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Abstract: Trace lines on the outcrop of a rock mass are usually the primary data source for the
estimation of rock structure. It is important to obtain the data of trace lines precisely. Photogrammetry
is well suited to finish this task. However, this is mainly conducted by commercial software, and
not every researcher has easy access to the method of digital photogrammetry. This study aims to
provide researchers with a low-cost method of building a photogrammetry-based textured 3D point
cloud model (FMBPM) and display the applicability of the method to estimating the rock structure of
rock masses. In the FMBPM, a digital single-lens reflex camera with a prime lens and a total station
are the necessary hardware employed to capture images and measure the coordinates of feature
points. A coordinate transformation means of converting model coordinates to physical coordinates
was introduced. A program for calculating a joint orientation based on the coordinates of inflection
points on the trace line of the joint was developed. A section of a rock slope was selected as a case to
show the procedures and the practicability of the FMBPM. The textured 3D point cloud model of
the rock slope was successfully built, and the rock structure of the rock slope was analyzed using
the joint disk model generated based on the trace lines extracted from the point cloud model. The
results show that: (1) the precision of the point coordinates of the textured 3D point cloud model
could achieve 3.96 mm, taking the data of the total station as the reference; (2) the rock structure
of the slope is good, according to the value of the rock quality designation; (3) the new method is
applicable in engineering practices.

Keywords: photogrammetry; rock structure; coordinates transformation; joint disk model

1. Introduction

The mechanical and hydraulic properties of rock masses are very complex, considering
the existence of joints [1]. Rock structure directly reflects the development of joints, and it
is an essential index in rock mass classification systems, such as RMR, Q, and RMi [2]. The
geometrical parameters of joints, such as size, orientation, density, and spacing, significantly
influence the rock structure of a rock mass [3,4]. Due to the lightproof characteristic of
rock masses, most of the parameters are inferred according to the information of joints on
outcrops rather than directly measured or observed. Trace lines are the intersection lines of
joints and an exposed surface of a rock mass, and they are usually the primary data source
for the estimation of rock structure [5]. Consequently, it is essential to obtain the data of
trace lines precisely.

There are two main methods to obtain the data of trace lines: contact field investiga-
tions and non-contact remote sensing investigations [6]. A geological compass and a tape
are the main measuring equipment in a contact field investigation, and the investigation
results of joints can be acquired immediately. The method is applicable when the number
of joints is small and the site of joints can be easily reached by surveyors. In recent years,
rock engineering has become so large that many areas of rock exposures are manually
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inaccessible. Yet, the detailed rock structure information of the inaccessible areas is also
urgently needed to ensure the stability of the engineering. Consequently, remote sensing
techniques are being used increasingly, which permits a safe, fast, comprehensive, and
accurate acquisition of information on inaccessible rock exposures and increases engineer
safety. Digital photogrammetry and laser scanning are two main methods of remote sens-
ing techniques related to rock engineering, both of which can generate high-precision 3D
point clouds of research objects [7–10]. Laser scanning methods generate a point cloud
model using time-of-flight technology [11]. In comparison, digital photogrammetry meth-
ods calculate the spatial coordinates of a point based on its planar geometric position in
different photographs. Many studies related to rock structure extracting and geological
hazard analysis have been conducted based on the two methods. Chen et al. [6] presented
a method for evaluating the development of the joints on rock tunnel faces based on a
3D point cloud model obtained by photogrammetry. Kaminski et al. [12] estimated the
dynamics and sizes of landslides by comparing digital terrain models, which are generated
photogrammetrically from stereo pairs of images. Cheng et al. [13] demonstrated the
effectiveness of Unmanned Aerial Vehicle photogrammetry in the remote sensing and
assessment of landslide behavior through a case study of a landslide that occurred in
Guizhou, China. Nappo et al. [14] provided a tool for the semi-automatic damage as-
sessment of roads in landslide-affected areas to support the risk analysis and planning of
mitigation measures based on photogrammetry. Buyer et al. [15] determined the block size
and shape distributions according to a textured digital surface model of an investigated
outcrop. Menegoni et al. [16] detected joints on the surface of a rock slope based on digital
photogrammetry and a remotely piloted aircraft system. Liu et al. [5] searched the dan-
gerous parts of a rock slope using block theory based on photogrammetry. Lato et al. [17]
established an online shared repository of photogrammetry data and light detection and
ranging (LiDAR) for researchers. Sturzenegger et al. [18] investigated the applicability of
photogrammetry and LiDAR to the derivation of joint intensity, mean trace length, and
block size.

