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Abstract: Infrared (IR) Image preprocessing is aimed at image denoising and enhancement to help
with small target detection. According to the sparse representation theory, the IR original image is low
rank, and the coefficient shows a sparse character. The low rank and sparse model could distinguish
between the original image and noise. The IR images lack texture and details. In IR images, the small
target is hard to recognize. Traditional denoising methods based on nuclear norm minimization
(NNM) treat all eigenvalues equally, which blurs the concrete details. They are unable to achieve a
good denoising performance. Deep learning methods necessitate a large number of train images,
which are difficult to obtain in IR image denoising. It is difficult to perform well under high noise
in IR image denoising. Tracking and detection would not be possible without a proper denoising
method. This article fuses the weighted nuclear norm minimization (WNNM) with an adaptive
similar patch, searching based on the group sparse representation for infrared images. We adaptively
selected similar structural blocks based on certain computational criteria, and we used the K-nearest
neighbor (KNN) cluster to constitute more similar groups, which is helpful in recovering the complex
background with high Gaussian noise. Then, we shrank all eigenvalues with different weights in
the WNNM model to solve the optimization problem. Our method could recover more detailed
information in the images. The algorithm not only obtains good denoising results in common image
denoising but also achieves good performance in infrared image denoising. The target in IR images
attains a high signal for the clutter in IR detection systems for remote sensing. Under common data
sets and real infrared images, it has a good noise suppression effect with a high peak signal-to-noise
ratio (PSNR) and structural similarity index measurement (SSIM), with higher noise and a much
more complex background.

Keywords: IR image denoising; WNNM; group sparse representation; remote sensing

1. Introduction

IR images are formed by using different temperatures of the target and background.
The uncooled IR focal plane array imaging technology has some advantages such as
lower weight and power consumption. It is widely used in IR detectors [1]. Meanwhile,
the technique produces IR images with lower contrast, unclear edges, and complex noise
under the imaging environment. IR images have a smaller signal-to-noise ratio (SNR) and
have no clear texture and details [2]. To achieve a better result for IR target detection, we
must complete noise reduction. The noise of IR images mainly includes uniform noise and
Gaussian noise, which are caused by air radiation, the environment, and noise.

The traditional denoising algorithm contains inter-frame and single-frame noise re-
duction. Single-frame denoising includes transformation-domain filtering, and inter-frame
denoising mainly adopts time-domain filtering [3]. Space filtering covers Gaussian filtering,
average filtering, and median filtering. These filterings are unable to use the difference
between pixel characters, which causes some details to be ambiguous. The denoising
performance is worse under the complex background [4]. The frequency-domain methods
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include FFT filtering, butterworth filtering, bilateral filtering, and wavelet filtering. We
can segment the noise spectrum and the useful signal spectrum with the above algorithms.
As the noise spectrum is located all over the frequency, the signal still mixes the noise,
and they cannot be completely segmented [5]. This article proposes the nonlocal mean
filtering and uses nonlocal similarity to compose the Gaussian weight [6]. It can improve
the resolution of the details and edges. Time-domain filtering contains the frame average
filtering and weighted time-domain filtering. Several authors have risen the frame average
filtering to protect the edge of the image [7]. This results in image trailing and blurring with
the movement of the image. Other authors have considered the moving property and have
completed the best match according to the moving trajectory [8]. Here, the trailing phe-
nomenon was reduced. However, the method needs to finish the frame match with higher
computation complexity. The traditional denoising algorithms are limited to concrete real
IR images.

Thus far, researchers have fixed their eyes on sparse representation [9]. The back-
ground is represented by an overcomplete dictionary with some sparse coefficients. We
can extract the eigenvalue of the useful signal to restore the edges and detail texture in
IR images [10]. This articleraises the sparse 3D transform-domain collaborative filtering
(BM3D) to image denoising. This is more suitable for images with white Gaussian noise
(WGN) with high time costs. Other researchers have given the solution to replace the
l0 norm with l1 norm minimization [11]. This can decrease the hardship of the problem
with a limited result [12]. It was proposed that the sparse representation can attain the
eigenvector for reconstructing the original image. This method can recognize details and
edges with a high level of complexity. The authors of another study placed the non-local
correlation into the sparse representation. They designed a proper sub-director and sub-
sparse vector to improve recognition ability and to achieve a high peak signal-to-noise
ratio (PSNR) [13]. Before denoising, a great deal of work must be conducted [14]. K-means
singular value decomposition (KSVD) was used to solve the principal component analysis
(PCA) problem. The method is not convex optimization, and it cannot obtain a globally
optimal solution [15]. The over-complete dictionary to learn was adopted. Through a re-
dundant dictionary, a better sparse effect could be achieved. It is more robust in a complex
environment [16]. The nuclear norm model was used to represent sparsity. It is the slack
approximate of the convex optimization and it has a better convergence effect on denoising,
but it ignores and obscures some details. Article [17] considers the meaning of the eigen-
value and uses the WNNM model to strengthen the sparsity to achieve better convergence.
The important details and texture are kept with the higher complexity. PSNR is better than
1 ∼ 3 dB in some real images and test images compared with the nuclear norm model [18].
The nonlocal similarity and the whole sparsity were taken into consideration. The sparsity
definitions of IR images were optimized for the denoising effect. But It is of higher com-
plexity. The authors proposed a new denoising method called EMD–ITF that was based
on empirical mode decomposition (EMD) and the improved thresholding function (ITF).
An improved threshold is used to suppress noise and to improve the signal-to-noise ratio
(SNR) [19]. The SNR of the denoising signal exceeds the original signal with 5 ∼ 9 dB.
Venish Suthar adopted a reliable method to identify compound faults in bearings when
the availability of experimental data was limited [20]. This can detect compound faults
with 100% ten-fold cross-validation accuracy. This is used in some forms of digital signal
processing and is suitable for specific signals with noise.

