
Citation: Chen, H.-C.; Li, S.-A.;

Chang, T.-H.; Feng, H.-M.; Chen, Y.-C.

Hybrid Centralized Training and

Decentralized Execution

Reinforcement Learning in

Multi-Agent Path-Finding

Simulations. Appl. Sci. 2024, 14, 3960.

https://doi.org/10.3390/app14103960

Academic Editor: Seokwon Yeom

Received: 26 March 2024

Revised: 28 April 2024

Accepted: 2 May 2024

Published: 7 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Hybrid Centralized Training and Decentralized Execution
Reinforcement Learning in Multi-Agent Path-Finding Simulations
Hua-Ching Chen 1 , Shih-An Li 2, Tsung-Han Chang 2, Hsuan-Ming Feng 3,* and Yun-Chien Chen 2

1 School of Information Engineering, Xiamen Ocean Vocational College, Xiamen 361100, China;
galaxy.km@gmail.com

2 Department of Electrical and Computer Engineering, Tamkang University, New Taipei City 10650, Taiwan;
lish-yhan@gms.tku.edu.tw (S.-A.L.); zxc455233@gmail.com (T.-H.C.); ycpss91255@gmail.com (Y.-C.C.)

3 Department of Computer Science and Information Engineering, National Quemoy University,
Kinmen 89250, Taiwan

* Correspondence: hmfenghmfeng@gmail.com

Abstract: In this paper, we propose a hybrid centralized training and decentralized execution neural
network architecture with deep reinforcement learning (DRL) to complete the multi-agent path-
finding simulation. In the training of physical robots, collisions and other unintended accidents
are very likely to occur in multi-agent cases, so it is required to train the networks within a deep
deterministic policy gradient for the virtual environment of the simulator. The simple particle
multi-agent simulator designed by OpenAI (Sacramento, CA, USA) for training platforms can easily
obtain the state information of the environment. The overall system of the training cycle is designed
with a self-designed reward function and is completed through a progressive learning approach
from a simple to a complex environment. Finally, we carried out and presented the experiments
of multi-agent path-finding simulations. The proposed methodology is better than the multi-agent
model-based policy optimization (MAMBPO) and model-free multi-agent soft actor–critic models.

Keywords: deep reinforcement learning; multi-agent path-finding; robotics

1. Introduction

Reinforcement learning (RL) is a process whereby the agent decides what action to take
based on what it sees as the state of the environment. Then, it generates the next moment’s
state of the environment and the corresponding reward from the environment that provided
the basis for the previous action. Thus, the state of the environment obtained by the agent
is a very important issue of the reinforcement learning process. DRL mainly uses neural
networks to replace the traditional Q-table. When applied to complex problems, Q-tables
can be too large to represent or exhaust. After the introduction of the Deep Q-Learning
Network (DQN) in 2013, an improved version of the algorithm was proposed in 2015 [1].
One of the improvements focuses on the original version’s course of the autonomous
navigation of robots [2]. A DQN lets robots operate more efficiently and safely in related
outdoor environments; however, one problem of the DQN is that the distribution of states
varies considerably, making it difficult to converge the network. Therefore, the target
Q-network is added to the learning process. During the learning process, the current Q-
network is periodically copied to the target Q-network for sequestration. The development
of the Double Deep Q-Learning Network (DDQN) [3] in 2016 adjusted the original Q-value
estimation for deep Q-networks. Originally, the value was estimated directly using the
Q-network once; however, in the DDQN, the Q-value estimation is conducted using two
separate Q-networks preventing the overestimation of Q.

Currently, DRL can be divided into value-based and policy-based approaches. The
value-based DRL approach is best known as the DQN. It evaluates the value of each
action through a value function. Meanwhile, the policy-based DRL method is the earliest

Appl. Sci. 2024, 14, 3960. https://doi.org/10.3390/app14103960 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14103960
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0007-0930-1431
https://orcid.org/0000-0002-6498-7006
https://doi.org/10.3390/app14103960
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14103960?type=check_update&version=2

Appl. Sci. 2024, 14, 3960 2 of 21

reinforcement learning algorithm, and it functions by selecting the best action for the
current state. Intensive learning algorithms, such as the actor–critic network (ACN), use the
advantages of both approaches [4]. The ACN consists of two networks, the actor network
and the critic network. The actor network is a policy-based reinforcement learning network
that decides actions based on the current state. Meanwhile, the critic network evaluates
the value of the actions taken by the actor network. Park et al. [5] used soft actor–critic to
complete the high dimensionality and continuous action in robotic problems. Automated
guided vehicles (AGVs) are directed by the soft actor–critic (SAC) RL algorithm, which
uses a type of a sum-tree prioritized experience replay strategy for autonomous navigation
applications [6].

A multi-agent DRL machine involves multiple agents that interact with the envi-
ronment at the same time. However, the actions of each agent affect the state observed
by other agents. Many researchers have used multi-agent DRL to accomplish tasks by
a sequence-to-sequence multi-agent deep deterministic policy gradient (SMADDPG) al-
gorithm [7]. One study found that the sum-of-costs optimal solution for the classical
multi-agent path-finding (MAPF) problem is NP-hard [8]. Many optimal classical MAPF
solvers aim to find collision-free paths with minimal cost by searching the joint configura-
tion space or collision resolution space. For example, Sartoretti et al. [9] published PRIMAL,
a multi-agent path-finding method based on reinforcement learning and imitation learning
(IL). At its core, it uses Asynchronous Advantage Actor–Critic (A3C) [10] as a learning
framework for reinforcement learning. Recently, many studies on multi-agent path-finding
based on DRL have referred to the success of PRIMAL, such as the GLAS proposed by
Rivière et al. [11]. The paper used information from area observations as input to the neural
network. However, GLAS goes one step further by incorporating a dynamics model into
the system architecture. It enables more sophisticated multi-agent path planning for small
quadcopters. In the G2RL proposed by Binyu Wang [12], the same concept of regional
observation as PRIMAL is used as well as the concept of short-term and long-term memory.
There are also sequential inputs that use the same concept as GLAS. G2RL has implemented
and analyzed algorithms for complex environments. The results proved that G2RL can
maintain good results in different environments.

The A* algorithm [13] has excellent path planning ability in one robot and can find
the shortest path in a very short time. However, the A* algorithm is still limited in terms
of path planning for multiple robots in the same field. It contains overlapping paths that
may cause collisions, and the amount of computation may be too large. Several studies
modified A* for multi-robot applications, including the windowed hierarchical cooper-
ative A* (WHCA*) proposed by Silver [14]. Various methods have also been developed
to compute the optimal solution for MAPF problems including subdimensional expan-
sion [15], compilation-based solver [16], and integer programming-based methods [17] and
Conflict-Based Search (CBS) [18,19]. However, they are associated with a long computation
time [20], making it one of the difficulties in a multi-agent learning engine. In this study,
A* is proposed to explore the best local path planning as an expert’s guide in the design
reward function.

There are three main architectures for multi-agent learning, namely, fully decentralized,
fully centralized, and centralized training and decentralized execution [21]. Due to the
powerful agent-centered, multi-agent, and support of actor–critic methods, multi-agent
learning could generate fair credit assignment and better generalizability. It also allows
information to be distributed evenly across multiple agents [22]. Fully decentralized,
multi-agent reinforcement learning is an environment where each agent is individualized,
and observed states and actions are not shared between agents. The core architecture of
reinforcement learning is that the agent obtains the state of the environment after executing
an action. Even when only one agent is interacting with the environment, no problem
arises, because the environment is only affected by the actions of the agent. However,
with multiple agents operating in the same environment, the actions performed by each

Appl. Sci. 2024, 14, 3960 3 of 21

agent affect the state of the other agent. A fully decentralized structure would therefore be
difficult to converge.

In a fully centralized architecture, a central neural network determines the actions
to be performed by all agents and waits for all agents to finish running before collecting
the status and rewards from all agents. It ensures that the neural network is aware of the
state of the environment, avoiding the problems of a completely decentralized framework.
However, since it needs to wait for all the agents to finish their actions before data collection,
a slowdown problem could occur. Therefore, a centralized learning with decentralized
execution (CLDE) framework is selected to form multi-agent model-based policy opti-
mization (MAMBPO) for better sample efficiency than the model-free multi-agent soft
actor–critic [23,24]. Centralized training coupled with decentralized execution combines
the advantages of both structures [25]. In this paper, we used an actor–critic framework to
avoid stochastic state changes due to agent interactions. Each agent has a policy network
to execute actions and observe the state of the environment. The central review network
collects all the actions performed by the agents, the observed status, and the rewards to
judge the system. This ensures that there is a centralized network of reviewers who can
update the overall training of the system at the time of training. When the whole system
learns to converge, the policy network of all agents finds the best parameters to use. The
final execution phase only requires that each agent acts through its own policy network.

The important policy gradient methods of Proximal Policy optimization (PPO) are
taken to improve the performance of the DQN [26]. In this paper, the concept of a deep
deterministic policy gradient (DDPG) [27] in the design of multi-agent path-finding is
an improved algorithm based on the policy gradient (PG) [28] and deterministic policy
gradient (DPG) [29]. The DDPG is a type of off-policy algorithm and can be regarded as
a DQN that realizes a great action in explore space. To increase the robustness of DRL
in different environments, this paper relied on the observation information required for
reinforcement learning in robot simulation environments. It improved multi-agent research
results in the path planning of multiple robot applications. In response to the other novel
study, an experience replay training method is verified to achieve more smooth learning,
reduce correlations, and facilitate offline training [30]. It is an indispensable tool for tackling
a wide range of DRL challenges. In this study, a simple and efficient one-step experiment
reply will be established. This experience replay is also a key focus of our future research
in the development of mobile robot path planning application.

Currently, a lot of research has been conducted in robotics based on the Gazebo
simulator [31,32]. Therefore, the Gazebo simulator can be regarded as a stable and reliable
experimental platform. Due to the higher system requirements of the Gazebo simulator,
reinforcement learning takes about 0.4 microseconds for each step of the Gazebo training.
This results in a higher training time for more learning experiences to occur; therefore, this
training simulation uses OpenAI’s multi-agent particle environment to modify and design
the required training model [33,34]. The sampling time for the training in this study was
about 0.01 s to complete the simulation of the discrete action of the subsequent multi-agent.
In this study, the simple particle multi-agent simulator uses its own robot position to
capture a fixed-size field of view (FOV) as input to the neural network instead of using an
occupation grid map of the entire domain and imports the local environment as observed
from your local field of view. In addition to significantly reducing the computational
burden of neural networks, it also helps the networks to be smoothly implemented in
real robots.