Compared with laser scanning, photogrammetry has the advantages of lower equip-
ment cost and better portability [19,20]. However, the process of generating point cloud
models is conducted by commercial software, in most studies, after rock mass photographs
are collected; thus, not every researcher has easy access to the method of digital pho-
togrammetry. This study aims to provide researchers with a low-cost method of building a
photogrammetry-based textured 3D point cloud model (FMBPM) of the exposures of rock
masses and to illustrate the applicability of the method to estimating the rock structure
of rock masses. The paper is organized as follows: (1) the primary geological conditions
of a rock slope at the study site are introduced, a section of which is selected to display
the processes and to verify the applicability of the FMBPM; (2) the processes of collecting
photographs and generating textured 3D point cloud models are proposed; (3) a coordinate
transformation means of converting model coordinates to physical coordinates is supplied;
(4) the accuracy of the textured 3D point cloud model is verified, and trace lines of the
model are extracted; (5) a joint disk model is built for estimating the rock structure of the
section of the rock slope.

2. The Point Cloud Model Generating for the Study Site

The study site is located in Dalian City, Liaoning Province, northeast of China. The
city has plenty of rain, sunshine, and lush vegetation. The risk of rockfalls is the primary
potential geological disaster influencing the stability of the study site. A rock slope at the
site is adjacent to the Fengcai road and faces the Longwangtang reservoir (Figure 1), a
section of which was selected as the case study to illustrate the processes of the FMBPM
and to verify the applicability of the FMBPM to rock structure estimation. The studied area
of the slope covers a rectangular region with dimensions of approximately 29 m in length
and 7 m in height. The joints in the slope are well-developed, and the rock structure of the
slope is generally blocky.
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A NIKON D7100 digital single-lens reflex camera with a 35 mm lens and a South 
NTS-362R total station were employed to capture images and to measure the coordinates 
of feature points. The maximum pixel value of the NIKON D7100 is 24,000,000 (4000 in 
height and 6000 in width). The precision of the distance measurement of the total station 
is ±(3 + 2 × 10 − 6D) mm. D is the distance between the total station and a measuring point, 
and it is not greater than 30 m in this case. Therefore, the precision of the distance is less 
than 3.6 mm in theory. The accuracy of angle measurement is 2 s, which means the error 
of the coordinates of a measuring point is theoretically less than 0.291 mm when D is less 
than 30 m.  

Digital photogrammetry calculates the spatial coordinates of a point based on its pla-
nar geometric positions in different photographs. Hence, the same feature point of the 
slope should be presented in at least two images. A total of 194 images of the slope were 
taken from different camera positions. The textured 3D point cloud model of the slope 
was generated by Meshroom, which is a free, open-source 3D reconstruction software 
(https://alicevision.org/#meshroom, accessed on 20 December 2021). The pipeline of pho-
togrammetry of Meshroom was used. The processes of generating textured 3D point cloud 
models of study subjects from images in the pipeline are highly automatic. The steps re-
lated to image processing, such as feature extracting, image matching, feature matching, 
meshing, and texturing, were all done automatically. Users can modify the degree of fine-
ness of a 3D point cloud model; the finer the point cloud model, the longer it takes to 
generate. The textured 3D point cloud model of the study site includes 3,566,492 vertices 
and 7,127,652 faces, and it took about 15 h to create the model. The CPU model of the 
computer is an Intel(R) Core(TM) i7-9700 with 3.00 GHz, and the graphics card model is 
Nvidia Quadro P1000 (4 GB). It is worth noting that the surface of the rock slope where it 

Figure 1. Location of the study site.

A NIKON D7100 digital single-lens reflex camera with a 35 mm lens and a South
NTS-362R total station were employed to capture images and to measure the coordinates
of feature points. The maximum pixel value of the NIKON D7100 is 24,000,000 (4000 in
height and 6000 in width). The precision of the distance measurement of the total station is
±(3 + 2 × 10 − 6D) mm. D is the distance between the total station and a measuring point,
and it is not greater than 30 m in this case. Therefore, the precision of the distance is less
than 3.6 mm in theory. The accuracy of angle measurement is 2 s, which means the error
of the coordinates of a measuring point is theoretically less than 0.291 mm when D is less
than 30 m.