Deep learning is widely used in visible light image denoising, hyperspectral image
denoising, and high-resolution image denoising. It is rarely used in infrared data sets.
A large number of annotated data sets is needed to utilize hyper-spectrum images and
high-resolution images for denoising. DnCNN [21] integrates local and global features with
residual dense blocks in a deeper convolutional neural network (CNN) in image recovery,
where more robust characteristics are required. FFDNet [22] uses a non-uniform noise
level map as the input and runs on down-sampled sub-images. The method achieves a
better trade-off between computation ability and denoising performance in synthetic and
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real noisy images. An attention-guided denoising convolutional neural network (ADNet)
contains a sparse block, a feature enhancement block, an attention block, and a reconstruc-
tion block [23]. The influences of the shallow layers on deep layers could be enhanced.
However, with a high level of noisy images, it suffers from rapid performance degradation.
The article [24] proposes a multi-stage image denoising CNN with the wavelet transform
to further remove redundant features. The process refines the obtained features and recon-
structs the clean image with improved residual dense architectures. The authors of another
study proposed a trust-based security system [25]. This was utilized to balance the security,
transmission performance, and energy efficiency. One article proposed an energy-cost-per-
useful-bit (ECPUB) method [26]. ECPUB can evaluate the energy efficiency and facilitate the
balance of network load. A trust management-based and low-energy-adaptive clustering
hierarchy protocol outperformed it in prolonging the network lifetime and in balancing
energy consumption [27]. As is known, the number of publicly-annotated infrared data
sets is relatively small. The different levels of noise mostly need different CNN models.
Deep learning methods usually have some limitations in denoising performance under
high-noise environments.

Our article proposes the improved WNNM based on the group sparsity model to
the IR single image frame with high WGN. The group has a more similar structure as a
result of the adaptive clustering of groups. It has strengthened the sparsity of all groups.
The WNNM model could achieve clearer details after multi-iterations. The simulation
illustrates that the algorithm can effectively outperform some popular denoising methods
in terms of PSNR and SSIM index in typical IR images and real IR sequences. As a result,
we can achieve a higher local signal to the clutter ration of the small target in IR images. It
is useful for us to detect small targets in IR detection systems for remote sensing.

2. Materials and Methods
2.1. Denoising Process

The traditional denoising methods such as average filtering and Gaussian filtering
are using some special template to suppress noise [28]. With the diversity of the original
image and noise, the single denoising method reduces the useful signal and blurs the
image texture and details. Deep learning denoising necessitates the acquisition of large
data sets of annotated infrared images, which are difficult to obtain. Low rank and sparse
representation focus on restoring the original image based on the sparsity difference. It is
relatively easy to distinguish noise from the original image. To achieve a higher signal-to-
clutter ratio (SCR) and a better clarity of the IR image, we utilize the WNNM based on the
group sparsity model in IR image denoising. It leads to a better denoising performance in
IR images with higher noise and achieves the optimization objectively. Under high noise
environments, the adaptive similar block searching is significant with a good restoration
effect. Experimental results show that the algorithm can provide a good reconstruction
image and high precision. Finally, it allows us to recognize the small target in IR images
quickly. The flowchart of the proposed method is displayed in Figure 1.

The algorithm’s flow chart includes four steps. First, we transform the image denoising
problem into a mathematical optimization problem based on robust principal component
analysis (RPCA). The group sparse representation theory considers the input image to
be composed of many groups. These groups are of nonlocal self-similarity. Each group
could be transformed into a matrix with a low rank and a matrix with remarkable sparsity.
Second, we apply the proposed WNNM algorithm to image denoising by exploiting the
image nonlocal self-similarity. Sparse coefficients can be used to recover the original
image. The optimization computation is updated by multi-iterations. Third, all groups in
each iteration are attained by adaptive patch selection depending on the SSIM. When the
iteration result has a higher similarity difference with the last iteration result, we select the
pre-filtered image as a group for the iteration computation. Finally, we can evaluate the
denoising performance among PSNR and SSIM with different methods in public data sets
and real IR images. Our article has completed all of the work based on the process.
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Figure 1. The flow chart of adaptive GSR model in IR denoising.

2.2. Sparse Representation Theory

Every image Y(Y ∈ Rn) could be represented by the atomic basis. The expansion
coefficients form the matrix X

(
X ∈ RK). If n < K, there are some vectors that cannot be

represented by atomic bases. The vector basis of αi is not complete. If n ≤ K, the space
vectors are expressed by the vector basis of αi. So, the vector basis of αi is an over-complete
basis and the expansion coefficients have a variety of combinations.