Section 2 will explain the reinforcement learning and training environment devel-
opment, the basic design of multi-agent path-finding will be explained in Section 3, a
path-finding design with multi-agent deep deterministic policy gradients in Section 4, and
experimental results and analyses in Section 5. Finally, conclusions and future works are
discussed in the last section. The main contributions of this paper are as follows:

1. This study is a multi-agent reinforcement learning architecture combining centralized
training and decentralized execution. In centralized training, a self-developed reward

Appl. Sci. 2024, 14, 3960 4 of 21

function can enhance the multi-agent to complete the information aggregation of the
training environment and effectively achieve the purpose of loss convergence.

2. The current design of training methods for multi-agent path-finding. Five differ-
ent training environments combine the simple-to-complex schedule to enhance the
learning efficiency. Based on the experimental results, the designed training schedule
can effectively learn different environmental information and improve the capability
of multi-agents.

2. Reinforcement Learning and Training Environment Development

The DRL machine in this paper is divided into a training phase and an application
phase. In the training phase, a simple particle multi-agent simulator was made as the
training environment to allow the agents to interact with the environment as much as
possible. After completing the training cycle, the trained parameters of the network
were then committed to the Gazebo simulator for validation. The system architecture
of the reinforcement learning and the simple particle multi-agent simulator is shown in
Figure 1. Different map data sets were used to reduce the complexity of the training
cost; it was adjusted with the increment of training steps from a simple case to a complex
one. More training strategies for reinforcement learning are explained in the following
section. Observation information was provided by the environment as the state input for
reinforcement learning, and the state information was received by the agent which decides
the action through the policy network. The possible collision and the next moment’s
position were calculated by the physics engine. The computation of the reward function
includes whether the physics engine has computed a collision or not. The details of the
reward function are described in the next section. The reinforced system architecture of the
Gazebo simulator for the application phase is shown in Figure 2.

When the Gazebo simulator is running, its node in the robot operating system is named
gazebo_ros. Gazebo_ros was mainly used to capture information from the API, which was
provided by the Gazebo simulator and sent to the robot operating system. The Gazebo
simulator mainly emulates a virtual environment with mutual physical characteristics,
robots, and sensors. Finally, all the information was transmitted to the robot operating
system through gazebo_ros. This study focused on obtaining the localization information
of all the robots and information on the collision and LIDAR sensors.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 22

1. This study is a multi-agent reinforcement learning architecture combining central-

ized training and decentralized execution. In centralized training, a self-developed

reward function can enhance the multi-agent to complete the information aggrega-

tion of the training environment and effectively achieve the purpose of loss conver-

gence.

2. The current design of training methods for multi-agent path-finding. Five different

training environments combine the simple-to-complex schedule to enhance the

learning efficiency. Based on the experimental results, the designed training schedule

can effectively learn different environmental information and improve the capability

of multi-agents.

2. Reinforcement Learning and Training Environment Development

The DRL machine in this paper is divided into a training phase and an application

phase. In the training phase, a simple particle multi-agent simulator was made as the

training environment to allow the agents to interact with the environment as much as

possible. After completing the training cycle, the trained parameters of the network were

then commiBed to the Gazebo simulator for validation. The system architecture of the

reinforcement learning and the simple particle multi-agent simulator is shown in Figure

1. Different map data sets were used to reduce the complexity of the training cost; it was

adjusted with the increment of training steps from a simple case to a complex one. More

training strategies for reinforcement learning are explained in the following section. Ob-

servation information was provided by the environment as the state input for reinforce-

ment learning, and the state information was received by the agent which decides the

action through the policy network. The possible collision and the next moment’s position

were calculated by the physics engine. The computation of the reward function includes

whether the physics engine has computed a collision or not. The details of the reward

function are described in the next section. The reinforced system architecture of the Ga-

zebo simulator for the application phase is shown in Figure 2.

Figure 1. Reinforcement learning framework for simple particle multi-agent simulators. Figure 1. Reinforcement learning framework for simple particle multi-agent simulators.

Appl. Sci. 2024, 14, 3960 5 of 21Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 22

Figure 2. Architecture diagram of Gazebo simulator for reinforced learning applications,

When the Gazebo simulator is running, its node in the robot operating system is

named gazebo_ros. Gazebo_ros was mainly used to capture information from the API,

which was provided by the Gazebo simulator and sent to the robot operating system. The

Gazebo simulator mainly emulates a virtual environment with mutual physical charac-

teristics, robots, and sensors. Finally, all the information was transmiBed to the robot op-

erating system through gazebo_ros. This study focused on obtaining the localization in-

formation of all the robots and information on the collision and LIDAR sensors.

More useful information was obtained through other software packages in the robot

operating system (ROS) [35]. For example, map_server converts map information into an

occupancy laBice map and publishes it in the ROS. move_base is a mobile robot naviga-

tion package that provides area map information based on the robot’s location from a

global map. The expert navigation paths are described in the following section. In addition

to the simulated objects, the Gazebo simulator also provides the control signal to the sim-

ulated objects by the ROS.

In this paper, the implementation of a multi-agent reinforced learning architecture is

more complex than that with only one single learning architecture. The state information

related to the environment of all agents is large compared to the single-agent reinforced

learning architecture. Therefore, in the framework of multi-agent reinforced learning, in-

stead of using the whole environment as the state input of the agents, the local state infor-

mation observed by the agents’ own FOV was used as the input for reinforced learning.

The local state information is called observation information, which is denoted as oi,

where i is the number of the agent; this is shown in Figure 3.

Figure 3. Observation information schematic diagram.

Reinforcement learning environment

Agent 1 Agent 2 Agent n

o1 ono2

Agent 1

observation

information

Agent 2

observation

information

Agent n

observation

information

Figure 2. Architecture diagram of Gazebo simulator for reinforced learning applications.

More useful information was obtained through other software packages in the robot
operating system (ROS) [35]. For example, map_server converts map information into an
occupancy lattice map and publishes it in the ROS. move_base is a mobile robot navigation
package that provides area map information based on the robot’s location from a global
map. The expert navigation paths are described in the following section. In addition to the
simulated objects, the Gazebo simulator also provides the control signal to the simulated
objects by the ROS.

In this paper, the implementation of a multi-agent reinforced learning architecture is
more complex than that with only one single learning architecture. The state information
related to the environment of all agents is large compared to the single-agent reinforced
learning architecture. Therefore, in the framework of multi-agent reinforced learning,
instead of using the whole environment as the state input of the agents, the local state
information observed by the agents’ own FOV was used as the input for reinforced learning.
The local state information is called observation information, which is denoted as oi, where
i is the number of the agent; this is shown in Figure 3.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 22

Figure 2. Architecture diagram of Gazebo simulator for reinforced learning applications,

When the Gazebo simulator is running, its node in the robot operating system is

named gazebo_ros. Gazebo_ros was mainly used to capture information from the API,

which was provided by the Gazebo simulator and sent to the robot operating system. The

Gazebo simulator mainly emulates a virtual environment with mutual physical charac-

teristics, robots, and sensors. Finally, all the information was transmiBed to the robot op-

erating system through gazebo_ros. This study focused on obtaining the localization in-

formation of all the robots and information on the collision and LIDAR sensors.

More useful information was obtained through other software packages in the robot

operating system (ROS) [35]. For example, map_server converts map information into an

occupancy laBice map and publishes it in the ROS. move_base is a mobile robot naviga-

tion package that provides area map information based on the robot’s location from a

global map. The expert navigation paths are described in the following section. In addition

to the simulated objects, the Gazebo simulator also provides the control signal to the sim-

ulated objects by the ROS.

In this paper, the implementation of a multi-agent reinforced learning architecture is

more complex than that with only one single learning architecture. The state information

related to the environment of all agents is large compared to the single-agent reinforced

learning architecture. Therefore, in the framework of multi-agent reinforced learning, in-

stead of using the whole environment as the state input of the agents, the local state infor-

mation observed by the agents’ own FOV was used as the input for reinforced learning.

The local state information is called observation information, which is denoted as oi,

where i is the number of the agent; this is shown in Figure 3.

Figure 3. Observation information schematic diagram.

Reinforcement learning environment

Agent 1 Agent 2 Agent n

o1 ono2

Agent 1

observation

information

Agent 2

observation

information

Agent n

observation

information

Figure 3. Observation information schematic diagram.

3. Basic Design of Multi-Agent Path-Finding

In the design of multi-agent path-finding, it originates from Q-learning, and it is
known that if there is an optimal action value function Q*(s, a), the optimal action a*(s) can
be obtained given a state s, as shown in Equation (1):

a∗(s) = argmax
a

Q∗(s, a) (1)

Appl. Sci. 2024, 14, 3960 6 of 21

The DDPG algorithm allows the agent to continuously interact with the environment
and updates the parameters according to the reward values, which are obtained from the
reward function. However, if a continuous action space is used, it is very difficult to obtain
the maximum Q value because it is not possible to exhaust all the actions. Approximating
the maximum Q through a useful policy is the most efficient and feasible approach, as
shown in Equation (2):

maxaQ(s, a) ≈ Q(s, µ(s)) (2)

The optimal action value function Q∗(s, a) can be written as Equation (3) using
Berman’s equation. Q(s, a) denotes the optimal expectation value obtained by performing
an action in the current state s, where Q(s, a) is s’ the state sampled from the environment,
and the distribution of the state transfer probability is denoted as P(·|s, a). Because future
expectations are less relevant to the present moment, a discount rate γ represents the
relative importance of future rewards compared to immediate rewards. A higher discount
rate prioritizes long-term rewards, while a lower discount rate focuses on immediate gains.
γ = 0.95 is added to reduce the dependence on future expectations.

Q∗(s, a) = E
s′∼P(·|s,a)

[
r(s, a) + γmax

a′
Q∗(s′, a′)

]
(3)

The mean squared Bellman Error (MSBE) is used in the design of the action value
network to estimate the value of the error of the network, which is with respect to the
optimal action value function and is expressed as Equation (4), where yϕ is the target
network of Qϕ(s, a). r is the reward value, and d is termination status.