Digital photogrammetry calculates the spatial coordinates of a point based on its
planar geometric positions in different photographs. Hence, the same feature point of
the slope should be presented in at least two images. A total of 194 images of the slope
were taken from different camera positions. The textured 3D point cloud model of the
slope was generated by Meshroom, which is a free, open-source 3D reconstruction software
(https://alicevision.org/#meshroom, accessed on 20 December 2021). The pipeline of
photogrammetry of Meshroom was used. The processes of generating textured 3D point
cloud models of study subjects from images in the pipeline are highly automatic. The steps
related to image processing, such as feature extracting, image matching, feature matching,
meshing, and texturing, were all done automatically. Users can modify the degree of
fineness of a 3D point cloud model; the finer the point cloud model, the longer it takes to
generate. The textured 3D point cloud model of the study site includes 3,566,492 vertices
and 7,127,652 faces, and it took about 15 h to create the model. The CPU model of the
computer is an Intel(R) Core(TM) i7-9700 with 3.00 GHz, and the graphics card model is
Nvidia Quadro P1000 (4 GB). It is worth noting that the surface of the rock slope where it is
not directly covered by vegetation can be modeled by adding camera positions (Figure 2).

https://alicevision.org/#meshroom
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The covered part of the surface must be exposed in images taken from the added camera
positions. Figure 3 is the 2D and 3D comparison image of rock structure identification.
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3. Coordinate Transformation

It should be noted that in Meshroom, only the relative positions of points are accurate,
rather than the physical coordinates; therefore, point cloud models built by Meshroom must
be scaled and rotated before conducting measurements. Meshlab is open-source software
for processing and editing 3D point cloud models (https://www.meshlab.net/#download,
accessed on 12 January 2022), and it provides a series of tools for editing, cleaning, healing,
inspecting, rendering, texturing, and converting meshes. The postprocessing of coordinate
transformation and trace line extraction were finished in Meshlab after the textured 3D
point cloud model had been built in Meshroom.

The coordinates of at least four feature points on the slope should be measured
simultaneously in Meshlab and in the field (denoted as CF and CT, respectively) to obtain
the transformation matrix. CF can be directly extracted in Meshlab, but CT needs to be
measured with a total station in the field. The processes of the transformation can be
summarized by Equation (1).

Tranmat =
[

R · S T
O 1

]
(1)

In Equation (1), Tranmat is a 4-by-4 matrix, which represents the total transformation
of the 2 sets of paired points; R is a 3-by-3 matrix representing the rotation transformation;
S is a scalar, which represents the scale factor; T is a 3-by-1 matrix, which signifies the
translation; O is a 1-by-3 zero matrix. The matrixes of R and T, and the scale factor of S can
be solved according to CF and CT, which are the coordinates of two sets of paired points
(Equations (2) and (3)). Each set of the points can be represented by a 4-by-3 matrix. The
Nth row in the matrixes consists of the coordinates of the Nth point (N is not greater than 4).

CF =


xF1 yF1 zF1
xF2 yF2 zF2
xF3 yF3 zF3
xF4 yF4 zF4

 (2)

CT =


xT1 yT1 zT1
xT2 yT2 zT2
xT3 yT3 zT3
xT4 yT4 zT4

 (3)

The centroids of CF and CT can be calculated by Equations (4) and (5), respectively.
The mean values of each set of coordinates should be translated to the origin of its own
coordinate system; this can be done by subtracting from the point coordinates of the
centroid. Equations (6) and (7) correspond to this process.

CFCEN1j =
1
4

4

∑
i=1

CFij (4)

CTCEN1j =
1
4

4

∑
i=1

CTij (5)

CFCij = CFij −


CFCEN
CFCEN
CFCEN
CFCEN


ij

(6)

CTCij = CTij −


CTCEN
CTCEN
CTCEN
CTCEN


ij

(7)

https://www.meshlab.net/#download
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In Equations (4)–(7), j ranges from 1 to 3; CFCEN and CTCEN are the mean values
of CF and CT, respectively; CFC and CTC are the coordinate matrixes of CF and CT,
respectively, after translation to the origin of their own respective coordinate system. The
scale factor can be calculated by Equations (8)–(10).

SF =

(
1
4

4

∑
i=1

3

∑
j=1

CFC2
ij

)0.5

(8)

ST =

(
1
4

4

∑
i=1

3

∑
j=1

CTC2
ij

)0.5

(9)

S =
ST

SF
(10)

In Equations (8)–(10), SF and ST are the size factors of CF and CT, respectively.

CFCSij =
CFCij

SF
(11)

CTCSij =
CTCij

ST
(12)

In Equations (11) and (12), CFCS and CTCS are the matrixes normalized by size
factors of CF and CT, respectively. The rotation matrix of R can be computed by
Equations (13) and (14) [21].

H = CFCSTCTCS (13)

R =
(

HTH
)0.5

H−1 (14)

In Equations (13) and (14), H is a temporary matrix for the calculation of R. The
translation matrix is calculated by Equations (15) and (16).