Based on the above theory, researchers propose to use the over-complete basis to form
a learning dictionary [29]. The over-complete basis is highly redundant and it could be
represented by a variety of coefficients. We could select the sparsest set of coefficients as
the solution, assuming the learning dictionary D is

D = [d1, d2, d3, . . . dK] ∈ Rn×K (1)

The input image can be described by

Y = DX (2)

where X is the matrix formed by sparse vectors. It can be described in

X = [x1, x2, x3, . . . xK]
T (3)

K is much more than n. The more sparse X is, the more concentrated the image energy
is. We usually use l0 norm to represent the sparsity and it means the non-zero numbers
of the vectors or matrix. We utilize the sparse representation of non-local correlation to
split the whole image into many IR patches. The patches are similar and can form a group.
These groups can form the image matrix with low rank. As a result, the base function in
every group is over-redundant. Through the optimization of sparse representation, we
could attain the sparse solution to recover all groups. The image noise has been reduced in
all IR groups. We need solve the problem in

min||X||0, Y = DX (4)

We can transform to a Lagrange formula without limitations, which is expressed by

argmin||Y− DX||2F + γ||X||0 (5)

The normalization parameter is γ. The main solution to solve the optimal function is
the convex optimization approximation and greedy track based on image match. If noises
exist, the l0 norm has no means to represent the vector sparsity. It is an NP-hard problem
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that cannot lead to an optimal solution. We could use slack convex l1 norm to finish the
convex optimization approximation [30]. It is described in

argmin(||Y− DX||2F + γ||X||1) (6)

The image uses the atoms as the vector basis. The sparse vector forms the sparse
solution. For separating the noises from IR images, optimization computation is needed.

2.3. Image Denoising Based on Group Sparse Representation
2.3.1. WNNM Model

The traditional sparse representation model requires learning in a dictionary. It is
much more complex and it ignores the relations of sparse coding patches. As a result,
ref. [31] made use of the robust principal component analysis (RPCA) model based on group
sparsity representation. The nuclear norm is used in the RPCA model. It is displayed by

X̃ = argmin||Y− D ∗ X||2F + γ||X||∗ (7)

Ref. [24] has expressed that the nuclear norm is the matrix rank. The larger eigenvalue
stands for detailed information about images. In the NNM model, all eigenvalues are
processed with a soft threshold shrinkage operator. It leads to over-smoothness in the
restored image. So, the article presents the weighted nuclear norm model (WNNM) that
could improve the denoising result for the uneven shrinkage. The original problem could
be transferred to expressions such as

X̃ = argmin||Y− D ∗ X||2F + γ||X||w,∗ (8)

The primary sparse representation based on the WNNM model considers the local
sparsity and it did not construct the relationship on the whole image. The computation
is complex. Thus, the group sparse representation (GSR) is applied to the image’s sparse
representation. Through the fusion of the local sparsity and similarity of these patches,
ref. [32] forms the learning dictionary and improves the performance. In the GSR model,
many overlapping image patches could be attained from single frame Y according to some
searching steps. The patches are described by Yi, i = 1, 2, . . . , n. The size of each patch is√

m×
√

m. They form many kinds of vectors and constitute the new group Si. Then, the
image matrix Yi(Yi ∈ Rm∗K) is displayed in

Yi = {yi,1, yi,2, . . . yi,K} (9)

Yi includes all similar image patches. In single frame, all similar group matrices could
be defined by

Y = {Y1, Y1, Y1, . . . YN} (10)

The original function could be transformed by

X̃i = argmin
n

∑
i=1

(
||Yi − DiXi||2F

2
+ ||Xi||∗). (11)

The Xi stands for the coefficient matrix of each group Yi [33]. ||.||2F means the Frobenius
norm. ||.||∗ is the nuclear norm.

Based on the above GSR model theory, we consider putting it into the IR image
denoising. The IR image with additive noise can be expressed by

Y = X + N (12)

X is the original image and N is the added noise. The problem is thought to be the
restoration of the original image without noise. The GSR model in image denoising is used
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to complete the optimization of all similar patches. We can use the WNNM based on GSR
to solve the problem which is described in

X̃i = argmin
n

∑
i=1

(
||Yi − Xi||2F

2
+ ||Xi||wi ,∗). (13)

2.3.2. Adaptive Nonlocal Similar Block Searching

The nonlocal self-similarity (NSS) prior refers to the fact that each given local patch
in a natural image can find many similar patches across the whole image. These patches
compose the low-rank matrix which has a sparse solution. The noise in the infrared image
is relatively complex, with a certain sparsity feature. Among the common denoising
algorithms, the main method to find the data block with a similar structure is the K-nearest
neighbor (KNN) algorithm [34]. The similar blocks of a group can be obtained based on the
Euclidean distance. Traditional methods are used to look for similar groups in the iteration
process with a noisy image. Additionally, they use the KNN cluster or K-means cluster
methods to attain all groups. The matrix is not sparse enough. The observation samples
contain high-intensity noise, and the similar blocks obtained from the original observation
data are not necessarily high in regard to real similarity. The adaptive patch searching
method used in the WNNM model is based on the KNN cluster algorithm. To achieve the
optimal solution, we must construct sparse groups in each iteration. Compared with the
universal cluster methods, adaptive patch searching based on KNN has some advantages.
The differences are displayed in Table 1.

