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Abstract: Research on vehicle trajectory prediction based on road monitoring video data often utilizes
a global map as an input, disregarding the fact that drivers rely on the road structures observable from
their own positions for path planning. This oversight reduces the accuracy of prediction. To address
this, we propose the CVAE-VGAE model, a novel trajectory prediction approach. Initially, our method
transforms global perspective map data into vehicle-centric map data, representing it through a
graph structure. Subsequently, Variational Graph Auto-Encoders (VGAEs), an unsupervised learning
framework tailored for graph-structured data, are employed to extract road environment features
specific to each vehicle’s location from the map data. Finally, a prediction network based on the
Conditional Variational Autoencoder (CVAE) structure is designed, which first predicts the driving
endpoint and then fits the complete future trajectory. The proposed CVAE-VGAE model integrates
a self-attention mechanism into its encoding and decoding modules to infer endpoint intent and
incorporate road environment features for precise trajectory prediction. Through a series of ablation
experiments, we demonstrate the efficacy of our method in enhancing vehicle trajectory prediction
metrics. Furthermore, we compare our model with traditional and frontier approaches, highlighting
significant improvements in prediction accuracy.

Keywords: conditional variational autoencoder; variational graph auto-encoders; trajectory prediction

1. Introduction

Currently, research on vehicle trajectory prediction, powered by artificial intelligence
technology, has made significant progress. Video data collected from expressway monitor-
ing cameras serve as a valuable resource for predicting vehicle trajectories. This facilitates
applications such as collision warnings and other vehicle–road collaborative functionalities,
effectively enhancing driving safety [1,2].

The actual trajectory of a vehicle is influenced by various factors such as road condi-
tions, the positions of other vehicles, and the driving habits and intentions of the driver.
Early vehicle trajectory prediction methods has thus far relied solely on historical data,
using only a vehicle’s past driving data to learn and predict a certain future trajectory.
However, in reality, the behavior of drivers is influenced by their driving intentions. For
example, different destinations can result in significantly different future trajectories. There-
fore, inferring driving intentions is crucial in trajectory prediction. Recent research has
proposed incorporating intent inference modules to prevent models from converging on
conservative results [3,4]. Instead of predicting a single outcome, the model generates
multiple possible trajectory results based on potential driving intentions.

However, current studies have not thoroughly considered the mechanisms through
which road structure and traffic environment influence drivers’ intentions. Most studies
simply utilize global road structure and the spatial distribution of vehicles from a bird’s-eye
view as inputs to the prediction model. However, in reality, each driver observes different
road information. They can only perceive the road structure and traffic environment from
the perspective of the vehicle’s current location, and plan their route accordingly.
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To address the above-mentioned issue, this paper proposes a novel trajectory predic-
tion approach termed the CVAE-VGAE model. The model consists of a main model respon-
sible for inferring driving destination intent and predicting trajectories, and a sub-model
responsible for extracting road map information. The main model improves the encoding
and decoding structure of the CVAE model by incorporating self-attention mechanisms.
In order to enhance the model’s perception of road environment data, a sub-model for
road map information extraction and based on the VGAE is implemented. This sub-model
reduces the dimensionality of graph-structured data and extracts environment feature
variables. Unlike previous studies that have dealt with data from a global perspective, the
sub-model in our paper will independently compute the spatial relationship between a
vehicle and key points on the road from the perspective of each vehicle. This ensures that
the final trajectory predictions fully consider the road information based on each driver’s
own perspective. Compared to models in previous studies, our model, by integrating
environmental information, significantly improves the accuracy of simultaneous prediction
of multiple vehicle trajectories in complex scenarios.

Section 1 of this paper introduces the background of the research topic. It highlights
the significance of the research based on the existing problems in the current studies
and outlines the research objectives and content. Section 2 provides a summary of the
relevant research work and the development process in this field. Section 3 focuses on the
preprocessing of the dataset, with a particular emphasis on the comprehensive processing of
map data. Section 4 describes the design of the model, which includes the main prediction
model and the map processing sub-model. Section 5 analyzes the experimental data and
presents the findings of this study. Finally, Section 6 concludes the paper and proposes
directions for future improvements.

2. Related Work

Earlier trajectory prediction research mainly focused on designing algorithms based on
the principles of physical kinematics. Barth et al. applied Kalman filtering and Monte Carlo
method into trajectory prediction and achieved good results in short-distance prediction [5].
Houenou et al. established a vehicle motion model using polynomial planning and com-
pleted future trajectory prediction based on the principles of acceleration and constant
yaw rate [6]. Danielsson et al. proposed an improved road trajectory evaluation algorithm
that used Monte Carlo simulations and improved dynamic models to identify threats in
road scenes [7].