Wij = CTij −
(

S ·
3

∑
k=1

(RjkCFT
ki)

)T

(15)

Tj1 =
1
4

4

∑
i=1

Wij (16)

In Equations (15) and (16), W is a temporary translation matrix for the calculation
of T. The coordinates of point cloud models generated by Meshroom can be converted
to a physical size according to the transformation matrix of Tranmat in Meshlab. The
corresponding MATLAB code for the calculation of Tranmat is provided in Appendix A.
The four control points on the slope for the calculation of Tranmat are shown in Figure 4.
Because Tranmat is a 4-by-4 matrix, the coordinates of a point in Meshroom should be
modified to the form of (x, y, z, 1) before conducting the transformation. The textured 3D
point cloud model of the rock slope at the physical scale is shown in Figure 4.
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4. The Accuracy Verification of the 3D Point Cloud Model

The accuracy of the textured 3D point cloud model includes two aspects: length
accuracy and angle accuracy. The exposed surface of the slope fluctuates obviously. It is
inconvenient to conduct measurements with a compass and a tape; therefore, the accuracy
verification is conducted with a total station. The length accuracy is verified directly by
comparing the distance between two points obtained by Meshlab and the total station.
The angle accuracy is verified by comparing the orientations of joints obtained by the two
methods. The orientations are calculated according to the normal vectors of the joint planes,
which can be solved by at least three non-collinear points. Taking Figure 5 as an example,
P1, P2, and P3 are the inflection points of a joint, and they are non-collinear. A fitting plane
(shown as a blue dash circle in Figure 5) can be obtained by the least square method with
the coordinates of the three inflection points, and then the normal vector (n (xn, yn, zn)) of
the fitting plane can be calculated. The dip and dip direction (corresponding to β and α,
respectively, in Figure 5) of the fitting plane can be inferred based on the normal vector of
n. The dip direction is defined as the angle between north and the horizontal projection of
the normal vector, which ranges from 0 to 360. The dip is the dihedral angle between the
horizontal plane and the joint, which runs from 0 to 90.
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As can be seen from the above introduction, the measurement accuracy of the total
station is vital for the accuracy verification of the textured 3D point cloud model. An
outdoor experiment was carried out to obtain the actual measurement accuracy of the
total station and to verify the applicability of the calculation method of joint orientations.
The main equipment used in the experiment included a total station, tripod, compass,
tape, vernier caliper, and measuring pad. Seven reflective stickers were attached to the
measuring pad, denoted as A, B, C, D, E, F, and G. Figure 6 displays the main equipment
used in the experiment. The outdoor experiment was conducted as the following steps:

(1) Identify the specific model and brand of the total station to be tested and make sure
that it is properly calibrated and in good working condition.

(2) Choose a suitable outdoor site for the experiment, taking into account factors such as
the terrain, weather conditions, and availability of reference points.

(3) Set up the total station at a fixed position and level it carefully. Use a tripod and make
sure that the instrument is stable and properly oriented.

(4) Place the measuring pad at a known distance from the total station and mark it clearly
with a reflective target or prism.

(5) Take multiple measurements of the measuring pad using the total station, varying the
horizontal and vertical angles and the distance. Record the measurements carefully
and accurately, taking into account any sources of error or uncertainty.

(6) Repeat the measurements at different times of day or under different weather condi-
tions to assess the effect of environmental factors on the accuracy of the total station.

(7) Compare the measured distances and angles with the actual values of the measuring
pad obtained from a reference source with a vernier caliper.

(8) Calculate the errors and uncertainties in the measurements and analyze the re-
sults to determine the actual measurement accuracy of the total station under the
given conditions.
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The measuring pad was placed 10 m away from the total station in the directions of
east, west, south, and north. In the direction of west, 4 different distances of 10 m, 30 m,
50 m, and 100 m were selected. A total of seven different combinations of direction and



Appl. Sci. 2023, 13, 4977 9 of 19

distance were employed to verify the accuracy of the total station. Table 1 shows the results
of the outdoor experiment. From the table, the following points can be drawn. First, the
absolute values of the dip direction differences for the 2 measuring methods range from
0.20 to 1.90 degrees, and the mean value at the distance of 10 m is 0.69 degrees. The value
generally rises following the increase of the measuring distance. Second, the absolute
values of the dip differences range from 0.08 to 1.25 degrees, and the mean value of 10 m is
0.315 degrees. The value is smaller compared with the data of the dip direction difference
at the same distance. The same trend of the value with distance can also be observed here.
Third, the absolute values of the distance differences range from 0.32 to 1.33 mm, and the
mean value at 10 m is 0.51 mm. The value basically increases following the rise of the
measuring distance. Fourth, because the distance between the slope surface and the total
station is not greater than 30 m, the absolute values of the differences of the dip direction,
dip, and distance are not higher than 1.19, 0.83 degrees, and 0.82 mm, respectively (taking
the largest error values at the distances of 10 and 30 m). The results mean that the accuracy
of the total station is high enough as the reference for verifying the accuracy of the 3D
point cloud model, and the method of calculating the orientations of joints according to the
coordinates of points is applicable.