Table 1. Comparison between different patch searching methods in WNNM

Method Class Advantages Disadvantages

KNN
unsupervised

machine learning
method

high precision,
insensitive to outlier,

no input data
assumption

high computational
complexity and

spatial complexity

Adaptive KNN
unsupervised

machine learning
method

high precision,
suitable for high noise

environment, more
similar structure, high

PSNR and SSIM

high computational
complexity and

spatial complexity

The adaptive KNN in WNNM is to attain more similar patches for the low-rank matrix,
which achieves a higher PSNR and SSIM for denoising images. PSNR with adaptive KNN in
WNNM is about 0.1 dB∼0.3 dB higher than others with different noisy images. SSIM with
adaptive KNN in WNNM is about 0.01∼0.06 higher than others with different noisy images.

The original observation data can be pre-filtered by definition in [10].

f (y) = Y ∗ f ilterBM3D (14)

f (y) is the pre-filtered image through the BM3D pre-filter method. The method is
maturely applied in denoising for a long time. It could suppress noise and achieve better
restoration of image details. Then, the criterion of similar patch selection depends on the
rule in [35].

τ = SSIM( f (y), X̂t)− SSIM( f (y), X̂t−1) (15)

SSIM is the definition of structural similarity between two variables. f is a small
parameter through concrete tests. When τ < f , the pre-filtered image is used to obtain
similar blocks in all groups. Otherwise, we select the last iteration result as the input of
similar patches. They constitute many similar groups that could use the WNNM model
for optimization. In a high-noise environment, this method can achieve a better denoising



Appl. Sci. 2023, 13, 5749 7 of 19

effect. The fusion of the WNNM model with the adaptive patch searching process is
described in the following items:

• Use the pre-filter to achieve the image with less noise;
• Perform iterative calculations with the WNNM model;
• According to the adaptive selection rule of similar patches, obtain all groups of an

image from the iteration result or the pre-filter image;
• Finish the optimization based on the KNN cluster.

2.3.3. Adaptive Weight Parameters Searching

Firstly, we look for similar patch vectors to construct the matrix Yi.

Yi = [yi,1, yi,2, yi,3, . . . yi,K] (16)

Secondly, you can obtain Yi = Ui∆iVi through the SVD of the original imge. The ∆i is
expressed by

∆i = diag
(
δi,1, δi,2, δi,3, . . . δi,n0

)
(17)

δi,j is the jth singular of the Yi. Thirdly, we can finish the SVD of the restored image Xi.
It is shown by Xi = Ui∆iVi. The5i is

5i = diag(σi,1, σi,2, σi,3, . . . σi,n0) (18)

σi,j is the jth singular of the Xi. Finally, the minimization of (13) is treated the same as
the solution of (19). We can compute the max value by a soft threshold operator in (20).

minσi,j>0
(δi,j − σi,j)

2

2
+ wi,j ∗ σi,j (19)

σi,j = max(δi,j − wi,j, 0) (20)

The bigger eigenvalue represents the more important information and contains more
details. So, the strategy of the weighted value is to shrink the large eigenvalue much
more and the small much less. It could keep more details of the images. To avoid the non-
convergence of SVD, we obtain clues from [36] and choose the special wi,j. It is computed by

wi,j =
c ∗ 2.82 ∗ σ2

n
γi + ε

(21)

The σn is the added white Gaussian noise std and γi is the std of the estimated matrix
eigenvalue. The weight of each iteration is updated with an adaptable value.

2.3.4. Iteration Parameter Setting

We have completed the proper parameter setting based on a large number of ex-
periments. Additionally, through the analysis of image character, we could confirm the
stopping parameters with many simulations. Inspired by [37], the stopping parameter τ is
defined in

||X̃t
i − X̃t−1

i ||2F
||X̃t−1

i ||2F
< τ. (22)

t is the iteration times. The improved WNNM algorithm based on the GSR model is
described as follows:

• Initialize x̃0 = y0.
• For t = 1 : iter.

• Iterative calculation yi = X̃i
t−1

+ γ
(

y− X̃t−1
i

)
.

• for i = 1 : N.
Use adaptive similar image block strategy to obtain sparse group yi.
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wt
i,j is the jth weight in ith group by (21).
5i can be obtained by SVD of yi.
∆i is calculated by a soft threshold value.
The X̃i could be computed by ∆i.

• Output the denoised image after aggregation x̃i.

2.4. Evaluation

Special data sets are used to obtain the IR images in this article. Based on these image
sequences, we conduct many simulations with our method and compare the denoising
effect with traditional algorithms. The IR image sequence of denoising has many kinds
of evaluation standards. As per usual, the mean square error(MSE) is shown in (23). It
represents the difference between the original image and the denoising image. The PSNR
is defined by the division between the biggest gray and the MSE. A larger PSNR means
more similarity to the original images [38].

MSE =
∑M

i=0 ∑N
j=0((I(i, j)− I0(i, j))2

M ∗ N
. (23)

PSNR = 10 ∗ Log
2552

MSE
. (24)

Another evaluation metric is the structure similarity index measurement (SSIM). It
is defined by the product of the brightness factor, contrast factor, and structure factor.
A bigger SSIM means a higher similarity between the images [38].

