounding area) were calculated using
MATLAB. The number and total area (in pixels) of each of these cold spots was then
calculated for every patient at each time point. Table 2 shows the mean and standard
deviation of these features.

Table 2. Number of cold spot features and wound area (pixels) at follow-up points; day 2, 7 and 15
after surgery (n = 50 women).

Feature
Non-SSI SSI

Mean Std Mean Std

Day 2 Number of cold spots 2.8 3.5 4.0 2.9

Day 2 Area of cold spots (pixels) 48.2 71.6 75.3 51.6

Day 7 Number of cold spots 3.7 4.3 3.4 3.5

Day 7 Area of cold spots (pixels) 85.0 147.2 45.4 50.8

Day 15 Number of cold spots 2.4 2.5 3.3 4.0

Day 15 Area of cold spots (pixels) 53.2 65.5 86.4 99.1
std, standard deviation. Thermal camera, focal plane array, uncooled microbolometer, pixel resolution 320 × 240
(76,800 pixels); pixel size 1.39 mm at 1 m distance from target.

3. Discussion

In this study cohort of obese women, we have used caesarean section as a model of acute
incisional surgery. The main objective, to refine and improve scope for image analysis using
AI-based segmentation, has been achieved, in that it is now possible to understand the
extent to which the wound infection outcomes observed in the original study are altered by
a different set of reviewers following a brief training overview. Manual segmentation of
paired regions produced boundary masks, each with a set of per-pixel temperature data.
Whilst the abdomen covered a larger area of interest, agreement between reviewers was
good with only four masks having less than 70% agreement. By contrast, segmentation
of the wound required attention to jagged edges and uneven margins, which clearly
exaggerated subjectivity of opinion as to where the boundary between wound and healthy
skin lay. This led to the majority of wound pair masks showing poor agreement; 30% of
mask pairs only had a similarity coefficient of ≥0.7. Examining the thermal images and
corresponding masks for the least agreement in segmentation of the wound ROI in Figure 8a,
a key factor appears to be the ability of the reviewer to closely follow the temperature
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contours when undertaking segmentation of the region of interest. This could potentially be
somewhat mitigated by providing more guidance in respect to the segmentation approach
that the reviewers should use. However, this does highlight the subjective nature of this
segmentation process.

Whether a longer training session would have improved the result such that reviewers
would have produced masks that were more perfectly aligned is unclear, but what we
do see (as shown in Table 1) is that differences in the segmentation process and resultant
mask shape and size leads to differences in the temperature values derived from each mask.
When comparing both novice reviewers’ wound and abdomen segmentation results to
produce a delta value (wound minus abdomen temperature, WATD) against the original
segmentation by an experienced clinician [3], the confirmed SSI events differed (at day 2)
by 5% and 3% for reviewer1 and reviewer2, respectively.

Given that the average wound ROI temperature difference between women in the
original study [3] (who later developed an SSI, compared with those who did not and who
went on to heal without complications) was 0.2 ◦C at day 2 and 0.1 ◦C at day 7, better
agreement of the wound area masks is needed between the reviewers to provide confidence
in the ability to use these temperature features from the wound in a predictive capacity. We
can see that the mean temperature difference between reviewers for the abdomen ROI, where
there was a much more consistent (and more regular) mask shape, had better agreement
than that for the wound ROI, where the mask shape was irregular and inconsistent. This
indicates that for the larger (abdominal) ROI, the related temperature features are more
robust to segmentation inconsistencies occurring between the reviewers than for irregular-
shaped areas such as the wound.

These ROI temperature differences, and the knock-on effect this has on the consistency
and performance of the logistic regression classification performance, shows the need for
an independent and objective approach to ROI segmentation. Although we believe that
this may partly be addressable by additional training, it is difficult to clearly identify the
regions of interest in thermal images even for an experienced clinician without a true colour
image overlay.

In this study, a relatively large image sample size was used in this medical machine
learning segmentation application. Smaller sample sizes have been used by others. For ex-
ample, Ronnenberger, et al. [17] used 30 images for training of their UNet model. It is
recognised, however, that there are limitations with respect to the number of reviewers
involved. Nevertheless, their performance with respect to the input (image) data in the first
stage of algorithm development reveals a lack of correspondence (agreement) of the ROI
indicating the need for further work to refine the characteristics of output labels (masks)
before an unsupervised algorithm works effectively to learn patterns and features of the
wound, i.e., those wounds destined to heal without complications and those that fail to
heal optimally.

Nevertheless, it was clear from Table 2 that women who proceeded to develop an SSI
had a larger number of cold spots within the wound at day 2 (by 1.07 on average) and
that these cold spots covered a large area of the wound (23.92 pixels greater on average).
Interestingly, the difference in number of cold spots was much lesser at day 7 (3.29 for
women who developed an SSI vs. 2.79 for women who did not) and the number of cold
spots was nearly the same at day 15 (2.69 for patients who developed an SSI vs. 2.39 for
patients who did not). However, whilst the descriptive statistics in Table 2 indicated that
the number and extent of cold spots within the wound might have predictive capability,
univariate logistic regression analysis of each of these features was inconclusive for this
sample size studied. An example is included here, in Figure 10.