In the past decade, machine learning and related technologies have been widely
applied in the field of vehicle trajectory prediction. And, compared to traditional physics-
based model methods, prediction models based on machine learning have achieved signifi-
cant breakthroughs in key indicators such as prediction accuracy. Classic machine learning
methods and models such as support vector machine (SVM), multi-layer perceptron (MLP),
and dynamic Bayesian network (DBN) were first applied in early trajectory prediction re-
search. For example, Tomar et al. proposed a prediction algorithm based on an MLP model,
but the algorithm could only predict discrete segments of trajectories rather than complete
future vehicle trajectories [8]. Gao et al. proposed a hybrid model based on physical vehicle
models and operation recognition models in which the operation recognition model was
implemented through hidden Markov models [9].

With the rapid development of deep learning, deep learning models that can better
predict complex scenarios have gradually replaced classical machine models. Among the
many deep learning models, recurrent neural networks (RNNs) [10–12] were originally
proposed to solve sequence learning problems, and so are naturally advantageous for tasks
like trajectory prediction. Long short-term memory (LSTM) [13–16], building upon RNN
models, incorporates a cell state representing long-term memory, and thus its ability to
handle long-term dependencies is enhanced. Recent research is moving towards multi-
modal trajectory prediction and exploring generative models. Gupta et al. addressed the
multi-modal prediction problem by combining self-sequential prediction and GAN [3,17].
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Lee incorporated the idea of CVAE into the LSTM prediction model, enabling the hybrid
model to achieve multi-modal trajectory prediction [18]. Vaswani et al. proposed Trans-
former [19], which can better handle long-range dependencies compared to RNN models.
Therefore, many studies have also attempted to apply Transformer to vehicle trajectory
prediction [20–23]. In recent years, reinforcement learning has also been gradually applied
to vehicle trajectory prediction research, in which a Markov decision process has been
applied to a greater degree and has achieved good results [24].

With the continuous advancement of traffic information collection technology, most
newer public datasets provide high-definition maps of predicted scenarios. How to obtain
effectively characterized environmental feature information from high-definition maps and
how to incorporate it into a model training process are the questions at the forefront of
research. Early studies on environmental information processing mainly used convolutional
neural networks (CNNs) to learn from grid maps of roads. Huang et al. used two CNNs
to encode information about the environment around a predicted object and combined
reward graphs representing probability scores and direction information to derive the
most likely path [25]. ChauffeurNet annotated original aerial maps of roads with lane
lines, traffic lights, etc., to obtain a series of grid maps. These grid maps were input into
a convolutional network to extract contextual features and shared with other network
modules during training [26]. Cai et al. proposed an environmental attention network
model called EA-Net, which focused on learning the connection between vehicles and their
driving environment [27]. VectorNet treated both vehicles and the environment as sets
of vectors, integrated them into a vector map, and thus the spatial relationships between
different elements was better represented [28]. This approach effectively avoids information
loss during CNN convolution calculations.

The trajectory prediction model constructed in this paper is based on the generative
model PECNet [29] in the pedestrian prediction domain. The PECNet model as a whole
uses the autoencoder architecture of CVAE, which achieved the best prediction accuracy at
that time. Due to the significant similarity between pedestrian trajectory prediction and
vehicle trajectory prediction, the PECNet model is also suitable for the transfer learning
tasks for vehicle trajectory prediction. However, there are some areas for improvement
when using PECNet to predict trajectory. Firstly, PECNet completely ignores the influence
of environmental and road factors, which means that the model only inputs the historical
trajectories of the prediction target without perceiving environmental conditions of the
actual scene. Secondly, the encoder and decoder of PECNet are relatively simple and are
composed of multiple multi-layer perceptrons (MLPs). Thus, room for further improvement
exists in terms of prediction effectiveness.

Due to a lack of high-precision scene map data in previous public datasets, current
research on vehicle trajectory prediction mostly lacks consideration of the road environ-
ment in which vehicles are situated. Additionally, current map data processing primarily
calculates spatial relationships from an overhead global perspective, while drivers collect
information and make decisions from their own perspectives during actual driving. In
the environmental information processing of this paper, the spatial relationships between
each predicted vehicle’s perspective and key road points are calculated and used as inputs
of our model. This ensures that the final predicted trajectory is fully referenced to road
information based on each vehicle’s own perspective. In terms of model construction,
this study adopts the idea of multimodal trajectory prediction by adding a multi-head
self-attention mechanism to the encoding and decoding structure of CVAE. Additionally, a
sub-model based on the principle of the VGAE model is designed, which takes the road
data represented by graph structure obtained from dataset preprocessing as an input and
effectively extracts the road environment features that can be embedded in the main model.