Table 1. Results of the outdoor experiment for the accuracy verification of the total station.

No. 1 2 3 4 5 6 7

Distance between the total station and the measuring
pod (m) 10 10 10 10 30 50 100

Orientation obtained by
compass (◦)

Dip direction 277 9 93 192 285 274 313
Dip 53 53 54 51 50 50 54

Orientation calculated from
coordinates (◦)

Dip direction 277.20 10.19 93.78 192.59 286.09 275.90 314.88
Dip 52.63 53.67 54.14 51.08 50.83 50.55 55.25

Distances obtained by vernier
caliper (mm)

AB 174.62
BC 178.54
CD 246.22
DE 175.02
EF 173.64
FA 240.10
AG 211.66
GD 217.22
CG 215.44
GF 209.22

Distances calculated from
coordinates (mm)

AB 174.39 174.58 174.03 174.59 173.92 174.11 172.47
BC 178.32 177.82 179.29 178.43 178.30 178.02 176.86
CD 245.71 246.10 245.32 246.45 246.28 244.90 249.10
DE 175.01 174.88 174.83 174.90 174.89 175.24 175.44
EF 173.23 173.27 173.63 173.19 173.08 172.57 173.98
FA 239.96 240.31 239.07 241.05 239.90 240.12 239.61
AG 212.09 212.62 210.08 212.70 211.36 211.44 213.91
GD 217.07 217.09 217.77 217.10 217.42 216.48 216.26
CG 214.79 213.35 216.82 215.17 215.27 214.66 215.01
GF 208.78 209.78 208.04 208.93 208.40 209.00 207.49

Absolute values of orientation
differences (◦)

Dip direction 0.20 1.19 0.78 0.59 1.09 1.90 1.88
Dip 0.37 0.67 0.14 0.08 0.83 0.55 1.25

Absolute values of distance
differences (mm)

AB 0.23 0.04 0.59 0.03 0.70 0.51 2.15
BC 0.22 0.72 0.75 0.11 0.24 0.52 1.68
CD 0.51 0.12 0.90 0.23 0.06 1.32 2.88
DE 0.01 0.14 0.19 0.12 0.13 0.22 0.42
EF 0.41 0.37 0.01 0.45 0.56 1.07 0.34
FA 0.14 0.21 1.03 0.95 0.20 0.02 0.49
AG 0.43 0.96 1.58 1.04 0.30 0.22 2.25
GD 0.15 0.13 0.55 0.12 0.20 0.74 0.96
CG 0.65 2.09 1.38 0.27 0.17 0.78 0.43
GF 0.44 0.56 1.18 0.29 0.82 0.22 1.73

Mean value (mm) 0.32 0.53 0.82 0.36 0.34 0.56 1.33
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The coordinates of a total of 30 feature points (corresponding to the numbers 1 to 30)
on the slope (see Figure 4) were measured in Meshlab (after conducting the coordinate
transformation) and in the field simultaneously. Feature points 1 to 4 are control points
that were used for calculating the transformation matrix, while feature points 5 to 30 were
employed for the accuracy verification of the 3D point cloud model. The mean value of
the distances of the feature points 5 to 30 between the 2 sets of coordinates is 3.96 mm.
Tables 2 and 3 list the length and the angle accuracy verification results, respectively, for the
3D point cloud model. As can be seen from the 2 tables, the absolute values of the length,
dip, and dip direction differences calculated based on the 2 sets of coordinates are 1.57 mm,
0.38 degrees, and 0.42 degrees, respectively; therefore, the accuracy of the textured 3D point
cloud model is high enough for the engineering application. It should be noted that the
accuracy listed above is taking the coordinates obtained by the total station as a reference.
The real accuracy of a textured 3D point cloud model is controlled by the following factors:
the accuracy of the total station, the number and the quality of the images of the rock mass,
the grid density of the point cloud, and the fineness of the texture of the rock mass.