SSIM(X, Y) = l(X, Y)α ∗ c(X, Y)β ∗ s(X, Y)γ. (25)

l(X, Y) =
2uxuy + C1

u2
x + u2

y + C1
. (26)

c(X, Y) =
δxδy + C2

δ2
x + δ2

y + C2
. (27)

s(X, Y) =
δ(xy) + C3

δxδ2
y + C3

. (28)

I(X, Y) is the brightness factor in (26), and c(X, Y) is the contrast factor in (27). s(X, Y)
is the structure factor in (28). The ux, uy separately represent the average of the original
image and the denoising image. δx, δy are the std of the image. δxy means the covariance.
To simplify the analysis, we regard the α, β, γ as 1. The SSIM still stands for structure
similarity. Certainly, a bigger SSIM demonstrates a better denoising result.

Finally, we use the recovered image as an input for target detection. Inspired by [39],
we define the local SCRG of the small target as

SCRG =
(S/C)d
(S/C)n

(29)

S is the mean difference between the local image and the small target. C is the standard
deviation of the local image. ()n and ()d represent the parameters of input images with
noise and output denoising images separately. Higher local SCRG is helpful for us to detect
the IR small target for remote sensing.

3. Results

The simulation uses MATLAB R2016a software and runs on a personal computer with
Intel core i7 CPU and 16 GB RAM. We test our method in data sets (set12) and IR sequences
using an IR detector.
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The typical gray images are widely used for simulation analysis. In Figures 1–12,
the pixel size is 256 × 256. Adding Gaussian noise with different std, we adopt a pair
of different parameters. The results of the denoising effect are not the same in many
experiments. We adjust the parameters to attain better denoising results. Setting the
std of WGS as 20, 50, 75, 100, separately, we choose the corresponding patch size 6 × 6,
7 × 7, 8 × 8, 9 × 9. Similar patches are designed with 60, 70, 80, 100. Additionally, the
reference index τ and c are set to be (0.0013, 0.65), (0.0012, 0.55), (0.001, 0.75), (0.0017, 0.55).
The searching windows could be 30 and the error ε = exp−15. The adaptive similar block
setting parameter f is 2 ∗ exp−4. Finally, we complete all simulations based on our settings.

The typical images including (1),(2), and (3) are simulated and compared with the
conventional spatial filtering and sparse representation denoising methods. When the noise
std is 20, 50, 75, 100, image PSNR and SSIM results are compared with Gaussian filtering,
mean filtering, BM3D [10], EPLL [40], NSCR [41], KSVD [14], FFDNet [22], ADNet [23],
GSR-WNNM [42], and our proposed method.

Table 2 shows the denoising PSNR and SSIM of image (1) with different noise std.
Table 3 shows the denoising PSNR and SSIM of image (2) with different noise std. Table 4
shows the denoising PSNR and SSIM of image (3) with different noise std.

Table 2. Comparison results of PSNR and SSIM with different denoising methods in image (1).

Noise Std 20 50 75 100

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Mean 25.4 0.74 23.83 0.55 22.15 0.42 20.54 0.33

Gaussian 26.22 0.76 24.19 0.56 22.33 0.43 20.57 0.34

BM3D 33.77 0.87 29.69 0.81 27.51 0.76 25.87 0.72

EPLL 33.01 0.85 28.80 0.8 26.99 0.75 24.95 0.7

NSCR 33.86 0.87 29.56 0.82 27.27 0.77 25.31 0.74

KSVD 33.19 0.86 27.97 0.77 25.09 0.67 23.69 0.61

FFDNet 34.03 0.87 30.31 0.83 28.31 0.79 / /

ADNet 33.92 0.87 30.38 0.826 16.96 0.18 / /

GSR-WNNM 34.07 0.87 30.25 0.82 28.26 0.79 26.86 0.76

Proposed 34.1 0.88 30.39 0.83 28.4 0.8 26.88 0.78

Under the same noise std, the proposed algorithm outperforms traditional algorithms
in terms of PSNR and SSIM. With the increase in the std of noise, the performances of tradi-
tional Gaussian filtering, mean filtering, BM3D, and other algorithms have significantly
decreased, but the algorithm proposed in this paper can still have better PSNR and SSIM.
Compared with classic deep learning algorithms, our method performs equally well with
FFDNet and ADNet under low-noise environments. As the noise increases, the model train-
ing performance of deep learning decreases which results in a degradation in performance.
Our method, on the other hand, still performs well. Under the condition of different noise
std, using the Gaussian filter, mean filter, BM3D, EPLL, NSCR, KSVD, FFDNet, ADNet,
GSR-WNNM, and the algorithm in this paper, the image (1), (2), (3) denoising effects are
shown in the supplementary materials.
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Table 3. Comparison results of PSNR and SSIM with different denoising methods in image (2).