3. Description of the Dataset and Data Processing

The final prediction performance of a vehicle trajectory prediction model is heavily
influenced by the quality of a dataset. In order to achieve simultaneous prediction for
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all vehicles in the same scene, the required dataset should include complete trajectory
time series data for all vehicles in specific road scenarios. Additionally, the road scenarios
should be rich enough and encompass different types of road conditions, so that the trained
model can have good prediction capabilities in various complex scenarios. Furthermore, in
order to achieve the research goal of integrating road environment information during the
training process, the dataset should be equipped with high-precision road maps for each
scene and complete annotations of key road elements in the scene such as lane lines.

Argoverse 2 is a collection of open-source autonomous driving data and high-definition
maps sourced from six cities in the United States [30]. This paper focuses on using the
motion prediction dataset in Argoverse 2. This dataset has been improved based on the
dataset in Argoverse 1, and it includes 250,000 scenes with trajectory data for multiple
vehicles. Each scene lasts for 11 s with a sampling frequency of 10 Hz. Scene data includes
the center and heading of each tracked object in a 2D aerial view. A key feature of this
dataset is that each scene is paired with a local map. This map contains rich geometric
and semantic metadata to better understand the 3D scene, such as lane boundaries, driv-
able area polygons, and intersection annotations, aligning with the research objectives of
this paper.

The acquired public dataset cannot be directly used for model training, and needs
to undergo some data preprocessing work. Raw data contains attributes unrelated to
vehicle driving, such as the city of origin, and also records trajectories of other types of
entities like pedestrians and motorcycles. Firstly, attribute filtering work is performed on
the dataset to retain only the valid information related to a vehicle’s trajectory. The retained
attributes are the coordinates representing the current position of a vehicle, the velocity
in the direction of the coordinate axis, the angle of orientation, the corresponding vehicle
ID and the scene ID. The first 5 s of each trajectory record are separated off as inputs for
the model (x), while the following 6 s are separated off as content to be predicted (y). As
some vehicle trajectories in the scene may not completely cover the first 5 s, data cleaning
is performed on these incomplete data. Finally, the dataset is augmented through two
methods: translation augmentation and reverse trajectory augmentation.

In addition to the vehicle trajectory data, this paper also extensively processed the map
data provided by Argoverse 2 in JSON format. Since the map data files are complex, and
the amount of environmental information input into the deep learning model should not be
excessive, it is necessary to select the most relevant information. The map data provided by
Argoverse 2 includes three types of data most relevant to highway scenes: lane centerlines,
left lane boundaries, and right lane boundaries. This dataset provides sets of points for
these boundaries and records the two-dimensional coordinates of these points, as shown
in Figure 1. The lane centerline best represents the complete topological information of
the road where the vehicle is located, while the left and right lane boundaries emphasize
changes in the road during abrupt behavior such as turning.
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Extracted point collection will go through the data processing shown in Figure 2 below
and finally generate inputs based on the VGAE model.
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The first step is the filtering of key points of the road. The reason for this step is that the
length of environmental features ultimately input to the model is fixed, while the number of
points recorded in different scenes varies greatly. Therefore, it is necessary to extract a fixed
number of key points to eliminate the data source difference between different scenes. The
main selection idea is to retain all points for the left and right lane boundaries because these
points are relatively few in number and have a significant influence on drivers’ decisions
such as turning and lane changing. For the lane centerline, points are selected at intervals,
with the interval length calculated based on the remaining available key points that can
be selected.

In the second step, the spatial relationships between vehicles and all key points in
the scene are calculated, including relative coordinates (Equations (1) and (2)), distances
(Equation (3)), and the angles (Equation (4)) between them. It is worth stating that this
process is performed on all vehicles in the scene. Thus, it ensures that all final output trajec-
tories are fully referenced to the road information based on each vehicle’s own perspective.