Table 2. Results of the length accuracy verification for the textured 3D point cloud model.

No.
Start Point

Series
Number

Endpoint
Series

Number

Length Calculated Based
on Coordinates Extracted

from Meshlab (m)

Length Calculated Based
on Coordinates Extracted

from Total Station (m)

Absolute Value of
Difference of Two

Lengths (mm)

1 5 18 20.9986 21.0002 1.6
2 6 19 20.9473 20.9466 0.7
3 7 20 21.0564 21.0564 0.0
4 8 21 7.5396 7.5405 0.9
5 9 22 6.3363 6.3389 2.6
6 10 23 5.5685 5.5653 3.2
7 11 24 7.2291 7.2286 0.5
8 12 25 7.2948 7.2932 1.6
9 13 26 11.5674 11.5693 1.9
10 14 27 9.8953 9.8936 1.7
11 15 28 6.6601 6.6637 3.7
12 16 29 4.3543 4.3546 0.3
13 17 30 4.6618 4.6601 1.7

Mean value 1.57

Table 3. Results of the angle accuracy verification for the textured 3D point cloud model.

No. Point Series
Numbers

Orientation Calculated
Based on Coordinates

Extracted from Meshlab (◦)

Orientation Calculated Based on
Coordinates Obtained from

Total Station (◦)

Absolute Value of
Difference of Two

Orientations (◦)

Dip Dip Direction Dip Dip Direction Dip Dip Direction

1 5, 6, 7 68.2 157.2 67.7 157.5 0.5 0.3
2 10, 11, 12 68.7 203.1 68.4 203.7 0.3 0.6
3 15, 16, 17 86.5 157.2 86.7 157.2 0.2 0.0
4 18, 19, 20 78.9 342.3 79.6 341.8 0.7 0.5
5 21, 22, 23 71.2 153.5 71.4 152.8 0.2 0.7

Mean value 0.38 0.42

5. The Rock Structure Analysis for the Rock Slope

Rock structure is a composite indicator for reflecting the development of joints in a
rock mass, which can be evaluated by joint spacing, density, orientation, and size. In most
cases, this information has to be inferred according to the trace lines exposed on the surface
of a rock mass. Trace lines are the intersection lines of joints and the surface of a rock
mass. Trace lines can be clearly identified in point cloud models. The study involved a
manual process of extracting trace lines by identifying multiple inflection points along a



Appl. Sci. 2023, 13, 4977 11 of 19

single trace line, connecting them, and obtaining the final trace line. Joint models, which
simulate the development of joints in rock masses, can be built based on this information.
No obvious difference between the strike length and the dip length of joints was observed
by Robertson [22] through analyzing a mass of joint data collected in the field. This finding
suggests that joints are approximately equidimensional. Baecher et al. [23] developed a
joint disk model, in which joints are simplified into equidimensional planar disks. Due to
its good applicability, the joint disk model is widely used in the aspects of simulating the
mechanical and hydraulic behavior of rock masses [24–27].

The geometry of joint disks in a model is mainly governed by three parameters:
orientation, diameter, and density. Because the number of joints in a rock mass is often
very large, the parameters of the joints used in a model are generated by the group. Four
main steps are needed to build a joint disk model for a rock mass. First, joints collected
on the outcrop of the rock mass are divided into different groups. Second, joint density is
calculated according to the relative position of joints and sampling windows on the outcrop.
Third, the diameters of joint disks are inferred based on the distribution of the trace lengths.
Fourth, the orientations of joint disks are generated on the basis of the joint density and the
orientation distribution of joints on the outcrop. It should be noted that all the steps are
executed based on the data of joints collected on the outcrop, and steps 2 to 4 are carried
out by the joint group.

A total of 2993 traces on the rock slope were artificially extracted from the textured 3D
point cloud model in Meshlab. The study involved a manual process of extracting trace
lines by identifying multiple inflection points along a single trace line, connecting them,
and obtaining the final trace line. The software currently cannot automatically discriminate
between lines and areas in 3D point cloud models, and this work was done manually
instead. It is preferred that joints be automatically extracted and identified in the future.
The lengths of the traces range from 0.01 to 12.16 m. Figure 7 shows the distribution of the
traces on the slope. Each of the traces consists of dozens of inflection points, the coordinates
of which are the basis of the joint parameter calculation. The orientation (including the dip
and dip direction) of a joint can be inferred based on at least three non-collinear points on
the joint.
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Joints were grouped according to their orientations. The orientation is composed of
two parameters: dip and dip direction. Fuzzy C-means was used to execute the grouping
when the number of joint sets ranged from 2 to 8 [28]. The number of joint sets was
determined according to a simplified Xie–Beni index, shown as Equation (17) [29]. The index
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has the advantages of simple programming, high precision, and good practicability [26].
The number of joint sets that minimize the index is the optimum number of joint sets.