L(ϕ, D) = E(s,a,r,s′ ,d)∼D

[(
Qϕ(s, a)− yϕ

)2
]

(4)

The purpose of the action value network is to calculate the reward value, which is
expected to be obtained by performing action A in a state S. It is denoted in Equation (5):

yϕ = r + γ(1− d)max
a′

Qϕ(s′, a′) (5)

in the training process, the target network yϕ is regarded as the best action value function,
and the error value (loss) L(ϕ, D) is referred to as the loss between the current action value
network and the target network. The system calculates the mean square deviation between
the current action value network Qϕ(s, a) and the target network for training verification.
In this case, the value of d is either 0 or 1 and is used to represent the termination state. The
agent will not calculate the reward value after reaching the termination state. Further, D is
a register for storing the trajectory of past experiences. The DDPG learns by experience
replay, which is similar to the DQN. This is an efficient way to utilize the experience of
different rounds of the training cycle through offline learning methodology. A larger replay
buffer provides more data for training, potentially improving policy accuracy, but may
increase memory usage.

The depth deterministic policy gradient also refers to the DDQN, which takes ad-
vantage of the target network to avoid the problem of overestimation. The network
parameters are those of the target network ϕtarget. The final loss function can be expressed
as Equation (6):

L(ϕ, D) = E(s,a,r,s′ ,d)∼D

[(
Qϕ(s, a)− yϕtarget

)2
]

(6)

where
yϕtarget = r + γ(1− d)max

a′
Qϕtarget(s

′, a′) (7)

Appl. Sci. 2024, 14, 3960 7 of 21

In Equation (7), action a′ is also the estimated response through the target policy
µϕtarget(s

′). Therefore, it can be expressed as Equation (8) below:

yϕtarget = r + γ(1− d)max
a′

Qϕtarget(s
′, µϕtarget

(
s′
)
) (8)

Register D holds a large number of past experiences and consumes a lot of resources
since it needs to frequently count all past experiences and update them continuously.
Therefore, the action value network is updated by sampling a batch size of experience trace
B from the temporary register. This is shown in Equation (9):

B = {t ∈ D ||t| = batch-size} (9)

t denotes the current trajectory, which is randomly sampled from the register of past
experiences. The whole batch experience trajectory B is obtained from one batch size. The
batch size used in this paper is 1024.

Neural network parameters are updated with the gradient descent method; its work
is represented in Equation (10):

∇ϕ J = ∇ϕ
1
|B| ∑

(s,a,r,s′ ,d)∈B

(
Qϕ(s, a)− yϕtarget

)2
(10)

The gradient value is approached by batch experience trajectory B, where the sum of
the mean square deviations is obtained by dividing the batch size.

In the deep deterministic policy gradient, the goal of the policy network µθ(s) is to
maximize the action value network, where θ is mathematically expressed and is calculated
as Equation (11):

∇θ J ≈ maxθEs∼D
[
Qϕ(s, µθ(s))

]
(11)

The gradient representation is shown in Equation (12):

∇θ J = ∇ϕ
1
|B|∑s∈B

Qϕ(s, µθ(s)) (12)

Each action value network Qϕ(s, a) and policy network µθ(s) has a target network
Qϕtarget(s, a) and µθtarget(s), respectively. Once the action value network and strategy network
have been updated, the target network needs to be updated at the same time. The target
network is updated through Equation (13):

ϕtarget ← ρϕtarget + (1− ρ)ϕ
θtarget ← ρθtarget + (1− ρ)θ

(13)

In Equation (13), ρ = 0.01 is the soft updated rate. A higher ρ value slows down
target network updates, providing smoother policy improvements, while a lower ρ value
speeds up updates but may introduce instability. Even if the target network parameters
ϕtarget and θtarget of the action value network and the policy network are using the cur-
rent network parameters ϕ and θ, the update of their network parameters is gradually
completed incrementally.

The architecture of the depth deterministic policy gradient is shown in Figure 4. At
the beginning of the flowchart, the parameters ϕ and θ of the action value network and
the policy network are initialized, and the register D is cleared. The parameters of the
target network from the action value network and the policy network are also initialized
by ϕtarget ← ϕ and θtarget ← θ from the current network state.

Appl. Sci. 2024, 14, 3960 8 of 21Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 22

Figure 4. The architecture of the deep deterministic policy gradient.

In each training round, the training environment is first reset; the agent obtains the

states of the environment. The action a is selected via the strategy network, and Gaussian

noise ε [36] is added to improve the ability and effectiveness to optimally explore the space

in response to changes in its environment. It should be noted that noise was only used

during the training cycle. No noise was taken to improve the exploration after completing

the training round. On the other hand, the action value a was set in such a way that it will

not exceed the range in which the agent can normally operate.

In this study, action a is performed in the training environment to get to the next state �4; then, the reward value r is given by the environment and the termination state d. Then,

the track %�, �, �, �′, *' of this step is saved into register D. If action a is terminated, the

environment is reset again, and a new turn begins.

While the algorithm executes several rounds to reach the condition of updating the

network parameters, it samples a batch size of data B from register D. It calculates the

gradient of the action value network and the strategy network with the trajectory of data

B and updates it as the explained range from the action value network and strategy net-

work. Finally, the soft updated method is proposed to complete the parameters of the

target network.

4. Path-Finding Design with Multi-Agent Deep Deterministic Policy Gradients

A multi-agent deep deterministic policy gradient was applied in this study. The ar-

chitecture diagram is shown in Figure 5. We combined the centralized training and decen-

tralized execution architecture for the multi-agent reinforcement learning target for path-

finding. In this study, there were N agents under a multi-agent reinforcement learning

cycle, where I denotes the agent number. Each agent had its own local observation infor-

mation. The observation information obtained by the agent is denoted as MN , and the ob-

servation information of all agents is denoted as M⃗ = MP, . . . , MQ.

The action performed by each agent is represented as �N, and the actions performed

by all agents are denoted as �⃗ = �P, . . . , �Q . The policies of all agents are represented as �⃗ = �P, . . . , �Q with their parameter set at F⃗ = FP, . . . , FQ.

The transfer function between the observation information and the action set was

expressed as �ER: MN ↦ �N. N agents interact together in a training environment, and all

agents interacting in the environment are viewed as an overall set of states S.

Although, Markov games capture the intricate interactions between multiple agents

for the more realistic modeling of MARL scenarios. Because each agent can only observe

its own local observation information, it can also be regarded as a partially observable

Markov Decision process. But this computational complexity is large. This study treated

Figure 4. The architecture of the deep deterministic policy gradient.

In each training round, the training environment is first reset; the agent obtains the
states of the environment. The action a is selected via the strategy network, and Gaussian
noise ε [36] is added to improve the ability and effectiveness to optimally explore the space
in response to changes in its environment. It should be noted that noise was only used
during the training cycle. No noise was taken to improve the exploration after completing
the training round. On the other hand, the action value a was set in such a way that it will
not exceed the range in which the agent can normally operate.

In this study, action a is performed in the training environment to get to the next
state s′; then, the reward value r is given by the environment and the termination state d.
Then, the track (s, a, r, s′, d) of this step is saved into register D. If action a is terminated, the
environment is reset again, and a new turn begins.

While the algorithm executes several rounds to reach the condition of updating the
network parameters, it samples a batch size of data B from register D. It calculates the
gradient of the action value network and the strategy network with the trajectory of
data B and updates it as the explained range from the action value network and strategy
network. Finally, the soft updated method is proposed to complete the parameters of the
target network.

4. Path-Finding Design with Multi-Agent Deep Deterministic Policy Gradients

A multi-agent deep deterministic policy gradient was applied in this study. The
architecture diagram is shown in Figure 5. We combined the centralized training and
decentralized execution architecture for the multi-agent reinforcement learning target
for path-finding. In this study, there were N agents under a multi-agent reinforcement
learning cycle, where I denotes the agent number. Each agent had its own local observation
information. The observation information obtained by the agent is denoted as oi, and the
observation information of all agents is denoted as

→
o = o1, . . . , oN .

The action performed by each agent is represented as ai, and the actions performed
by all agents are denoted as

→
a = a1, . . . , aN . The policies of all agents are represented as

→
µ = µ1, . . . , µN with their parameter set at

→
θ = θ1, . . . , θN .

The transfer function between the observation information and the action set was
expressed as µθi : oi 7→ ai . N agents interact together in a training environment, and all
agents interacting in the environment are viewed as an overall set of states S.

Although, Markov games capture the intricate interactions between multiple agents
for the more realistic modeling of MARL scenarios. Because each agent can only observe its
own local observation information, it can also be regarded as a partially observable Markov

Appl. Sci. 2024, 14, 3960 9 of 21

Decision process. But this computational complexity is large. This study treated the multi-
agent reinforcement learning as a multi-agent version of Markov Decision processes [37].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 22

the multi-agent reinforcement learning as a multi-agent version of Markov Decision pro-

cesses [37].

The learning difficulty of multi-agent reinforcement learning lies in the fact that the

overall system state transfer function can be expressed as Equation (14).

U: V × �P × . .. × �Q ↦ V′ (14)

In the centralized training part, the central critic of the action value network mainly

collected the traces of all the agents and evaluated the actions performed by each actor.

Actors can obtain gradients from the central critic and update their network parameters.

The gradient representation of the actor update is shown in Equation (15).

Figure 5. Multi-agent deep deterministic policy gradient flowchart diagram.

AERB(FN) = �XY⃗ ,�~$ �A�R�NZYY⃗ (M⃗, �P, . . . , �Q)AER�ER(MN)|�R[Z\R(XR)� (15)

The central critic’s loss function is calculated using Equation (16), where y is the tar-

get function as shown in Equation (17). In Equation (17), �N denotes the reward value ob-

tained from the environment by agent i when it is in state M⃗4, and all the agents take indi-

vidual action �N′.
�(FN) = �XY⃗ ,�],...,�^,"],...,"^,XY⃗ ′ 01�NZYY⃗ (M⃗, �P, . . . , �Q) − �2(3 (16)

� = �N + ��NZYY⃗ %M⃗′, �P′ , . . . , �Q′ '|�_′ [Z_′ (17)

This paper used multi-agent deep deterministic policy gradients as the trainer for the

path-finding reinforcement learning results. In this case, each agent had a strategy net-

work and action value network of the central critic, and each policy had a target policy

network. The action value network also had a target network. The central critic’s network

input was used for all agent observation information and actions.