First, the coordinates of the last frame of a vehicle in the scene (X, Y), and the
coordinates of the key point of the road (Xi, Yi) are read. N represents the total num-
ber of key points in this scene. The relative coordinates

(
Xr

i , Yr
i
)

are calculated by the
following equation:

Xr
i = X − Xi, i ∈ [0, N) (1)

Yr
i = Y − Yi, i ∈ [0, N) (2)

Relative coordinates can also avoid the situation where the large difference in coor-
dinate values in different scenes leads to gradient explosion in the training process. The
distance and angle between the vehicle and the key road point are also calculated as follows:

Distancei =

√
(X − Xi)

2 + (Y − Yi)
2, i ∈ [0, N) (3)

Anglei = arctan
(

Y − Yi
X − Xi

)
, i ∈ [0, N) (4)

Finally, the features of each node obtained above are integrated into a feature matrix,
and the adjacency matrix is established based on the relationship between key road points.
The value of the adjacency matrix is determined based on whether the key road points
belong to the same lane, and its equation is as follows:

adj_norm[i][j] =
{

1, i f i ̸= j and lane_id[i] = lane_id[j]
0, otherwise

, i, j ∈ [0, N) (5)

where i and j are any two key road points in a scene. lane_id[i] represents the ID of the lane
where key point i is located, and the same goes for lane_id[j].
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In addition to the historical trajectory of a vehicle and the road information of the
scene where the vehicle is situated, our model also needs to fully consider the relationships
between different vehicles. This part of the work can also be completed in the data pre-
processing stage, which has the benefit of avoiding repetitive calculations in each training
round, and thus training time is reduced. The calculation method of the relationship matrix
R is improved on the PECNet model, which calculates R based on whether vehicles are
temporally and spatially adjacent [28]. The calculation equation for R is as follows:

R[A][B] =


0, i f A = B or min1≤i,j≤tmax

√(
XA

i − XB
j

)2
+

(
YA

i − YB
j

)2
> dis_thresh

0, min
(
min1≤t≤tmax

∣∣FA
t − FB

1

∣∣, min1≤t≤tmax

∣∣FB
t − FA

1

∣∣) > time_thresh
1, otherwise

(6)

A and B represent the serial numbers of any two vehicles in a scene, tmax represents
the maximum sequence number of historical trajectories (i.e., 50), and F represents the
corresponding timeframe in the entire scene record. After several experiments and compar-
isons, the maximum frame difference parameter time_thresh is set to 20 frames (2 s), and
the maximum distance threshold dis_thresh is set to 1000.

4. Model Building

After data preprocessing in the previous section, the original dataset was processed
into three parts: temporal vehicle trajectory data, the vehicle relationship matrix, and road
map data. Then, the overall structure of the framework of our trajectory prediction model
is shown in Figure 3:
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The overall model is divided into VGAE and the main trajectory prediction model
based on CVAE. Since it is necessary to generate individual feature vectors based on the
perspective of each driver, the input of VGAE includes both map data and vehicle trajectory
data. The main model consists of two modules. The first one is predicts the driver’s
destination, and then the second fits the complete trajectory based on the most probable
destination. In order to fully consider road information during the training process, inputs
of the destination prediction module will also include map features extracted by VGAE.
Vehicle interactions are only considered in the trajectory fitting module. This design of
the main model is intended to reflect the fact that a driver’s final destination will not be
significantly altered by the presence of surrounding vehicles, but their specific driving
details are greatly influenced by them.

4.1. Main Model for Trajectory Prediction

The main model structure for trajectory prediction is shown in Figure 4. The model
consists of four parts. Firstly, during training, the vehicle trajectory data are divided into
historical trajectory and endpoint. And they are input to two encoders, respectively, Epast
and Eend, to generate corresponding embedding representations. Secondly, the map road
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data are handed over to the VGAE sub-model for specialized processing and obtains the
embedding representation of the road. Thirdly, the three feature vectors obtained are
concatenated and used as inputs to the endpoint prediction module. The encoder Elatent of
the CVAE model learns the distribution of the driving endpoint latent space, and the most
likely trajectory endpoint is generated by the decoder Dlatent. Effective improvements are
made to the encoder structure of Elatent and Dlatent, including the addition of multi-head
self-attention mechanisms. During the prediction phase, the generated trajectory endpoint
is input to Eend to generate the embedding representation corresponding to the predicted
endpoint. Finally, outputs of the third part, together with the vehicle relationship matrix
and the embedding representation of past trajectories, are input to the Social Pooling layer
structure of PECNet for learning the vehicle relationships. Finally, the Predictor layer
generates the complete predicted trajectory.
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This paper has made several significant modifications to the endpoint prediction
module. Firstly, the tensors of all encoders and decoders have been enhanced with an
additional “seq_len” dimension. This enhancement helps the model learn relationships
between different sequence frames and also caters to the data requirements of the multi-
head self-attention mechanism. Secondly, during training, the environment feature tensors
processed by VGAE are integrated. Finally, after the decoder processing, a fully connected
layer is added to reduce the dimensionality of the data and obtain the final predicted
destination coordinates. The complete details of the training process are shown in Figure 5.
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Figure 5. Training details of the improved endpoint prediction module.