SXBK =

N
∑

i=1

K
∑

vj=1
Iivj
(
arccos

∣∣xixvj + yiyvj + zizvj
∣∣)2

min
vj 6=vl

(
arccos

∣∣xvjxvl + yvjyvl + zvjzvl
∣∣)2 (17)

where SXBK is the simplified Xie–Beni set validity index when the N joints are divided into
K sets. (xi, yi, zi) are coordinates of the unit normal vector of joint i. (xvj, yvj, zvj) and (xvl, yvl,
zvl) are coordinates of the unit normal central vectors of sets vj and vl, respectively. Iivj is a
Boolean value, which is equal to 1 if the joint i belongs to the set vj; otherwise, it is equal to
0. Joints were grouped into three sets. Figure 8 is the poles diagram of the grouping results
for the 2993 traces. One pole represents the orientation of one joint, and the angle between
the pole and North represents the dip direction, while the distance between the pole and
the circle center represents the magnitude of the dip. Because the surface of a rock mass is
opaque, the joint density and diameters of joint disks were inferred using 3D topographic
sampling windows, which allow consideration of joint traces within buffer zones [18]. Due
to the fact that extracted traces in the 3D point cloud model are three-dimensional curves,
and the actual slope surface is also a three-dimensional surface, the buffer zone method
is adopted in this paper for trace information statistics. This method converts the linear
boundary of the circular measuring window into a surface boundary, counts the trace
information within and intersecting with the buff zone boundary, and then calculates the
distribution parameters of the joint diameter and density. Finally, a joint disk model can be
generated based on these parameters. Figure 9 shows the traces of joints by the set and the
employed 3D topographic sampling windows. Because the dimension of the studied slope
is greater in the horizontal direction, several topographic sampling windows were placed
at different locations of the slope (shown as Figure 9), and the average results were used.
The area density (ρA) and the mean trace length of joints (lt) in a sampling window were
inferred with Equations (18) and (19) [30].

ρA =
m

0.5πdc2 (18)

lt =
πdcn
4m

(19)

where m is the number of joint endpoints inside a circular sampling window; n is the
number of joint intersections with the circular scanline; dc is the diameter of the circular
sampling window. The mean diameter of joint disks was estimated with Equation (20) [31].

E(di
2) = 1.5E(l2

t ) (20)

where di is the diameter of a joint disk. The volume density of joints (ρA) was inferred with
Equation (21) [32].

ρv =
ρA

E(di) · sin(γ)
(21)

where γ is the angle between a topographic sampling window and the mean joint plane.
The number of joint disks in each of the joint sets can be determined according to the
volume density. The orientation and diameter distributions of the joint disks are shown
in Figure 10. The parameters of the joint disk model built for the rock slope are listed in
Table 4. The space distribution of the joint disks in each joint set and the final joint disk
model are shown in Figure 11.
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The rock quality designation (RQD), which is defined as the percentage of the lengths
of intact rock core pieces that are not shorter than 0.1 m, of the rock slope was calculated
according to the joint disk model. A total of 300 equally spaced boreholes were drilled in
the joint disk model, with 100 boreholes distributed on each of the planes of xy, yz, and
zx. Figure 12 displays the layout of the boreholes in the model. The lengths of core pieces
between two adjacent joints on the borehole lines were measured to calculate the value of
RQD. Figure 13 shows the distribution of the lengths of intact rock core pieces. The average
value of RQD is equal to 97.05%. According to Figures 12 and 13 and Table 4, the following
points can be concluded. (1) The joints in set 1 are generally subhorizontal, with the mean
dip value of 14.7◦, while the joints in sets 2 and 3 are nearly vertical, with the mean dip
values of 76.6◦ and 81.5◦, respectively. (2) The sizes of the joints in set 1 are the largest in all
3 joint sets, with a mean length of 0.67 m. (3) The rock structure of slope is good, according
to the value of RQD. (4) The method of photogrammetry-based rock structure analysis
proposed in this study is applicable in real rock engineering.
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Figure 10. Parameters of the three joint sets used in the joint disk model. (a) Poles diagram of the
joint disk orientations used in the joint disk model. (b) Diameter distributions of the three joint sets
used in the joint disk model.

Table 4. Parameters used in the joint disk model of the rock slope.