The central critic network is for the action value network. Its purpose is to evaluate

the state of the agent and the value of the actions performed by the agent. Therefore, in

addition to the observation information, the network input also included the actions per-

formed by the agent as input to the network. This paper involves a multi-agent reinforce-

ment learning architecture using decentralized execution with a centralized training cycle.

The central critic’s input is a stack of observation information and execution actions from

Figure 5. Multi-agent deep deterministic policy gradient flowchart diagram.

The learning difficulty of multi-agent reinforcement learning lies in the fact that the
overall system state transfer function can be expressed as Equation (14).

T : S× a1 × . . . × aN 7→ S′ (14)

In the centralized training part, the central critic of the action value network mainly
collected the traces of all the agents and evaluated the actions performed by each actor.
Actors can obtain gradients from the central critic and update their network parameters.
The gradient representation of the actor update is shown in Equation (15).

∇θi J(θi) = E→
o ,a∼D

[
∇ai Q

→
µ
i (
→
o , a1, . . . , aN)∇θi µθi (oi)|ai=µθi

(oi)

]
(15)

The central critic’s loss function is calculated using Equation (16), where y is the target
function as shown in Equation (17). In Equation (17), ri denotes the reward value obtained

from the environment by agent i when it is in state
→
o
′
, and all the agents take individual

action a′i.

L(θi) = E→
o ,a1,...,aN ,r1,...,rN ,

→
o
′

[(
Q
→
µ
i (
→
o , a1, . . . , aN)− y

)2
]

(16)

y = ri + γQ
→
µ
i (
→
o
′
, a′1, . . . , a′N)|a′j=µ′θj

(17)

This paper used multi-agent deep deterministic policy gradients as the trainer for the
path-finding reinforcement learning results. In this case, each agent had a strategy network
and action value network of the central critic, and each policy had a target policy network.
The action value network also had a target network. The central critic’s network input was
used for all agent observation information and actions.

The central critic network is for the action value network. Its purpose is to evaluate the
state of the agent and the value of the actions performed by the agent. Therefore, in addition
to the observation information, the network input also included the actions performed by
the agent as input to the network. This paper involves a multi-agent reinforcement learning
architecture using decentralized execution with a centralized training cycle. The central

Appl. Sci. 2024, 14, 3960 10 of 21

critic’s input is a stack of observation information and execution actions from all agents
used as input to the network. The final output was the value that the central critic places
on the actions taken by all actors. The system architecture is shown in Figure 6.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 22

all agents used as input to the network. The final output was the value that the central

critic places on the actions taken by all actors. The system architecture is shown in Figure

6.

Figure 6. The architecture of the central critic network.

In Figure 6, N is denoted as the number of all agents. The observation information,

i.e., the design of the area observation information presented in this paper, includes the

following: the dimension size of the agent information was 36, and the collaborative in-

formation included three 9 × 9 laBice maps. Each agent had a discrete set of actions of size

nine. Finally, the observation information of all agents and the set of actions within all

agents were amalgamated and combined. Therefore, the dimension size was N × 288,

which was then inpuBed to the hidden layer with a dimension size of 512. The overall

structure consisted of five layers.

An actor network is a policy network that allows the agent to decide what to perform

based on the observed state of the environment. The architecture of the agent network is

shown in Figure 7. The final output included nine values, which were the size of each

discrete action calculated by the neurons of the strategy network based on the input in-

formation and the weight values. The related action mapping value of the operator’s out-

puts is shown in Table 1. In practice, the maximum value of these nine discrete actions is

taken and executed as the calculation of Equation (18), where `N is the final action per-

formed by agent i.

`N = ���	�
 1�EN (MN)2 (18)

Table 1. Policy network output and action mapping table.

Action Number Actual Action

0 Stop

1
a⃑ = (1,0)

Rightwards and runa⃑ = (1,0) in the simulator

2
a⃑ = (1,1)

Right upper and run in the simulator

3
a⃑ = (0,1)

Upwards and run in the simulator

4
a⃑ = (−1,1)

Left upper and run in the simulator

5
a⃑ = (−1,0)

Leftwards and run in the simulator

6
a⃑ = (−1, −1)

Left down and run in the simulator

7
a⃑ = (0, −1)

Downwards and run in the simulator

8
a⃑ = (1, −1)

Right down and run in the simulator

Value

512

FC

512

leaky

ReLU
FC FC

512

leaky

ReLU

leaky

ReLU
FCFC

512512

Observation

information

set

Agent action

set

F
la

tt
e
n

+

C
o

n
c
a
te

n
a
te leaky

ReLU

N×1

N×(36+3×9×9)

N×9 N×288

linear

Figure 6. The architecture of the central critic network.

In Figure 6, N is denoted as the number of all agents. The observation information,
i.e., the design of the area observation information presented in this paper, includes the
following: the dimension size of the agent information was 36, and the collaborative
information included three 9 × 9 lattice maps. Each agent had a discrete set of actions of
size nine. Finally, the observation information of all agents and the set of actions within
all agents were amalgamated and combined. Therefore, the dimension size was N × 288,
which was then inputted to the hidden layer with a dimension size of 512. The overall
structure consisted of five layers.

An actor network is a policy network that allows the agent to decide what to perform
based on the observed state of the environment. The architecture of the agent network
is shown in Figure 7. The final output included nine values, which were the size of
each discrete action calculated by the neurons of the strategy network based on the input
information and the weight values. The related action mapping value of the operator’s
outputs is shown in Table 1. In practice, the maximum value of these nine discrete actions is
taken and executed as the calculation of Equation (18), where ui is the final action performed
by agent i.

ui = argmax
(

µi
θ

(
oi
))

(18)

Table 1. Policy network output and action mapping table.

Action Number Actual Action

0 Stop

1
⇀
v = (1, 0)

Rightwards and run in the simulator

2
⇀
v = (1, 1)

Right upper and run in the simulator

3
⇀
v = (0, 1)

Upwards and run in the simulator

4
⇀
v = (−1, 1)

Left upper and run in the simulator

5
⇀
v = (−1, 0)

Leftwards and run in the simulator

6
⇀
v = (−1,−1)

Left down and run in the simulator

7
⇀
v = (0,−1)

Downwards and run in the simulator

8
⇀
v = (1,−1)

Right down and run in the simulator

Appl. Sci. 2024, 14, 3960 11 of 21Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 22

Figure 7. The system architecture of the action network.

The design of the reward function in this paper allows the mobile robot to move into

the target point while maintaining an effective operation of the overall system. It also ful-

fills the desired objectives shown in Table 2.

The current paper is designed to address the five states encountered during the train-

ing process of path-finding reinforcement learning. The first is the state of reaching the

target point, which is a relatively rare state in the environment during training. If the re-

ward function was designed to be too sparse in this state, it may result in the state being

of liBle benefit in the overall learning. Therefore, this paper used an exponential function

to design the reward for reaching the target point, where the agent is rewarded for being

within a certain distance. As the distance between the agent and the target is shortened,

the agent can obtain a higher reward value.

The second state is a collision, which is inevitable during training. This paper did not

consider collision as a termination condition because collision gives negative rewards. All

of these collisions were used in the experience replay. SeBing it as a termination condition

would instead make the collision condition sparse. In order to avoid continuous collisions

between the agents, it was set in a way that as the number of collisions increased, the

heavier the penalty it received.

The third state is the repulsive state. To avoid the state of collision being too sparse,

the distance between the agent and other objects was regarded as the repulsion force. The

repulsive force increases as one gets closer, and the repulsive force is summed up in the

reward function. This award not only enhanced the agent’s ability to avoid collisions but

also densified the state of the collision.

The fourth state is the expert direction, and the A* algorithm was used as a guide for

the path. The reason for this is that if we used the straight-line distance of the target point

as a reference, we may encounter the problem of having a wall in between despite having

a very close distance. If this happens, the agent will be required to perform a detour.

Action

9

Lidar

information

Speed

information

1×12

1×2

C
o

n
ca

te
n

a
te

FC

256

256

FC FC

256

leaky

ReLU

leaky

ReLU

FC

256

leaky

ReLU
FC FC

256

leaky

ReLU

leaky

ReLU

256

FCFC leaky

ReLU

leaky

ReLU

C
o

n
ca

te
n

a
te

Localization

information

1×2

Target

information

1×2

Expert

direction

information

1×2

Expert path

information

1×8

256 256

FC

256

FC FC

256

leaky

ReLU

leaky

ReLU

256

FCFC

leaky

ReLU

leaky

ReLU

256256

Other robot

location

information

9×9

Other robot

location

information

at the last

moment

9×9 FC

256

FC FC

256

leaky

ReLU

leaky

ReLU

256

FCFC leaky

ReLU

leaky

ReLU

256 256

F
la

tt
en

+

C
o

n
ca

te
n

a
te

Other robot

path

information

9×9

FC

256

FC FC

256

leaky

ReLU

leaky

ReLU

256

FCFC
leaky

ReLU

leaky

ReLU

256 256

F
la

tt
en

Other robot

target point

information

9×9

FC

256

FC FC

256

leaky

ReLU

leaky

ReLU

256

FCFC
leaky

ReLU

leaky

ReLU

256 256

F
la

tt
en

Figure 7. The system architecture of the action network.

The design of the reward function in this paper allows the mobile robot to move into
the target point while maintaining an effective operation of the overall system. It also
fulfills the desired objectives shown in Table 2.

Table 2. Reward function design.

State Rewards Objective

Achievement of Targets
rgoal

exp(−k1× dist) Obj 1

Occurrence of collisions
rcollision

collision_times Obj 2

Repulsion Award
rcollision_ f orce

−max(exp(− k2× d(Pagent, I))) Obj 3

Expert Direction Award
rdir

{
−k3 u

|u| =
v
|v|

−k4 otherwise
Obj 4

Stop Rewards
rstop

−k5 Obj 5

Obj 1: The achievement of the target to obtain the reward and set the termination condition for the agent to be
reached. The reward function is exp(−k1× dist), and the distance between the agent and its target is represented
by dist. k1 = 10 is used to adjust the degree of convergence between dist size and rewards. Obj 2: The reward
value of collision_times for a collision, where collision_times is the number of collisions. Obj 3: The reward value
of −max(exp(− k2× d(Pagent, I))) is used to calculate the repulsive force; the closer the distance, the greater the
repulsive force, in which I is the set of vectors from the agent to other objects. k2 = 0.2 is the experience value,
which can be adjusted for different distance sizes and repulsive force variations. Obj 4: V denotes the expert
action vector, and u denotes the agent action vector. When the agent performs an action that is different from the
one planned by the expert, it is rewarded poorly. The size of k3 = 0.2 is chosen mainly in the same value as Obj
2. k4 = 0.4 is worse, because the direction is different from the expert. Obj 5: When the agent stops moving, it
gives a negative reward. k5 = 0.8 is chosen based on the fact that the severity of stop rewards is 4 times the size of
the collision.