The original encoder and decoder of PECNet were both MLP models. However, the
number and duration of targets in expressway scenes have significantly increased compared
to the pedestrian scenes, and the MLP alone may not be able to achieve good prediction
accuracy. For this reason, the coding and decoding structure in this topic is completely
revamped to include the multi-head self-attention mechanism of Transformer. The original
MLP structure is used as the final part of the new autoencoder to obtain the ultimate output.
Three additional layers are added before it, including the positional embedding layer, the
multi-head self-attention layer, and the dropout layer. The encoder–decoder structures
before and after the modification are shown in Figure 6.
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The position encoding layer adds the position vectors computed for each position
in the input sequence to the feature vectors at the same position to better capture the
dependencies between positions in the sequence. The calculation equation is as follows:

Positioni
k =

 sin i

10000
2n
d

, k = 2n, n ∈ N

cos i

10000
2n
d

, k = 2n + 1, n ∈ N , i ∈ [0, N) (7)

In Equation (7), i represents the position, k represents the index of the feature di-
mension, and d represents the dimension. N represents the length of the feature vector.
The position encoding layer calculates position embedding vectors using trigonometric
functions and adds them to the feature vectors to encode positional information. This helps
the model handle sequence data more effectively without relying on a recurrent structure.

The multi-head attention layer takes a sequence with positional information as an
input. The multi-head self-attention mechanism [19] calculates attention scores between
each position and the other positions. Based on the attention scores, it weights the feature
vectors at each position and obtains the context for each position. The attention calculation
formula is as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (8)

K denotes the key vector used to compute the attention weight, Q denotes the query
vector, V denotes the value vector, and dk denotes the dimension of the key vector. In the
model, the dimensions of K, Q, and V are equal. The multi-head self-attention mechanism
enables the model to capture dependencies between different positions in the input se-
quence. This helps the model understand long-range dependencies and effectively acquire
contextual information. Additionally, in practical applications, self-attention allows for par-
allel computation, greatly speeding up both the training and inference processes compared
to sequential models like RNN.

The dropout layer normalizes and randomly drops out based on the output of the previous
layer to prevent issues of vanishing or exploding gradients during multi-layer computations.

Through the above optimizations, the main model has not only achieved significant
improvements in terms of parameter quantity and learning ability, but also its endpoint pre-
diction module takes into full consideration of the road environment information collected
from the vehicle’s driving perspective. Comprehensive comparison and ablation experi-
ments are set up in the next section to demonstrate the effectiveness of these improvements.

4.2. Map Feature Extraction Sub-Model

In Section 3, after data preprocessing, three kinds of data are obtained: vehicle trajec-
tory data (represented by traj), road data (map), and the vehicle relationship matrix (mask).
Subsequently, traj and map for all scenes will be integrated and input into the VGAE model
for training. The main purpose of this training process is to reduce information loss in the
graph data feature extraction process. After obtaining a well-performing model through
training, traj and map will be input to the generation module of VGAE. This module will
use the extraction model obtained in the previous step to generate road feature vectors for
vehicles in each scene from their perspective. The output map_feat obtained by the VGAE
generation module will replace the original map and will be used as part of the input for
the main model. Figure 7 illustrates the detailed processing flow of the sub-model:
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Figure 7. The processing flow between the map feature extraction sub-model and the main model.

Map_feat contains the feature matrix X ∈ Rn×d and the adjacency matrix A ∈ Rn×n

for each scene, where n is the number of nodes and d is the number of features. These
two matrices containing the map graph structure information will serve as inputs to the
VGAE model. Prior to input, the feature matrix is normalized to scale features of different
data sizes into a consistent range, and thereby the model’s convergence speed is improved.
Additionally, the adjacency matrix is symmetrically normalized to obtain matrix Ã. The
implemented VGAE model structure is as shown in Figure 8.
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The model as a whole is divided into two parts: the encoder and the decoder. The
encoder is composed of a graph convolutional network (GCN) and the GCN layer compu-
tation process is as follows:

GCNn(X, A) = ReLU
(

ÃXWn

)
(9)

Wn represents the parameters learned during the GCNn training process. After initial
processing by GCN1, the intermediate tensors are given to both GCN2 and GCN3 for
parallel processing to obtain the mean µ and variance σ of the Gaussian distribution in the
latent space. Subsequently, the mean and variance are input into the reparameterize layer,
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which transforms the random sampling operation into a differentiable operation, enabling
the effective computation and optimization of gradients through backpropagation. The
equation for the reparameterization calculation is as follows:

z = µ + ε × σ, ε ∈ N (0, 1) (10)

The low-dimensional feature vector z will be used as the target output of the VGAE
generation module and replace map in the original dataset as map_feat.