Noise Std 20 50 75 100

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Mean 22.59 0.76 21.69 0.63 20.66 0.53 19.49 0.45

Gaussian 23.49 0.80 22.24 0.65 20.93 0.55 19.63 0.46

BM3D 30.35 0.92 25.82 0.82 23.91 0.75 22.52 0.69

EPLL 30.48 0.93 25.76 0.8 23.72 0.73 22.12 0.67

NSCR 30.62 0.92 25.65 0.82 23.54 0.76 22.21 0.71

KSVD 29.98 0.91 25.31 0.79 22.90 0.72 20.88 0.64

FFDNet 31.19 0.83 27.31 0.72 24.26 0.66 / /

ADNet 31.29 0.833 26.89 0.721 17.27 0.205 / /

GSR-WNNM 30.975 0.923 26.226 0.829 24.284 0.775 22.858 0.724

Proposed 31.078 0.926 26.241 0.830 24.350 0.778 22.897 0.731

Table 4. Comparison results of PSNR and SSIM with different denoising methods in image (3).

Noise Std 20 50 75 100

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Mean 24.723 0.710 23.360 0.575 21.868 0.468 20.375 0.386

Gaussian 25.596 0.747 23.817 0.608 22.068 0.500 20.471 0.412

BM3D 31.412 0.891 26.740 0.767 24.818 0.694 23.474 0.637

EPLL 30.861 0.863 26.323 0.745 24.427 0.690 23.229 0.649

NSCR 30.837 0.871 25.596 0.708 23.257 0.605 21.918 0.535

KSVD 31.327 0.884 26.336 0.751 24.364 0.683 23.170 0.637

FFDNet 31.31 0.933 26.8 0.85 24.9 0.70 / /

ADNet 31.16 0.880 26.769 0.769 16.755 0.342 / /

GSR-WNNM 31.509 0.889 26.926 0.776 24.91 0.703 23.503 0.651

Proposed 31.669 0.895 26.937 0.775 24.916 0.705 23.639 0.653

With the increase in the Gaussian noise std, the proposed algorithm could attain a
better denoising effect and clearer texture details compared with other methods. The simu-
lation results show that the improved algorithm proposed in this paper can adapt to lower
SNR infrared images. It improves the PSNR of images, restores image details efficiently,
and ensures a higher SSIM of images.

Moreover, we provide some annotations about the flight target in the IR images. We
achieve these IR sequences with IR cool mid-wave detector CMS6055 through outdoor experi-
ments. It occupies the 3∼5 um mid-wave infrared band and produces 640 ∗ 512 resolution
image sequences. The single pixel size is 15 um. The target is not larger than 3 ∗ 3 pixels.
Each sequence has about 20 frames. With the different std noise, the effect of the denoising
of image(a) is depicted in Figures 2–5. The effect of the denoising of image(b) is shown
in Figures 6–9. The effect of the denoising of image(c) is displayed in Figures 10–13. It
can be seen that our method has a better denoising effect under different complexity back-
grounds. Under a high-noise environment, we still have a better recovery effect compared
to traditional methods and deep learning methods.
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(a) Image(a) (b) Noise std20 (c) Mean (d) Gaussian (e) BM3D (f) EPLL

(g) NCSR (h) KSVD (i) FFDNet (j) AdNet (k) GSR-WNNM (l) Proposed

Figure 2. Denoising results with noise std20 in image(a).

(a) Image(a) (b) Noise std50 (c) Mean (d) Gaussian (e) BM3D (f) EPLL

(g) NCSR (h) KSVD (i) FFDNet (j) ADNet (k) GSR-WNNM (l) Proposed

Figure 3. Denoising results with noise std50 in image(a).

(a) Image(a) (b) Noise std75 (c) Mean (d) Gaussian (e) BM3D (f) EPLL

(g) NCSR (h) KSVD (i) FFDNet (j) ADNet (k) GSR-WNNM (l) Proposed

Figure 4. Denoising results with noise std75 in image(a).
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(a) Image(a) (b) Noise std100 (c) Mean (d) Gaussian (e) BM3D

(f) EPLL (g) NCSR (h) KSVD (i) GSR-WNNM (j) Proposed

Figure 5. Denoising results with noise std100 in image(a).

(a) Image(b) (b) Noise std20 (c) Mean (d) Gaussian (e) BM3D (f) EPLL

(g) NCSR (h) KSVD (i) FFDNet (j) ADNet (k) GSR-WNNM (l) Proposed

Figure 6. Denoising results with noise std20 in image(b).

(a) Image(b) (b) Noise std50 (c) Mean (d) Gaussian (e) BM3D (f) EPLL

(g) NCSR (h) KSVD (i) FFDNet (j) ADNet (k) GSR-WNNM (l) Proposed

Figure 7. Denoising results with noise std50 in image(b).
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(a) Image(b) (b) Noise std75 (c) Mean (d) Gaussian (e) BM3D (f) EPLL

(g) NCSR (h) KSVD (i) FDDNet (j) ADNet (k) GSR-WNNM (l) Proposed

Figure 8. Denoising results with noise std75 in image(b).

(a) Image(b) (b) Noise std100 (c) Mean (d) Gaussian (e) BM3D

(f) EPLL (g) NCSR (h) KSVD (i) GSR-WNNM (j) Proposed

Figure 9. Denoising results with noise std100 in image(b).

(a) Image(c) (b) Noise std20 (c) Mean (d) Gaussian (e) BM3D (f) EPLL

(g) NCSR (h) KSVD (i) FFDNet (j) ADNet (k) GSR-WNNM (l) Proposed

Figure 10. Denoising results with noise std20 in image(c).