Appl. Sci. 2024, 14, 3960 12 of 21

The current paper is designed to address the five states encountered during the training
process of path-finding reinforcement learning. The first is the state of reaching the target
point, which is a relatively rare state in the environment during training. If the reward
function was designed to be too sparse in this state, it may result in the state being of little
benefit in the overall learning. Therefore, this paper used an exponential function to design
the reward for reaching the target point, where the agent is rewarded for being within a
certain distance. As the distance between the agent and the target is shortened, the agent
can obtain a higher reward value.

The second state is a collision, which is inevitable during training. This paper did not
consider collision as a termination condition because collision gives negative rewards. All
of these collisions were used in the experience replay. Setting it as a termination condition
would instead make the collision condition sparse. In order to avoid continuous collisions
between the agents, it was set in a way that as the number of collisions increased, the
heavier the penalty it received.

The third state is the repulsive state. To avoid the state of collision being too sparse,
the distance between the agent and other objects was regarded as the repulsion force. The
repulsive force increases as one gets closer, and the repulsive force is summed up in the
reward function. This award not only enhanced the agent’s ability to avoid collisions but
also densified the state of the collision.

The fourth state is the expert direction, and the A* algorithm was used as a guide
for the path. The reason for this is that if we used the straight-line distance of the target
point as a reference, we may encounter the problem of having a wall in between despite
having a very close distance. If this happens, the agent will be required to perform a detour.
Therefore, this paper treated the expert’s proposed action as a preferred option. However,
if the agent performed other actions, it would only be a little bit worse than the expert
action. The difference between the two different action rewards would not cause the agent
to follow exactly the expert’s path. Instead, it will just be a reference to what the experts
were doing.

The last state is a stop state. In order to motivate the agent to explore, a negative
reward was given when the agent chose to stop moving.

The action taken by the agent obtains the reward value of the step according to the
reward function designed in this paper. It is calculated using Equation (19).

ri = S1× ri
goal + S2× ri

collision + ri
collision_ f orce + ri

dir + ri
stop (19)

where i is regarded as the agent number. S1 is selected as 5 to regulate the overall formula.
S2 = −0.2 is mainly an empirical value, and it can be used as a reduction in the reward
value for collisions.

5. Experimental Results and Analyses

The main objective of this experiment was to validate the effectiveness of the proposed
multi-agent path-reinforcement learning based on deep deterministic policy gradients.
In the validation process, different training environments and numbers of agents were
analyzed and explored.

In the experimental environment, the software learning framework used was PyTorch
3.7. Linux Ubuntu 20.04, deep learning framework paddle 2.3.0, hardware acceleration
framework CUDA 11.1, and hardware acceleration library cuDNN 8 were also used.

This study uses an RFL framework with centralized training and decentralized struc-
ture. Therefore, the complexity calculation mainly includes the number of computations
required for training the data during the training cycle and the number of computations re-
quired for decentralized execution and agent interaction during application. This is because
the complexity of centralized training is much higher than the amount of computation
involved in decentralized execution. For multi-agent interactions, the effects of inter-agent
interactions are approximated to the constant calculation time (CT) due to the locality of
the individual agent using partially observed information. So, the complexity of this study

Appl. Sci. 2024, 14, 3960 13 of 21

will focus on the computation of each iteration during the centralized training. Based on
the general principles of the previous literature [38,39], the following presentations are
deduced to be the key points to be considered for the calculation of the complexity in the
centralized training and decentralized execution framework of the DDPG for this paper.

1. Number of neural network parameters (θ): DDPG algorithms usually contain two
main neural networks: the actor network and the policy network. Each network has
its own parameters, mainly weights and biases, and the number of parameters in a
neural network is an important factor in the complexity of the calculation.

2. Dimensions of state space and action space. During the centralized training phase,
the states and actions of all agents may be combined into a global state and action
vector. Therefore, the state and action dimensions will be extended to the sum of all
agent state and action dimensions.

3. DDPG algorithms usually require a large amount of training data (states, actions, re-
wards and next states sampled from the environment) to train effectively. In addition,
the number of iterations in the training process also directly affects the computational
complexity. The approximate complexity formula (CF) used in this study is as follows:

CF(θA, θC, ds, da, N,η, B) = η × CT × (B × ((θA × N × ds)+(θC × N × (ds + da)))) (20)

where the state dimension of each agent is ds, and the action dimension of each agent is da.
The total number of agents is N. In addition, θA is the total number of the parameters of the
actor network, and θC is the total number of the parameters of the critic network. η is the
total update number in the training process, and B is the size of the batch processed in each
iteration of the training process.

• Case 1: Agent Reinforcement Learning—Decentralized Validation

A multi-agent reinforcement learning architecture using centralized training and
decentralized execution is illustrated in Figure 5. To enhance multi-agent collaboration in
observing the information center for agents, this paper used the concordance information
as input to the neural network in the form of occupied lattice maps. The advantage of this
approach is that different numbers of agents can be used for training and execution. This
was utilized since during execution, it only needed to copy the trained policy network
parameters to other agents.

Firstly, this paper used three agents (agent 0, agent 1, and agent 2) for training during
the centralized training process. The training results are shown in Figure 8. The x-axis
is the number of training iterations; the y-axis is the loss value. The loss function is the
amount of error calculated by the central critic on the three agents during the centralized
training, where the smoothing parameter for the data graph was 0.8. The dotted lines
are the original values and the solid lines are the experimental results of loss value with
smoothing method.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 22

(a) Agent 0 (b) Agent 1 (c) Agent 2

Figure 8. Central critics’ response to loss functions of agents.

Experimentally, it can be seen that the loss function of the central critic varied for

different agents. This is because each agent observed a different state. Different strategy

networks also performed different actions with corresponding reward values. However,

the performances of the three proxies were similar, partly because they used the same

reward function. The random generation of locations can help the agent to learn different

experiences during training.

Figure 9 shows the average value of rewards received by all agents in each round,

where the x-axis is the number of training iterations, and the y-axis is the reward value. It

can be observed that as the number of rounds increased, the number of times the agent

interacted with the environment also increased. The agent also learned from the reward

values obtained by the environment how to achieve beBer results from the designed train-

ing environment.

Figure 9. Average round reward value of agents. The doBed and solid line lines present the origi-

nal and smoothing values, respectively.

The simulation results of the actual interaction with the environment are shown in

Figure 10, where the red, black, and green agent locations and their target locations are

randomly generated in the environment. The target locations are represented as semi-

transparent dots of the corresponding colors. Figure 10a shows the initial locations of the

randomly generated agents and targets. Figure 10b shows that each agent starts to move

towards the target point. Figure 10c shows the black agent moving to the target point and

waiting for other agents to reach the target point. Figure 10d shows the target point for all

agents.

Figure 8. Central critics’ response to loss functions of agents.

Experimentally, it can be seen that the loss function of the central critic varied for
different agents. This is because each agent observed a different state. Different strategy
networks also performed different actions with corresponding reward values. However,
the performances of the three proxies were similar, partly because they used the same

Appl. Sci. 2024, 14, 3960 14 of 21

reward function. The random generation of locations can help the agent to learn different
experiences during training.

Figure 9 shows the average value of rewards received by all agents in each round,
where the x-axis is the number of training iterations, and the y-axis is the reward value. It
can be observed that as the number of rounds increased, the number of times the agent
interacted with the environment also increased. The agent also learned from the reward
values obtained by the environment how to achieve better results from the designed
training environment.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 22

(a) Agent 0 (b) Agent 1 (c) Agent 2

Figure 8. Central critics’ response to loss functions of agents.

Experimentally, it can be seen that the loss function of the central critic varied for

different agents. This is because each agent observed a different state. Different strategy

networks also performed different actions with corresponding reward values. However,

the performances of the three proxies were similar, partly because they used the same

reward function. The random generation of locations can help the agent to learn different

experiences during training.

Figure 9 shows the average value of rewards received by all agents in each round,

where the x-axis is the number of training iterations, and the y-axis is the reward value. It

can be observed that as the number of rounds increased, the number of times the agent

interacted with the environment also increased. The agent also learned from the reward

values obtained by the environment how to achieve beBer results from the designed train-

ing environment.

Figure 9. Average round reward value of agents. The doBed and solid line lines present the origi-

nal and smoothing values, respectively.

The simulation results of the actual interaction with the environment are shown in

Figure 10, where the red, black, and green agent locations and their target locations are

randomly generated in the environment. The target locations are represented as semi-

transparent dots of the corresponding colors. Figure 10a shows the initial locations of the

randomly generated agents and targets. Figure 10b shows that each agent starts to move

towards the target point. Figure 10c shows the black agent moving to the target point and

waiting for other agents to reach the target point. Figure 10d shows the target point for all

agents.

Figure 9. Average round reward value of agents. The dotted and solid line lines present the original
and smoothing values, respectively.

The simulation results of the actual interaction with the environment are shown in
Figure 10, where the red, black, and green agent locations and their target locations are
randomly generated in the environment. The target locations are represented as semi-
transparent dots of the corresponding colors. Figure 10a shows the initial locations of the
randomly generated agents and targets. Figure 10b shows that each agent starts to move
towards the target point. Figure 10c shows the black agent moving to the target point and
waiting for other agents to reach the target point. Figure 10d shows the target point for
all agents.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 22

(a)Initial positions (b)Move to target (c)Black circle to target (d)Achievement of target

Figure 10. Mirror image of 3 agents in training environment. The different color doBed-line indicate

different trajectories of agents, solid circles represent initial positions of different agents and differ-

ent semi-transparent circles represent targets.

The method of expanding the proxy experiment is to add three more proxies from

the previous experiment of three proxies, so there are six proxies in total. The experimental

results are shown in the split-mirror diagram in Figure 11. Figure 11a shows the move-

ment of the random generator agent towards the target position. Figure 11b shows the

waiting for the end of the round for the agent that has reached the target point and con-

firming if there is an avoidance action to be performed. Figure 11c shows that the red

agent path passes through the blue agent, so Figure 11d shows that the blue agent avoids

the red agent path. In the left half of Figure 11e, it can also be observed that the black and

blue-green agents are avoiding each other when they meet because they want to reach

their respective targets. Figure 11f shows the final state of the round. These results show

that most of the agents can reach their respective targets, and the red and blue-green

agents will terminate the round because they have reached the maximum number of steps

in the round.