Appl. Sci. 2023, 13, 3992 12 of 14

Figure 10. Cold spots in the wound site at day 2 of a woman who proceeded to develop SSI after
caesarean section (A) and a woman with an uncomplicated wound recovery period (B).

The current technological challenge for wound imaging automation is in developing
independent methods to view and describe visual features. Clinicians see a mix of features
over time. However, if clues or signatures as to the likelihood of downstream complications
can be provided as an aid to diagnosis and prompt treatment, there is benefit in progressing
with wound imaging automation. From a clinical viewpoint, however, there are obstacles,
especially as the long-held traditions of simply looking at the wound with an ‘experienced
eye’ is both comfortable and accepted practice worldwide; one which has functioned for
centuries. As a motivation to be fulfilled, it became clear that an independent method for
predicting wound complications, specifically SSI, was needed once we had observed that
visual inspection and opinion of the wound by experienced clinicians showed minimal
agreement even amongst the most experienced clinicians. This lack of agreement in the
visual assessment of a wound, whether by verbally reporting what is seen at the time of
inspection or by use of digital photography [18,19], is concerning and resonates with current
concerns across the UK National Health Service (NHS) of the unwarranted variations in
medical practice, now a national programme for improvement (Getting it right first time
(GIRFT) [20].

With reference to wound care, standards and treatments remain plagued by myths
and inconsistency [21], resulting in escalating treatment costs, particularly those complex
chronic wounds where identification and assessment of slow or stalled healing continue to
be a management challenge. It is a testament to the issues driving the need for improvement
that wound care recently became a topic of debate in the House of Lords.

To supersede the conventional ‘wisdom’ of what clinicians recognise as a problem
and then to translate this learning to specific wound features via AI automation requires
a detail of the many layers of judgement that is made almost unconsciously many times
a day. This backdrop to wound care nationally, and the recognition that new diagnostic
technologies are needed in the setting of wound care [22] is a recommendation aligning
well to the need to make progress in wound assessment.

It is now clear from a number of reports that rapid developments in computer pro-
cessing will revolutionise automation of wound tracking and assessment to improve the
ability to predict wound healing outcomes. However, although automated documentation
of wound metrics such as depth, size and volume indicate wound heling progress [23]
with devices available commercially (https://www.researchandmarkets.com/reports/55
78241/digital-wound-measurement-devices-market-by#product--summary, accessed on
15 March 2020), AI-based systems for pattern recognition and feature extraction for wound
healing prognosis are still in their infancy [24].

Automation and wound image recognition starts with the region of interest; including
aspects that should be included and those that should be omitted in the analysis. Focus is
then on ‘object’ definitions that warrant classifying as predictors of complications. Turning
to the wound as an image obtained during the course of routine clinical care, there remains
a need for the clinician to interpret the image and to identify ‘objects’ that can then be
classified to a specific pathological category, understood by the clinician and relevant to the
patients presenting condition. This is the case irrespective of how the digital wound picture
or scan was derived. For example, in the event of imaging using computed tomography

https://www.researchandmarkets.com/reports/5578241/digital-wound-measurement-devices-market-by#product--summary
https://www.researchandmarkets.com/reports/5578241/digital-wound-measurement-devices-market-by#product--summary
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(CT) or Colour Doppler [25]). In this study, we have focused on infrared thermography of
acute incisional wounds where automation has potential for predicting healing outcomes
providing that the segmentation process is reliable.

As a starting point, image data were already available as infrared maps of the abdomen
and wound site through laborious image post processing undertaken by a single investi-
gator with many years of experience of both wound assessment and thermal imaging. By
introducing two novice reviewers to review the images, the problem inherent in technology
development has been highlighted; accurate segmentation and image boundaries need
to be established at the earliest stages of image automation. These are based on the way
people recognize objects and features that ultimately provide a route to reliable, indepen-
dent wound healing risk stratification and ultimately diagnostic or prognostic signatures
of later complications.

4. Conclusions

From a large medical image dataset acquired during a prospective thermal imaging
study of women with post-operative wounds, methods were developed to refine the
original, manual, segmentation process, by introducing granular, pixel-level image labelling.
Undertaken by two independent reviewers with no previous experience of wound imaging,
reviewer performance, with respect to the input (image) data in the first stage of algorithm
development, reveals that the more regular (ellipse)-shaped abdomen, with its ‘smooth’
outlines, produces a better agreement between raters than the irregular-shaped wound
region; in this study, it was the incisional wound area. The differences observed between
reviewers with respect to segmentation, whilst small in terms of temperature values, had
an impact on predicted wound outcome. The differences observed between the raters was
equivalent to the differences observed in the original study between event (SSI) and no
event (uncomplicated wound healing).

With regard to feature extraction from within the wound area, thermal cold spots
representing low temperature features were present; the pixel area of cold spots was
greatest at day 2 for those who later developed SSI.

In summary, segmentation performed by different reviewers has the potential to
introduce errors, the magnitude of which could impact primary outcome measures; in this
study, it was wound complications (infection) versus no infection. This work indicates
the need for further refinement of the characteristics of output labels (masks) before an
unsupervised algorithm works effectively to learn patterns and features of the wound.
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