The decoder part first performs a dropout layer for random deactivation to reduce
overfitting during training. Finally, the reconstructed adjacency matrix is output through
the decoder layer. The decoder layer obtains the adjacency matrix of the reconstructed
graph Ar by calculating the similarity between vectors corresponding to different nodes,
as shown in Equation (11). It maps the inner product value to the range of [0, 1] through
the Sigmoid activation function, which represents the probability of a connection between
two nodes:

Ar = Sigmoid
(

zzT
)

(11)

The decoder part will only be executed during the VGAE training process. The
training process compares the difference between the reconstructed adjacency matrix and
the original adjacency matrix, and continuously learns and adjusts the parameters to
minimize this difference.

5. Experiments and Analysis
5.1. Training Details

The experiments in this paper were primarily conducted on a Linux server equipped
with 8 NVIDIA Titan X GPUs. The server’s memory size was 64 GB, and the deep learn-
ing framework used was PyTorch (1.13.1). The dataset of Argoverse 2 is large, with a
compressed file size of nearly 50 GB. Therefore, training on this huge dataset took a very
long time and required good engineering optimizations. To optimize the model train-
ing speed, the approach of multi-process distributed training was chosen to fully utilize
the multiple GPU resources of the server. The benchmark model PECNet itself does not
support multi-process distributed training, so the entire experiment was refactored using
torch.distributed for this purpose. Torch.distributed is a set of distributed training tools
provided by PyTorch. It can open multiple processes on the same machine. Each process
can specify the GPU to be used during training, thereby achieving the effect of accelerating
training with multiple GPUs.

Large datasets pose a significant challenge to hardware devices, especially in terms
of memory. It is very easy to encounter out-of-memory (OOM) errors and terminate the
training program. By default, each process created by torch.distributed will read the entire
dataset into memory, which leads to serious duplicate reading issues. To address this
problem, the dataset is divided equally based on the number of processes in advance, and
the reading logic of each process is modified to only read the corresponding subset of
data. This approach ensures that no matter how many new processes are started, only one
complete dataset is read.

To visually demonstrate the difference in training speed before and after optimization,
a set of comparative experiments was conducted. The first experiment utilized one NVIDIA
Titan X GPU without enabling multi-GPU training, while the second experiment employed
all eight NVIDIA Titan X GPUs of the server and synchronized training with eight processes.
Both experiments were conducted on the exact same dataset. Experimental results are
shown in Table 1. From Table 1, we can see that the code runs more than 14 times faster
when using the optimized method.
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Table 1. Comparison of training duration before and after multi-process optimization.

Training Time/s Before (1 Titan X) Optimized (8 Titan X)

20 Epoch 4218.33 s (1 h 10 min) 289.73 s (4.83 min)
Average per Epoch 210.92 s (3 min 31 s) 14.49 s

The model used the optimal hyperparameter combinations in all subsequent exper-
iments. The learning rate was set to 0.0005. The number of features (fdim) was 64. The
number of latent space features (zdim) was 64. The number of map features (mapdim) was
128. The number of heads in the multi-head self-attention mechanism was eight. The batch
size was 512. The number of generated candidate endpoints was 20, and the training epoch
was set to 650.

5.2. Evaluation Measures

Average displacement error (ADE) and final displacement error (FDE) are among the
most commonly used performance metrics in the field of trajectory prediction, and in this
paper we will primarily use these two metrics to evaluate model prediction accuracy. ADE
measures the average difference between the predicted trajectory and the ground truth
trajectory. ADE is calculated as follows:

ADE =
1
m

m

∑
i=1

√
(Xi − xi)

2 + (Yi − yi)
2 (12)

FDE measures the Euclidean distance between the predicted position and the actual
position at the last time step. FDE evaluates the difference between the predicted endpoint
of the trajectory and the true endpoint. FDE is calculated as follows:

FDE =

√(
X f − x f

)2
+

(
Yf − y f

)2
(13)

5.3. Ablation Experiments

To independently verify the effectiveness of the improvements made to the orig-
inal baseline model, we designed a set of comparative experiments that did not inte-
grate the map feature extraction sub-model. A random sample of 10,000 scenes from the
Argoverse 2 motion forecasting training set was selected as the training set, and 1000 scenes
were used as the test set. Training was conducted for 100 epochs on both the unmodified
baseline model and the improved model, and the best prediction results on the test set are
summarized in Table 2 below:

Table 2. Comparison of predictive indicators before and after improvement of the main model for
trajectory prediction. The two models used their respective best hyperparameter combinations.