(a) Initial positions (b) Move to the target (c) Red agent is close to blue agent

(d) Blue and blue-green agents avoidance action (e) Black agent avoidance action (f) Final state

Figure 11. Expanded 6-agent mirror experiment. The different color doBed-line indicate different

trajectories of agents, solid circles represent initial positions of different agents and different semi-

transparent circles represent targets.

• Case 2: Experimental analysis of different environments

The aim of this example in analyzing different environments was to determine the

effectiveness of the overall system development and operation. The collision rate and av-

erage operating time were used as the criteria for evaluating the overall system operation.

Figure 10. Mirror image of 3 agents in training environment. The different color dotted-line indicate
different trajectories of agents, solid circles represent initial positions of different agents and different
semi-transparent circles represent targets.

The method of expanding the proxy experiment is to add three more proxies from the
previous experiment of three proxies, so there are six proxies in total. The experimental
results are shown in the split-mirror diagram in Figure 11. Figure 11a shows the movement
of the random generator agent towards the target position. Figure 11b shows the waiting
for the end of the round for the agent that has reached the target point and confirming if
there is an avoidance action to be performed. Figure 11c shows that the red agent path
passes through the blue agent, so Figure 11d shows that the blue agent avoids the red agent

Appl. Sci. 2024, 14, 3960 15 of 21

path. In the left half of Figure 11e, it can also be observed that the black and blue-green
agents are avoiding each other when they meet because they want to reach their respective
targets. Figure 11f shows the final state of the round. These results show that most of the
agents can reach their respective targets, and the red and blue-green agents will terminate
the round because they have reached the maximum number of steps in the round.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 22

(a)Initial positions (b)Move to target (c)Black circle to target (d)Achievement of target

Figure 10. Mirror image of 3 agents in training environment. The different color doBed-line indicate

different trajectories of agents, solid circles represent initial positions of different agents and differ-

ent semi-transparent circles represent targets.

The method of expanding the proxy experiment is to add three more proxies from

the previous experiment of three proxies, so there are six proxies in total. The experimental

results are shown in the split-mirror diagram in Figure 11. Figure 11a shows the move-

ment of the random generator agent towards the target position. Figure 11b shows the

waiting for the end of the round for the agent that has reached the target point and con-

firming if there is an avoidance action to be performed. Figure 11c shows that the red

agent path passes through the blue agent, so Figure 11d shows that the blue agent avoids

the red agent path. In the left half of Figure 11e, it can also be observed that the black and

blue-green agents are avoiding each other when they meet because they want to reach

their respective targets. Figure 11f shows the final state of the round. These results show

that most of the agents can reach their respective targets, and the red and blue-green

agents will terminate the round because they have reached the maximum number of steps

in the round.

(a) Initial positions (b) Move to the target (c) Red agent is close to blue agent

(d) Blue and blue-green agents avoidance action (e) Black agent avoidance action (f) Final state

Figure 11. Expanded 6-agent mirror experiment. The different color doBed-line indicate different

trajectories of agents, solid circles represent initial positions of different agents and different semi-

transparent circles represent targets.

• Case 2: Experimental analysis of different environments

The aim of this example in analyzing different environments was to determine the

effectiveness of the overall system development and operation. The collision rate and av-

erage operating time were used as the criteria for evaluating the overall system operation.

Figure 11. Expanded 6-agent mirror experiment. The different color dotted-line indicate different
trajectories of agents, solid circles represent initial positions of different agents and different semi-
transparent circles represent targets.

• Case 2: Experimental analysis of different environments

The aim of this example in analyzing different environments was to determine the
effectiveness of the overall system development and operation. The collision rate and
average operating time were used as the criteria for evaluating the overall system operation.
Figure 12 shows the proposed experiment setup consisting of five training environments of
varying environmental complexity. The focus of this paper on training neural networks
for DRL is developed in a progressive learning approach. In the training procedure, its
sequence is designed to start from the low-complexity Environments 1 and 2 of Figure 12,
move into the medium-complexity Environments 3 and 4, and then to the high-complexity
Environment 5. The switching strategy of the training environment is based on the number
of iterations of the interaction with the environment to actually switch to the next new
training environment by the sequence of environmental complexity. The training rounds
for Environment 1 fall in the range of 0–1000, Environment 2 in the range of 1001–2000,
Environment 3 in the range of 2001–3000, Environment 4 in the range of 3001–4000, and
Environment 5 in the range of 4001–5000. In addition, it is designed to ensure that the
learning process is accelerated, while the training radius is selected within the specific
distribution of the target, whose training range is gradually expanded from small to large.
In our experiment, the duration of each training round is controlled to less than 5000 times
for a quick convergence test in this case.

Appl. Sci. 2024, 14, 3960 16 of 21

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 22

Figure 12 shows the proposed experiment setup consisting of five training environments

of varying environmental complexity. The focus of this paper on training neural networks

for DRL is developed in a progressive learning approach. In the training procedure, its

sequence is designed to start from the low-complexity Environments 1 and 2 of Figure 12,

move into the medium-complexity Environments 3 and 4, and then to the high-complexity

Environment 5. The switching strategy of the training environment is based on the num-

ber of iterations of the interaction with the environment to actually switch to the next new

training environment by the sequence of environmental complexity. The training rounds

for Environment 1 fall in the range of 0–1000, Environment 2 in the range of 1001–2000,

Environment 3 in the range of 2001–3000, Environment 4 in the range of 3001–4000, and

Environment 5 in the range of 4001–5000. In addition, it is designed to ensure that the

learning process is accelerated, while the training radius is selected within the specific

distribution of the target, whose training range is gradually expanded from small to large.

In our experiment, the duration of each training round is controlled to less than 5000 times

for a quick convergence test in this case.

A total of 100 rounds were run for each environment, and the time and number of

collisions to reach the target point for each round were calculated. The data results are

presented in terms of the average time spent and average number of collisions for 100

rounds.

Environment 1 Environment 2

Environment 3 Environment 4

Environment 5

Figure 12. Training environment with 5 different complexities. The solid circles represent initial
positions of different agents and different semi-transparent circles represent targets.

A total of 100 rounds were run for each environment, and the time and number
of collisions to reach the target point for each round were calculated. The data results
are presented in terms of the average time spent and average number of collisions for
100 rounds.

The experimental numerical analysis is shown in Tables 3 and 4. It can be seen in
Table 3 that the time taken by all the agents to reach their respective destinations varied
depending on the environment, and they were all able to reach the target. The time
in Table 3 is denoted as the simulated time. Based on the analysis, it was found that
the agent operated very efficiently from the start point to the target in this simulated
environment. The results show that the more complex the environment, the longer the
time that is required. As shown in Table 4, all had a great deal of interaction and training
accuracy. In Environments 1 and 2, no collision occurred due to the relative simplicity of
the environment. In Environment 3, Environment 4, and Environment 5, because the agent
needed to pass through an intermediate region, the chance for collision increased. The worst
total collision ratio was 38% percent, i.e., its worst success ratio was 62%. This indicates that
the experiment result had a better success rate within than in the model-free multi-agent
soft actor–critic (25.9%) and multi-agent model-based policy optimization (MAMBPO)
(37.1%) [25]. According to the analysis of the collision probability after learning, more
different environments can be redesigned for specific requirements in the future.

Appl. Sci. 2024, 14, 3960 17 of 21

Table 3. Average time spent by 4 agents in different environments (simulation time).

Environment
Agentnt Agent 1 Agent 2 Agent 3 Agent 4

Environment 1 0.203 0.233 0.217 0.205

Environment 2 0.305 0.316 0.351 0.323

Environment 3 0.410 0.414 0.428 0.435

Environment 4 0.512 0.586 0.579 0.538

Environment 5 0.615 0.622 0.628 0.639

Table 4. The average collision rate of 4 agents in different environments.

Environment
Agentnt Agent 1 Agent 2 Agent 3 Agent 4

Environment 1 0.00 0.00 0.00 0.00

Environment 2 0.00 0.00 0.00 0.00

Environment 3 7% 6% 5% 5%

Environment 4 9% 12% 11% 13%

Environment 5 18% 18% 19% 20%

Total 34% 35% 35% 38%

• Case 3: Motion Approximation Experiment

The final experimental result of this paper is presented in a video where the operation
of each agent‘s execution state and must-be-allowed policies learned between agents can be
observed. The experimental video is divided into two parts; the first one is the experimental
video of the four agents (https://youtu.be/30EO3bLNnNM; accessed on 3 July 2023), and
the second part is the experimental video of six agents (https://youtu.be/OOachwbKgCI;
accessed on 3 July 2023).

As shown in the videos, one of the training environments was used randomly in
each round, and the agents and targets in the environment were randomly generated. The
agent is presented by the solid circle color code, and the target points are indicated by the
corresponding colors of the translucent circles.

The interaction of the four agents in Environment 4 is shown in Figure 13. Figure 13a
shows the randomly generated agent and target locations. Figure 13b,c show the red and
purple agents arriving at the target, waiting for the end of the turn, and confirming whether
there is an avoidance action to be taken. In Figure 13d–f, the black agents can be seen. In
the process of traveling to the target point, the black proxy had to pass through two proxies
that had already reached the target point, namely the purple and the blue-green agents.
Each of these two agents took an avoidance action to avoid blocking the black agent from
reaching its target point. Figure 13h shows the final status at the end of the round.