Appl. Sci. 2023, 13, 5749 14 of 19

(a) Image(c) (b) Noise std50 (c) Mean (d) Gaussian (e) BM3D (f) EPLL

(g) NCSR (h) KSVD (i) FFDNet (j) ADNet (k) GSR-WNNM (l) Proposed

Figure 11. Denoising results with noise std50 in image(c).

(a) Image(c) (b) Noise std75 (c) Mean (d) Gaussian (e) BM3D (f) EPLL

(g) NCSR (h) KSVD (i) FFDNet (j) ADNet (k) GSR-WNNM (l) Proposed

Figure 12. Denoising results with noise std75 in image(c).

(a) Image(c) (b) Noise std100 (c) Mean (d) Gaussian (e) BM3D

(f) EPLL (g) NCSR (h) KSVD (i) GSR-WNNM (j) Proposed

Figure 13. Denoising results with noise std100 in image(c).

We obtained a comparison of PSNR and SSIM in Tables 5–7 with three different com-
plexity image sequences. Compared with traditional algorithms, our algorithm achieves
better PSNR and SSIM in all image sequences and has good environmental adaptabil-
ity. Compared with typical deep learning algorithms, our algorithm has slightly lower
PSNR and SSIM in low-noise environments compared to the FFDNet algorithm, which
is equivalent to the ADNet algorithm. In high-noise environments, we have achieved
higher PSNR and SSIM. The models trained by deep learning algorithms in high noise
environments only include standard deviations of 0∼75, and there are limited data, making
it difficult to train better models in higher noise environments. The algorithm in this paper
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is unaffected by the amount of data, and as the complexity of the environment increases,
it still achieves good PSNR and SSIM, demonstrating that the algorithm in this paper has
stronger environmental adaptability.

Table 5. Comparison results of PSNR and SSIM with different denoising methods in Image(a).

Noise Std 20 50 75 100

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Mean 32.134 0.867 27.22 0.541 24.21 0.353 21.825 0.239

Gaussian 32.44 0.86 27.06 0.54 23.91 0.35 21.49 0.24

BM3D 42.645 0.977 38.567 0.962 36.277 0.942 34.314 0.917

EPLL 41.563 0.966 35.11 0.958 32.301 0.899 30.653 0.819

NSCR 38.690 0.921 33.414 0.848 30.516 0.778 28.283 0.711

KSVD 42.970 0.982 39.365 0.977 37.456 0.969 36.063 0.959

FFDNet 44.59 0.983 40.59 0.974 38.01 0.964 / /

ADNet 42.35 0.975 39.51 0.964 16.48 0.046 / /

GSR-WNNM 41.76 0.974 38.158 0.956 36.678 0.943 35.019 0.915

Proposed 42.451 0.975 38.938 0.963 38.04 0.971 37.121 0.971

Table 6. Comparison results of PSNR and SSIM with different denoising methods in Image(b).

Noise Std 20 50 75 100

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Mean 32.032 0.864 27.151 0.541 24.179 0.357 21.88 0.243

Gaussian 32.40 0.86 27.00 0.54 23.90 0.36 21.56 0.24

BM3D 42.197 0.977 37.935 0.958 35.577 0.935 33.777 0.908

EPLL 40.707 0.96 34.501 0.915 32.014 0.89 30.417 0.84

NSCR 42.519 0.982 38.412 0.970 36.657 0.960 35.060 0.949

KSVD 37.955 0.917 33.098 0.843 30.310 0.775 28.032 0.693

FFDNet 43.62 0.983 39.47 0.969 32.21 0.954 / /

ADNet 41.77 0.976 38.4 0.949 16.5 0.049 / /

GSR-WNNM 41.581 0.974 37.296 0.949 35.916 0.931 34.549 0.907

Proposed 41.987 0.975 38.672 0.959 37.268 0.962 36.382 0.961

Finally, we compute the average local SCRG of the target in the IR sequences containing
small targets. The results are shown in Table 8. It can be seen that the algorithm in this
paper still improves the texture clarity of the image in high Gaussian noise environments.
We have obtained a higher local SCRG of infrared small targets, which constructs the
foundation for subsequent high-performance target detection. It has further verified the
denoising performance of the algorithm.

Through the above results, we have proven that our method improves the PSNR, SSIM,
and mean local SCRG of small targets among all test images compared with traditional
methods under high-noise environments. Additionally, our method could be adaptable
to a complex background and high-noise environments. It would lead to a better target
detection effect for remote sensing.
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Table 7. Comparison results of PSNR and SSIM with different denoising methods in Image(c).

Noise Std 20 50 75 100

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Mean 31.399 0.818 27.029 0.540 24.039 0.366 21.824 0.255

Gaussian 31.89 0.83 26.90 0.54 23.82 0.37 21.58 0.26

BM3D 37.484 0.935 33.369 0.875 31.651 0.841 30.404 0.812

EPLL 36.648 0.9 31.999 0.855 30.177 0.82 28.680 0.7

NSCR 37.150 0.932 33.297 0.881 31.938 0.862 30.997 0.849

KSVD 34.994 0.869 31.101 0.777 29.114 0.715 27.153 0.650

FFDNet 38.2 0.941 34.2 0.888 32.11 0.861 / /

ADNet 37.32 0.932 33.65 0.875 16.52 0.062 / /

GSR-WNNM 37.027 0.925 33.249 0.866 31.861 0.842 30.859 0.816

Proposed 37.15 0.928 33.388 0.872 32.156 0.864 31.416 0.858

Table 8. Comparison results of mean local SCRG of the small target with different denoising methods.