Joint Set Series Volume Density (m−3)

Orientation
(Fisher Distribution)

Diameter
(Lognormal Distribution)

Dip Direction (◦) Dip (◦) KF Mean Value (m) Variance (m2)

1 3.02 335.6 14.7 12.0 0.67 1.28
2 7.86 179.4 76.6 7.1 0.38 0.22
3 3.99 90.1 81.5 8.1 0.31 0.12
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Despite the promising results of this methodology in the study of rock mass struc-
ture, there are several limitations that need to be addressed. A main limitation is the
computational resources required to generate 3D point cloud models, which can be a
bottleneck when dealing with large outcrops. Additionally, the accuracy of the method
heavily depends on the number photos used to generate 3D texture models, which can be a
challenging task in some field scenarios. Furthermore, the generated joint models can only
provide information about the geometry of the joints, and not their mechanical properties,
which are crucial for slope stability analysis. To overcome these limitations, there are several
approaches that can be taken. Firstly, we suggest improving the hardware configuration
of the computer. Additionally, if feasible, a large rock outcrop can be divided into several
smaller models. Secondly, we recommend using unmanned aerial vehicles to capture more
photos to solve the issue of insufficient photo data. Moreover, unmanned aerial vehicles
can overcome some limitations of certain field conditions, such as inaccessibility or safety
concerns. Finally, we recommend conducting indoor mechanical experiments to obtain
the mechanical parameters of joints. If conducting mechanical experiments is difficult, the
mechanical parameters of joints can be obtained from geological reports.

6. Summary and Conclusions

A low-cost method of obtaining photogrammetry-based, textured, 3D point cloud
models was provided with two open-source software programs, Meshroom and Meshlab. A
coordinate transformation means of converting model coordinates to physical coordinates
was introduced, and the corresponding computer code was supplied. The length accuracy
and angle accuracy of a textured 3D point cloud model obtained with the method were
verified, taking the data of a total station as the reference. The accuracy of the total station
was illustrated by an outdoor experiment. A section of a rock slope located in Dalian city
was selected as the case study to represent the processes of textured 3D point cloud model
building and the applicability of the method to rock structure estimation. The findings are
summarized as follows.

(1) The accuracy of the total station is enough as a reference for verifying the accuracy of
the 3D point cloud model. The accuracy of the point coordinates of the 3D point cloud
model could achieve 3.96 mm. The accuracy of the dip, dip direction, and length are
0.315 degrees, 0.69 degrees, and 0.51 mm, respectively, at a distance of 10 m.
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(2) The accuracy of the 3D point cloud model is high enough for engineering applications,
taking the coordinates obtained by the total station as a reference. The accuracies
of the length, dip, and dip direction are 1.57 mm, 0.38 degrees, and 0.42 degrees,
respectively.

(3) The method of building a photogrammetry-based 3D point cloud model is applicable.
A total of 2993 joint traces of the rock slope were successfully extracted, and the rock
structure was estimated with a joint disk model built according to the traces.

(4) The rock structure of the slope is good, according to the value of the rock quality
designation. The joints of the slope can be grouped into three sets. The joints in set 1
are generally subhorizontal, with a mean dip value of 14.7◦, while the joints in sets 2
and 3 are nearly vertical, with mean dip values of 76.6◦ and 81.5◦, respectively.
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Appendix A

function [Tranformation_matrix ] = Transformation_Matrix(C_From, C_To)
% C_From is a 4-by-3 row vector. Coordinates of reference points in Meshroom.
% C_To is a 4-by-3 row vector. Coordinates of reference points measured by a total station.
% Tranformation_matrix is a 4*4 matrix. It is used for transforming
% coordinates from Meshroom to Meshlab.
A_From = mean(C_From);
A_To = mean(C_To);
C_From_MN = C_From-A_From;
C_To_MN = C_To-A_To;
sFrom = sqrt(sum(C_From_MN(:).ˆ2)/4);
sTo = sqrt(sum(C_To_MN(:).ˆ2)/4);
s = sTo/sFrom; % Scale factor
C_From_MN = C_From_MN/sFrom;
C_To_MN = C_To_MN/sTo;
H = C_From_MN’*C_To_MN;
R = (H’*H)ˆ0.5*inv(H);
A = s*R;
theory_To = (A*C_From’)’;
T = mean(C_To - theory_To);
Tranformation_matrix(4, 4) = 1;
for i = 1:3

for j = 1:3
Tranformation_matrix(i, j) = A(i, j);

end
end
Tranformation_matrix(1:3, 4) = T’;
Tranformation_matrix(4, 1:3) = [0, 0, 0];
End
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