Model Learning_Rate Fdim Num_Head Test ADE Test aveFDE

OLD 0.0003 - - 0.7256 1.7130
NEW 0.0005 64 8 0.6515 1.6843

From the experiment results, it can be seen that the predictive performance of the
model improved significantly after multiple enhancements, surpassing the previous model.
The overall trajectory prediction accuracy increased by over 10%. In order to further demon-
strate the effectiveness of each improvement on the CVAE baseline model, comprehensive
ablation experiments were designed. The ablation experiments were performed on identical
small sample datasets and none of them incorporated the map feature extraction sub-model.
The experiment details and results are presented in Table 3.
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Table 3. The ablation experiment results for the improvements made to the CVAE model.

Experiment Test ADE

Complete improved model 1.0127
Remove the positional encoding layer alone 1.0630

Remove the dropout layer alone 1.1340
Remove the multi-head attention layer alone 1.1544

The results verify that removing any additional layer added to the autoencoder will
lead to a significant decrease in the predictive metrics. In particular, removing the multi-
head attention layer will result in the largest decrease, indicating that the multi-head self-
attention mechanism indeed effectively enhances the model’s ability to capture information
from sequential data.

Finally, in order to demonstrate that adding the feature vectors generated by the map
feature extraction sub-model to the main model is an effective improvement, a comparative
experiment was conducted. This experiment was trained for 100 epochs with and without
map feature vectors, respectively, under the condition that the irrelevant factors such as the
amount of data and hyperparameters were consistent. The optimal prediction performance
obtained is recorded in the following Table 4:

Table 4. Comparison of model prediction indicators before and after adding road feature vectors.

Experiment Best_Epoch RCL KLD ADL Test ADE

Before 80 550.53 0.5568 161.64 2.6188
After 78 299.23 0.3172 75.67 2.5018

In addition to the ADE of the entire test set, Table 4 also displays the loss results of
different parts of trajectory prediction during the training process. RCL represents trajectory
error. KLD represents KL divergence error, and ADL represents endpoint prediction error.
It is evident that the losses in each part have been effectively reduced after incorporating
the map information. This suggests that the fusion of VGAE-based sub-model has led to
an effective improvement in both the prediction of driving endpoints and the fitting of
intermediate trajectories.

5.4. Comparison with Other Existing Models

First, a comparison of predictive metrics of several models in the Argoverse 1 mo-
tion forecasting dataset is completed. Generalized benchmark models such as LaneGCN,
DenseTNT, and SceneTransformer, which are excellent performers in the field of vehicle tra-
jectory prediction, as well as new models such as THOMAS and HcteroGCN, which
have made breakthroughs in prediction metrics in recent years, were selected as the
comparison targets.

LaneGCN uses a novel structured map representation instead of the traditional grid
map and develops a fusion network to learn lane graph features and interactions between
vehicles and maps [31]. DenseTNT transforms the trajectory prediction problem into a
probability problem for predicting the future distribution of the driving space, outputting
multiple possible trajectories for vehicles and the corresponding probabilities for their
selection [32]. SceneTransformer focuses on the joint prediction of multiple predictive
entities, incorporating attention mechanisms and employing a masked sequence modeling
strategy to enhance model performance [33]. THOMAS proposes a joint multi-agent trajec-
tory prediction framework to efficiently predict the future motion trajectories of multiple
targets simultaneously [34]. HcteroGCN introduces a heterogeneous graph convolutional
recursive network to learn various interactions and spatiotemporal information in the
scene, achieving higher prediction accuracy on public datasets [35].

The results of the comparative experiments are shown in Table 5 below in terms of the
metrics minADE (K = 1) and minFDE (K = 1). From the comparison results, it is evident that
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both the minADE and minFDE of our proposed model outperform the other five compared
trajectory prediction models.

Table 5. Comparison of metrics of six trajectory prediction models based on the Argoverse 1 motion
forecasting dataset.

Method minADE (K = 1) minFDE (K = 1)

LaneGCN 1.71 3.78
DenseTNT 1.68 3.63

SceneTransformer 1.81 4.06
THOMAS 1.67 3.59

HcteroGCN 1.62 3.52
CVAE-VGAE (this paper) 1.59 3.44

Additionally, based on the Argoverse 2 motion forecasting dataset, we also completed
a prediction metric comparison between our proposed model and some models that per-
formed well on this dataset. For instance, HcteroGCN proposes a heterogeneous graph
convolutional recursive network to learn various interactions and spatiotemporal informa-
tion in the scene, achieving higher prediction accuracy on the Argoverse 2 dataset. The
comparative results are shown in Table 6 below.