Method Image(a) Image(b) Image(c)

Noise Std 20 50 75 100 20 50 75 100 20 50 75 100

Mean 1.16 1.31 1.24 1.72 1.32 1.46 1.79 2.32 2.48 2.39 2.33 2.41

Gaussian 1.08 1.38 1.45 1.65 1.37 1.39 1.63 1.91 2.22 5.08 2.81 2.84

BM3D 2.4 2.33 2.42 2.63 2.49 2.80 2.89 2.95 1.17 4.24 4.37 4.36

EPLL 1.52 1.74 1.73 1.91 2.19 2.34 2.39 2.47 1.11 1.04 3.52 5.43

NSCR 2.44 2.61 2.63 2.73 2.49 2.41 2.52 2.78 1.18 3.66 6.91 7.19

KSVD 1.59 1.71 2.33 2.43 1.41 2.05 2.66 2.84 1.29 1.84 4.01 5.46

FFDNet 2.33 2.66 2.78 / 2.41 2.51 2.70 / 1.11 2.83 2.64 /

ADNet 2.42 2.64 2.88 / 2.49 2.71 2.76 / 1.11 1.87 2.89 /

GSR-WNNM 2.63 2.74 2.86 2.88 1.65 2.49 2.585 2.59 1.05 1.16 6.81 6.99

Ours 2.44 2.81 2.87 2.89 2.57 2.71 2.76 3.69 1.22 4.15 6.93 7.41

4. Discussion

We have compared the performance of our algorithms in public data sets, and our
algorithm achieved high PSNR and SSIM in various types of images, achieving clearer
image restoration results. With the enhancement of noise, our algorithm still maintains
good performance compared with deep learning methods. Then, we remove noise under
complex backgrounds with our method in IR image sequences, which effectively improves
the PSNR and SSIM of IR image sequences. Additionally, in IR images, we achieve the best
local SCRG of the small target. To achieve a better denoising effect, the parameters should
be adjusted to match the real environment. In the meantime, as image complexity increases,
our method maintains a high performance across all metrics.

• Compared with traditional template filtering and sparse representation algorithms,
our method outperforms them in regard to PSNR and SSIM in real IR images and
public data sets under complex backgrounds.

• The deep learning methods could train an ideal model with a large amount of data
sets with relatively low noise. It is slightly better than our method among all metrics.
However, it does not obtain a good model with higher noise. Our method achieves
better average PSNR and SSIM under high noise.
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These results have verified that the method with the adaptive GSR model could
achieve stable and balanced effects under complex environments.

5. Conclusions

The weighted nuclear norm minimization (WNNM) is a significant extension of the
nuclear norm minimization (NNM) model. It utilizes the physical significance of the matrix
singular value. Each singular value stands for the component information in images.
A larger eigenvalue means more principal component and it needs to shrink less in the
optimization process. WNNM treats all eigenvalues unevenly to achieve a better recovery
of details. WNNM remains convex and has the analytical optimal solution. When the
weights are in descending order, we present an iterative algorithm to solve it using a similar
group searching method.

1. The adaptive patch selection fusion in WNNM guarantees a better sparsity of the
original matrix. It has strengthened the low-rank character, which is helpful in
recovering the denoising image.

2. Considering all the analyses, the improved denoising algorithm with the WNNM
model based on adaptive GSR could improve PSNR and SSIM, especially under a
high noise background. It has achieved better noise suppression and attained the best
adaptability among all the algorithms in regard to IR image denoising.

3. The algorithm is suitable for infrared image denoising as well as ordinary image
denoising. The denoising process constructs a solid foundation in following IR target
detection for remote sensing under a high-noise environment.

However, the fusion computation is complex, and it could not be realized in the high
real-time process. In the future, we could pursue a faster computation strategy and seek a
more universal parameter setting strategy to achieve a better optimal solution in solving
the denoising problem.
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Abbreviations
The following abbreviations are used in this manuscript:

IR Infrared
EMD Empirical mode decomposition
ITF Improved thresholding function
NNM Nuclear norm minimization
WNNM Weighted nuclear norm minimization
CNN Convolutional neural network
ADNet Attention-guided denoising convolutional neural network
ECPUB Energy-cost-per-useful-bit
RPCA Robust principal component analysis
WGN White Gaussian noise
SCR Signal-to-clutter ratio
DBT Detect before track
TBD Track before detect
IPI Infrared patch-image
BM3D 3D transform-domain collaborative filtering
PCA Principal component analysis
PSNR Peak signal-to-noise ratio
WGS White Gaussian noise
GSR Group sparse representation
KNN K-nearest Neighbor
SVD Singular value decomposition
SSIM Structure similarity index measurement
SCRG Signal-to-noise ratio gain
NSCR Neural social collaborative ranking
KSVD K-means singular value decomposition
EPLL Expected patch log likelihood
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