The interaction of the four agents in Environment 5 is shown in Figure 14. This can
be seen at the 01:22~01:36 time stamp in the experimental video. Figure 14a shows the
randomly generated agent and target locations. Figure 14b,c show each agent going to
the destination. Figure 14d–g show the continuous graph of the purple agent reaching the
target point. Since the black agent had to pass through the location of the purple agent, the
purple agent’s avoidance behavior allowed all agents to reach their respective destinations
smoothly. Figure 14h shows the final status at the end of the round.

https://youtu.be/30EO3bLNnNM
https://youtu.be/OOachwbKgCI

Appl. Sci. 2024, 14, 3960 18 of 21

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 22

The interaction of the four agents in Environment 4 is shown in Figure 13. Figure 13a

shows the randomly generated agent and target locations. Figure 13b,c show the red and

purple agents arriving at the target, waiting for the end of the turn, and confirming

whether there is an avoidance action to be taken. In Figure 13d–f, the black agents can be

seen. In the process of traveling to the target point, the black proxy had to pass through

two proxies that had already reached the target point, namely the purple and the blue-

green agents. Each of these two agents took an avoidance action to avoid blocking the

black agent from reaching its target point. Figure 13h shows the final status at the end of

the round.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. The interaction navigation of 4 agents in the environment 4. The different color doBed-

line indicate different trajectories of agents, solid circles represent initial positions of different agents

and different semi-transparent circles represent targets. (a) Initial positions. (b) Red agent ap-

proaches target. (c) Purple and red agents reach target. (d) Black Agent ready for target. (e) Black

agent goes to target. (f) Black agent for obstacle crossing action. (g) Black agent completes the ob-

stacle course. (h) Achievement of targets.

The interaction of the four agents in Environment 5 is shown in Figure 14. This can

be seen at the 01:22~01:36 time stamp in the experimental video. Figure 14a shows the

randomly generated agent and target locations. Figure 14b,c show each agent going to the

destination. Figure 14d–g show the continuous graph of the purple agent reaching the

target point. Since the black agent had to pass through the location of the purple agent,

the purple agent’s avoidance behavior allowed all agents to reach their respective desti-

nations smoothly. Figure 14h shows the final status at the end of the round.

(a) (b) (c) (d)

Figure 13. The interaction navigation of 4 agents in the environment 4. The different color dotted-line
indicate different trajectories of agents, solid circles represent initial positions of different agents and
different semi-transparent circles represent targets. (a) Initial positions. (b) Red agent approaches
target. (c) Purple and red agents reach target. (d) Black Agent ready for target. (e) Black agent goes
to target. (f) Black agent for obstacle crossing action. (g) Black agent completes the obstacle course.
(h) Achievement of targets.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 22

The interaction of the four agents in Environment 4 is shown in Figure 13. Figure 13a

shows the randomly generated agent and target locations. Figure 13b,c show the red and

purple agents arriving at the target, waiting for the end of the turn, and confirming

whether there is an avoidance action to be taken. In Figure 13d–f, the black agents can be

seen. In the process of traveling to the target point, the black proxy had to pass through

two proxies that had already reached the target point, namely the purple and the blue-

green agents. Each of these two agents took an avoidance action to avoid blocking the

black agent from reaching its target point. Figure 13h shows the final status at the end of

the round.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. The interaction navigation of 4 agents in the environment 4. The different color doBed-

line indicate different trajectories of agents, solid circles represent initial positions of different agents

and different semi-transparent circles represent targets. (a) Initial positions. (b) Red agent ap-

proaches target. (c) Purple and red agents reach target. (d) Black Agent ready for target. (e) Black

agent goes to target. (f) Black agent for obstacle crossing action. (g) Black agent completes the ob-

stacle course. (h) Achievement of targets.

The interaction of the four agents in Environment 5 is shown in Figure 14. This can

be seen at the 01:22~01:36 time stamp in the experimental video. Figure 14a shows the

randomly generated agent and target locations. Figure 14b,c show each agent going to the

destination. Figure 14d–g show the continuous graph of the purple agent reaching the

target point. Since the black agent had to pass through the location of the purple agent,

the purple agent’s avoidance behavior allowed all agents to reach their respective desti-

nations smoothly. Figure 14h shows the final status at the end of the round.

(a) (b) (c) (d)

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 22

(e) (f) (g) (h)

Figure 14. The interaction navigation of 4 agents in Environment 5. The different color doBed-line

indicate different trajectories of agents, solid circles represent initial positions of different agents

and different semi-transparent circles represent targets. (a) Initial positions. (b) 4 agents moving

towards the target. (c) Red agent reaches target. (d) Black agent reaches target. (e) Purple agent backs

off. (f) Black agent goes through obstacle. (g) Green agent reaches target. (h) All agents reach targets.

The interaction of four agents in an unknown environment is shown in Figure 15.

This can be seen at the 01:44~02:00 time stamp in the experimental film. Figure 15a shows

the randomly generated agent and target locations. Figure 15b,c show the agents going to

the target and avoiding each other. Figures 15, 15e, 15f, and 15g show the successive cases

where the black and purple proxies met below the environment and then fell into the

region’s best solution.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15. The interaction navigation of 4 agents in an unknown environment. The different color

doBed-line indicate different trajectories of agents, solid circles represent initial positions of differ-

ent agents and different semi-transparent circles represent targets. (a) Initial positions. (b) Blue-

green agent reaches target. (c) Purple agent goes through obstacle. (d) Black agent goes through

obstacles. (e) Purple and black agents move towards targets. (f) Red agent reaches target. (g) Black

agent reaches target. (h) All agents reach tar-gets.

6. Conclusions and Future Works

Hybrid centralized training and decentralized execution reinforcement learning in

multi-agent path-finding is proposed in this paper to show excellent results with a higher

success rate and quick convergence. However, there are still a few items that can be inves-

tigated more deeply for the research topic of this paper, which are described as follows:

1. The design of the reward function is currently premised on a lot of prior knowledge.

However, in addition to the effort involved in the design process, it is possible that

we may come across situations where it is difficult to design a reward function for a

target. Therefore, in the future, we can consider adding imitation learning or inverse

Figure 14. The interaction navigation of 4 agents in Environment 5. The different color dotted-line
indicate different trajectories of agents, solid circles represent initial positions of different agents and
different semi-transparent circles represent targets. (a) Initial positions. (b) 4 agents moving towards
the target. (c) Red agent reaches target. (d) Black agent reaches target. (e) Purple agent backs off.
(f) Black agent goes through obstacle. (g) Green agent reaches target. (h) All agents reach targets.

The interaction of four agents in an unknown environment is shown in Figure 15. This
can be seen at the 01:44~02:00 time stamp in the experimental film. Figure 15a shows the
randomly generated agent and target locations. Figure 15b,c show the agents going to the
target and avoiding each other. Figure 15e–g show the successive cases where the black
and purple proxies met below the environment and then fell into the region’s best solution.

Appl. Sci. 2024, 14, 3960 19 of 21

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 22

(e) (f) (g) (h)

Figure 14. The interaction navigation of 4 agents in Environment 5. The different color doBed-line

indicate different trajectories of agents, solid circles represent initial positions of different agents

and different semi-transparent circles represent targets. (a) Initial positions. (b) 4 agents moving

towards the target. (c) Red agent reaches target. (d) Black agent reaches target. (e) Purple agent backs

off. (f) Black agent goes through obstacle. (g) Green agent reaches target. (h) All agents reach targets.

The interaction of four agents in an unknown environment is shown in Figure 15.

This can be seen at the 01:44~02:00 time stamp in the experimental film. Figure 15a shows

the randomly generated agent and target locations. Figure 15b,c show the agents going to

the target and avoiding each other. Figures 15, 15e, 15f, and 15g show the successive cases

where the black and purple proxies met below the environment and then fell into the

region’s best solution.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15. The interaction navigation of 4 agents in an unknown environment. The different color

doBed-line indicate different trajectories of agents, solid circles represent initial positions of differ-

ent agents and different semi-transparent circles represent targets. (a) Initial positions. (b) Blue-

green agent reaches target. (c) Purple agent goes through obstacle. (d) Black agent goes through

obstacles. (e) Purple and black agents move towards targets. (f) Red agent reaches target. (g) Black

agent reaches target. (h) All agents reach tar-gets.

6. Conclusions and Future Works

Hybrid centralized training and decentralized execution reinforcement learning in

multi-agent path-finding is proposed in this paper to show excellent results with a higher

success rate and quick convergence. However, there are still a few items that can be inves-

tigated more deeply for the research topic of this paper, which are described as follows:

1. The design of the reward function is currently premised on a lot of prior knowledge.

However, in addition to the effort involved in the design process, it is possible that

we may come across situations where it is difficult to design a reward function for a

target. Therefore, in the future, we can consider adding imitation learning or inverse

Figure 15. The interaction navigation of 4 agents in an unknown environment. The different color
dotted-line indicate different trajectories of agents, solid circles represent initial positions of different
agents and different semi-transparent circles represent targets. (a) Initial positions. (b) Blue-green
agent reaches target. (c) Purple agent goes through obstacle. (d) Black agent goes through obstacles.
(e) Purple and black agents move towards targets. (f) Red agent reaches target. (g) Black agent
reaches target. (h) All agents reach tar-gets.

6. Conclusions and Future Works

Hybrid centralized training and decentralized execution reinforcement learning in
multi-agent path-finding is proposed in this paper to show excellent results with a higher
success rate and quick convergence. However, there are still a few items that can be
investigated more deeply for the research topic of this paper, which are described as follows:

1. The design of the reward function is currently premised on a lot of prior knowledge.
However, in addition to the effort involved in the design process, it is possible that
we may come across situations where it is difficult to design a reward function
for a target. Therefore, in the future, we can consider adding imitation learning
or inverse reinforcement learning to replace the problem of manually designing
reward functions.

2. In the part of the neural network design, we can further explore the learning method
of optimizing the number of network layers and related parameters in the future. We
will try to improve the problem of designing neural network architectures that are
often adjusted by reference to the literature or by trial and error.

3. In the observation information, this paper divides the agent and other agents into
personal information and collaborative information. In the future, we can further
explore whether there is unnecessary information in the observation information or
whether other useful information can be obtained from the environment. In addition,
this paper adds only the last-moment agent location information to the current state
observation for experience information replay. In the future, the use of recurrent
neural networks or long short-term memory (LSTM) can be investigated to assist the
agent in learning the related sequence data.

Author Contributions: Conceptualization, S.-A.L. and H.-M.F.; methodology, H.-C.C., S.-A.L., T.-H.C.
and H.-M.F.; software, T.-H.C. and Y.-C.C.; validation, H.-C.C., T.-H.C. and Y.-C.C.; formal analysis,
S.-A.L. and H.-M.F.; investigation, T.-H.C. and Y.-C.C.; resources, H.-C.C., T.-H.C. and Y.-C.C.; data
curation, S.-A.L. and H.-M.F.; writing—original draft preparation, T.-H.C.; writing—review and
editing, S.-A.L. and H.-M.F.; visualization, Y.-C.C.; project administration, H.-M.F. and H.-C.C.;
funding acquisition, H.-C.C., S.-A.L. and H.-M.F. All authors have read and agreed to the published
version of the manuscript.