Table 6. Comparison of metrics for trajectory prediction models based on the Argoverse 2 motion
forecasting dataset.

Method minADE (K = 1) minFDE (K = 1)

THOMAS 1.96 4.71
GoReLa 1.82 4.62
GANet 1.78 4.48
BANet 1.79 4.61

HcteroGCN 1.79 4.53
CVAE-VGAE (this paper) 1.73 4.21

The experimental results demonstrate that our model’s prediction capability has
significantly improved compared to THOMAS, and the final prediction performance is also
superior to HcteroGCN. Additionally, thanks to multiple effective enhancements to the
driving endpoint prediction module, it can be observed that the improvement of minFDE
(7%) for calculating the distance between the final predicted position and the real position
is significantly better than that of minADE (3.4%), which is also in line with the results of
previous ablation experiments.

5.5. Visualization of Predictions under Different Scenarios

In order to visualize the prediction results under different scenarios, this paper also
developed a tool that can complete the visualization of road maps and all vehicle trajectories
(both predicted and real values) for specified scenarios. In this section, the prediction results
under several different types of typical scenarios are shown and analyzed to demonstrate
the actual prediction effect of our model. The selected scenarios are mainly based on
different road conditions (merging, straight lines, off-ramps, etc.) and traffic flows.

The exit ramp and its surrounding area on the expressway are accident-prone sections.
Figure 9 depicts a typical exit ramp scenario. In the image, the gray lines represent known
historical vehicle trajectories. The green lines represent the actual results, the red lines
represent the model’s prediction results. The blue dots represent the results from the
endpoint prediction module. This scenario captures five vehicles traveling in the same
direction, with two vehicles driving in the leftmost lane. The real trajectory of the leading
vehicle in this lane indicates that the vehicle is going to exit from the ramp. The model
accurately predicts the lane-changing behavior of this vehicle as it exits. The predicted
future driving endpoint closely matches the actual result for this vehicle. Moreover, the
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endpoint predictions for all vehicles in this scenario are relatively accurate, demonstrating
the effectiveness of conducting endpoint intention inference beforehand.
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Figure 9. Visualization of predictions for a multi-vehicle scenario at an exit ramp.

The scenario in Figure 10 below is similar to the most common situation of multiple
vehicles driving straight on expressways. For straight-driving vehicles with stable operat-
ing conditions, our model can more accurately predict the driving endpoints and fit the
trajectories. At the same time, for stopped vehicles that are located in the right lane from
left to right, their stopping status will also be accurately predicted.
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Predicting turns and lane changes is one of the most challenging situations in trajectory
prediction. Figure 11 includes two common turn prediction scenarios. The past trajectory
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of the vehicle above includes part of the turning trajectory, so it is relatively easy to predict
its future trajectory. However, the past trajectory of the vehicle below does not show a clear
turning process, so it is relatively difficult to make the prediction. In both cases, our model
successfully predicts the driving intention, and the prediction results closely match the
actual trajectories.
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6. Conclusions and Future Work

This paper delves into the analysis of accident-prone road sections on expressways,
investigating the combined effects of historical trajectories, surrounding vehicles, and road
environment on drivers’ driving behavior. Building upon state-of-the-art models in the
field, the paper proposes improvements in the CVAE module structure by incorporating a
self-attention mechanism to enhance learning capabilities for long-term time series data.
An independent environmental information extraction sub-model based on the VGAE
model is also designed and integrated into the main model to address the issue that the
original model did not consider the vehicle driving environment. Other work, such as
data preprocessing and scenario visualization analysis, are also introduced. Through
detailed and comprehensive experiments, the paper demonstrates the effectiveness of
our model, showing its good predictive performance in multi-vehicle motion forecasting.
Furthermore, visualization results across various practical scenarios show that the model
can provide strong technical support for key applications such as collision warning in
intelligent transportation systems.

There are areas for further improvement in this model, which will be the focus of
our future work. The road information extraction method proposed in this paper can be
improved by incorporating more attributes that reflect the spatiotemporal relationships
between vehicles and road elements. The map feature extraction sub-model in this study
can be further optimized by improving the model structure and map data processing
methods. Meanwhile, since the training process of this model uses high-definition map
data, which is often not available in practical applications, specific processing will be
needed for low-precision map data in the practical application of our method.
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