Appl. Sci. 2024, 14, 3960 20 of 21

Funding: This research was partly funded by the high-level talent research project of Xiamen Ocean
Vocational and Technical College, with project number 2022001. This research was also partly funded
by both Ministry of Science and Technology (MOST) of the Republic of China, under grant numbers
MOST 111-2221-E-032-030, and National Science and Technology Council (NSTC) of the Republic of
China, under grant numbers NSTC 112-2221-E-032-035-MY2, NSTC 112-2221-E-507-007-MY2.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
2. Escobar-Naranjo, J.; Caiza, G.; Ayala, P.; Jordan, E.; Garcia, C.A.; Garcia, M.V. Autonomous Navigation of Robots: Optimization

with DQN. Appl. Sci. 2023, 13, 7202. [CrossRef]
3. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference

on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30, pp. 1–13. [CrossRef]
4. Konda, V.; Tsitsiklis, J. Actor-critic algorithms. Adv. Neural Inf. Process. Syst. 1999, 12, 1–7.
5. Park, K.W.; Kim, M.; Kim, J.S.; Park, J.H. Path Planning for Multi-Arm Manipulators Using Soft Actor-Critic Algorithm with

Position Prediction of Moving Obstacles via LSTM. Appl. Sci. 2022, 12, 9837. [CrossRef]
6. Guo, H.; Ren, Z.; Lai, J.; Wu, Z.; Xie, S. Optimal navigation for AGVs: A soft actor–critic-based reinforcement learning approach

with composite auxiliary rewards. Eng. Appl. Artif. Intell. 2023, 124, 106613. [CrossRef]
7. Liu, Z.; Qiu, C.; Zhang, Z. Sequence-to-Sequence Multi-Agent Reinforcement Learning for Multi-UAV Task Planning in 3D

Dynamic Environment. Appl. Sci. 2022, 12, 12181. [CrossRef]
8. Yu, J.; LaValle, S. Structure and intractability of optimal multi-robot path planning on graphs. In Proceedings of the AAAI

Conference on Artificial Intelligence, Bellevue, WA, USA, 14–18 July 2013; Volume 27, pp. 1443–1449. [CrossRef]
9. Sartoretti, G.; Kerr, J.; Shi, Y.; Wagner, G.; Kumar, T.S.; Koenig, S.; Choset, H. Primal: Pathfinding via reinforcement and imitation

multi-agent learning. IEEE Robot. Autom. Lett. 2019, 4, 2378–2385. [CrossRef]
10. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep

reinforcement learning. In Proceedings of the International Conference on Machine Learning, New York City, NY, USA, 19–24
June 2016; pp. 1928–1937.

11. Riviere, B.; Hönig, W.; Yue, Y.; Chung, S.J. Glas: Global-to-local safe autonomy synthesis for multi-robot motion planning with
end-to-end learning. IEEE Robot. Autom. Lett. 2020, 5, 4249–4256. [CrossRef]

12. Wang, B.; Liu, Z.; Li, Q.; Prorok, A. Mobile robot path planning in dynamic environments through globally guided reinforcement
learning. IEEE Robot. Autom. Lett. 2020, 5, 6932–6939. [CrossRef]

13. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.
Cybern. 1968, 4, 100–107. [CrossRef]

14. Silver, D. Cooperative pathfinding. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, Marina del Rey, CA, USA, 1–3 June 2005; Volume 1, pp. 117–122. [CrossRef]

15. Wagner, G.; Choset, H. Subdimensional expansion for multirobot path planning. Artif. Intell. 2015, 219, 1–24. [CrossRef]
16. Surynek, P.; Felner, A.; Stern, R.; Boyarski, E. Efficient sat approach to multi-agent path finding under the sum of costs objective.

In Proceedings of the Twenty-Second European Conference on Artificial Intelligence, The Hague, The Netherlands, 29 August–2
September 2016; pp. 810–818. [CrossRef]

17. Lam, E.; Le Bodic, P.; Harabor, D.; Stuckey, P.J. Branch-and-cut-and-price for multi-agent path finding. Comput. Oper. Res. 2019,
144, 105809. [CrossRef]

18. Sharon, G.; Stern, R.; Felner, A.; Sturtevant, N.R. Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 2015, 219,
40–66. [CrossRef]

19. Ren, Z.; Rathinam, S.; Choset, H. A Conflict-Based Search Framework for Multiobjective Multiagent Path Finding. IEEE Trans.
Autom. Sci. Eng. 2022, 20, 1262–1274. [CrossRef]

20. Gao, J.; Li, Y.; Li, X.; Yan, K.; Lin, K.; Wu, X. A review of graph-based multi-agent pathfinding solvers: From classical to beyond
classical. Knowl. Based Syst. 2023, 283, 111121. [CrossRef]

21. Sharma, P.K.; Fernandez, R.; Zaroukian, E.; Dorothy, M.; Basak, A.; Asher, D.E. Survey of recent multi-agent reinforcement learning
algorithms utilizing centralized training. In Proceedings of the Artificial Intelligence and Machine Learning for Multi-Domain
Operations Applications III, Online, 12–16 April 2021; Volume 11746, pp. 665–676. [CrossRef]

22. Lin, Q.; Ma, H. SACHA: Soft Actor-Critic with Heuristic-Based Attention for Partially Observable Multi-Agent Path Finding.
IEEE Robot. Autom. Lett. 2023, 8, 5100–5107. [CrossRef]

https://doi.org/10.1038/nature14236
https://www.ncbi.nlm.nih.gov/pubmed/25719670
https://doi.org/10.3390/app13127202
https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.3390/app12199837
https://doi.org/10.1016/j.engappai.2023.106613
https://doi.org/10.3390/app122312181
https://doi.org/10.1609/aaai.v27i1.8541
https://doi.org/10.1109/LRA.2019.2903261
https://doi.org/10.1109/LRA.2020.2994035
https://doi.org/10.1109/LRA.2020.3026638
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1609/aiide.v1i1.18726
https://doi.org/10.1016/j.artint.2014.11.001
https://doi.org/10.3233/978-1-61499-672-9-810
https://doi.org/10.1016/j.cor.2022.105809
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1109/TASE.2022.3183183
https://doi.org/10.1016/j.knosys.2023.111121
https://doi.org/10.1117/12.2585808
https://doi.org/10.1109/LRA.2023.3292004

Appl. Sci. 2024, 14, 3960 21 of 21

23. Song, Z.; Zhang, R.; Cheng, X. HELSA: Hierarchical Reinforcement Learning with Spatiotemporal Abstraction for Large-Scale
Multi-Agent Path Finding. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Detroit, MI, USA, 1–5 October 2023; pp. 7318–7325. [CrossRef]

24. Ito, S.; Ohara, K.; Hoshi, Y.; Oya, H.; Nagai, S. A Robust Formation Control Strategy for Multi-Agent Systems with Uncertainties
via Adaptive Gain Robust Controllers. Int. J. Eng. Technol. Innov. 2021, 11, 71–87. [CrossRef]

25. Willemsen, D.; Coppola, M.; de Croon, G.C. MAMBPO: Sample-efficient multi-robot reinforcement learning using learned world
models. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech
Republic, 27 September–1 October 2021; pp. 5635–5640. [CrossRef]

26. Kozlica, R.; Wegenkittl, S.; Hiränder, S. Deep q-learning versus proximal policy optimization: Performance comparison in a
material sorting task. In Proceedings of the 2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE), Helsinki,
Finland, 19–21 June 2023; pp. 1–6.

27. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep re-
inforcement learning. arXiv 2015, arXiv:1509.02971.

28. Sutton, R.S.; McAllester, D.; Singh, S.; Mansour, Y. Policy gradient methods for reinforcement learning with function ap-
proximation. Adv. Neural Inf. Process. Syst. 1999, 12, 1–7.

29. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of
the International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 387–395.

30. Li, Y.; Aghvami, A.H.; Dong, D. Path planning for cellular-connected UAV: A DRL solution with quantum-inspired experience
replay. IEEE Trans. Wirel. Commun. 2022, 21, 7897–7912. [CrossRef]

31. Gazebo Simulator. Available online: http://gazebosim.org/ (accessed on 20 June 2023).
32. Collins, J.; Chand, S.; Vanderkop, A.; Howard, D.A. Review of Physics Simulators for Robotic Applications. IEEE Access 2021, 9,

51416–51431. [CrossRef]
33. Lowe, R.; Wu, Y.I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-agent actor-critic for mixed cooperative-competitive

environments. Adv. Neural Inf. Process. Syst. 2017, 30, 1–12.
34. Mordatch, I.; Abbeel, P. Emergence of grounded compositional language in multi-agent populations. In Proceedings of the AAAI

Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32, p. 11492. [CrossRef]
35. Lin, P.H.; Lin, C.Y.; Hung, C.T.; Chen, J.J.; Liang, J.M. The Autonomous Shopping-Guide Robot in Cashier-Less Convenience

Stores. Proc. Eng. Technol. Innov. 2020, 14, 9–15. [CrossRef]
36. Hollenstein, J.; Auddy, S.; Saveriano, M.; Renaudo, E.; Piater, J. Action noise in off-policy deep reinforcement learning: Impact on

exploration and performance. arXiv 2022, arXiv:2206.03787.
37. Huh, D.; Mohapatra, P. Multi-agent Reinforcement Learning: A Comprehensive Survey. arXiv 2023, arXiv:2312.10256.
38. Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning. In Genetic Programming and Evolvable Machines; The MIT Press: Cambridge,

MA, USA, 2016; Volume 19, pp. 305–307. [CrossRef]
39. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press: Cambridge, MA, USA, 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/IROS55552.2023.10342261
https://doi.org/10.46604/ijeti.2021.6825
https://doi.org/10.1109/IROS51168.2021.9635836
https://doi.org/10.1109/TWC.2022.3162749
http://gazebosim.org/
https://doi.org/10.1109/ACCESS.2021.3068769
https://doi.org/10.1609/aaai.v32i1.11492
https://doi.org/10.46604/peti.2020.3961
https://doi.org/10.1007/s10710-017-9314-z

	Introduction
	Reinforcement Learning and Training Environment Development
	Basic Design of Multi-Agent Path-Finding
	Path-Finding Design with Multi-Agent Deep Deterministic Policy Gradients
	Experimental Results and Analyses
	Conclusions and Future Works
	References

