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Abstract: In this study, we improve the efficiency of automated tomato harvesting by integrating
deep learning into state-of-the-art image processing techniques, which improves the accuracy and
efficiency of detection algorithms for robotic systems. We develop a hybrid model that combines
convolutional neural networks’ dual two-dimensional matrices for classification and part affinity
fields. We use data augmentation to improve the robustness of the model and reduce overfitting.
Additionally, we apply transfer learning to solve the challenging problem of improving the accuracy
of identifying a tomato’s center of gravity. When tested on 2260 diverse images, our model achieved
a recognition accuracy of 96.4%, thus significantly outperforming existing algorithms. This high
accuracy, which is specific to the environmental conditions and tomato varieties used, demonstrates
the adaptability of the model to real-world agricultural conditions. Our results represent a significant
advancement in the field of agricultural autotomization by demonstrating an algorithm that not
only identifies ripe tomatoes for robotic harvesting with high accuracy, but also adapts to various
agricultural conditions. This algorithm should reduce manual labor in agriculture and offer a more
efficient and scalable approach for the future agricultural industry.

Keywords: convolutional neural networks; image-preprocessing techniques; tomato centroid local-
ization; machine learning; precision agriculture technologies; image analysis

1. Introduction

In precision agriculture, an industry revolutionized by the digital age, the integration
of advanced image processing and machine learning techniques, particularly convolutional
neural networks (CNNs), is transforming crop management at the field level [1–3]. These
deep learning models play a key role in automating agricultural tasks, such as crop health
assessment, yield determination, and, most importantly, the harvesting process [4,5]. They
are excellent at accurately identifying and localizing key crop characteristics, which are
essential for efficient automated harvesting. This technological shift is particularly relevant
in the context of tomato cultivation, where precise timing and manipulation during harvest
are critical to ensure optimal yield and quality [6,7].

The agricultural industry faces significant challenges with the traditional, labor-
intensive approach to harvesting, especially for delicate fruits, such as tomatoes. Manual
harvesting is not only costly, but also fraught with human error and inefficiency. In addi-
tion, the global decline in available agricultural labor reinforces the need for more scalable
and efficient harvesting methods. Robotic harvesting systems offer a viable solution to
these challenges, promising to alleviate labor shortages and increase harvesting efficiency.
However, the success of these systems depends on their ability to accurately and reliably
identify and process crops. This requires the development of sophisticated algorithms
capable of skillfully processing and analyzing images to accurately determine the ripeness
and precise location of each tomato, ensuring efficient harvesting without damage.
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1.1. Literature Review

In agricultural research, much of the literature emphasizes the importance of accurate
fruit detection and localization [8–15]. Indira et al. [16], demonstrated the use of CNNs for
fruit identification from visual data and emphasized the need for robust preprocessing to
ensure consistency in image brightness and resolution. Preprocessing techniques, such as
normalization and pixel-intensity adjustment, are crucial for providing a consistent baseline
for subsequent computational analyses, which is reflected in a wide range of image analysis
research. Naranjo et al. [17] emphasized the growing relevance of innovative technologies
in the agri-food sector and highlighted artificial intelligence as a cornerstone of modern
agricultural practices. The deep learning (DL) approach has the ability to infer complex pat-
terns and representations from data, and it has been identified as a key driver of innovation,
particularly in image-based applications. Rapado et al. [18] presented a novel approach
to overcoming the limitations of traditional robotic vision systems in occluded agri-food
environments using multiview perception and three-dimensional multi-object tracking.
This method significantly improved object representation and localization accuracy, and
achieved maximum errors of only 5.08% when estimating the number of tomatoes and
up to 71.47% when tracking tomatoes in highly occluded environments. Afonso et al. [19]
demonstrated the effectiveness of DL, particularly the MaskRCNN algorithm, in detecting
and counting tomatoes in greenhouse images. Their results outperformed those obtained
in previous studies in laboratory conditions or from higher-resolution images and demon-
strated the ability of MaskRCNN to implicitly learn object depth to eliminate the back-
ground. Benavides et al. [20] presented an innovative computer-vision system designed
to automate the detection and localization of fruits in a tomato crop in Mediterranean
greenhouses. They designed the system to solve three main tasks: first, the detection of
ripe tomatoes; second, the determination of their position in the XY plane of the image;
and third, the localization of tomato-flower stalks for the same coordinates. To solve the
first two problems, the authors used a full set of digital-image-processing tools, including
enhancement, edge detection, segmentation, and detailed tomato characterization, which
is very important for distinguishing the degree of ripeness and other visual factors under
growing conditions. Li et al. [21] developed an improved YOLOv5s-tomato model that
successfully detects the four maturity stages of greenhouse tomatoes with an accuracy of
95.58% and a mean accuracy (mAP) of 97.42%. This model, featuring improved Mosaic
data and efficient IoU losses, outperforms the original YOLOv5s model in both accuracy
and speed, making it suitable for precision-tomato-picking machine operations. Zheng
et al. [22] developed a novel algorithm framework for automated fruit picking, focusing on
greenhouse tomatoes, which combines a lightweight tomato-instance-segmentation model,
YOLO-TomatoSeg, with an accurate tomato localization approach. This framework, inte-
grating RAFT-Stereo disparity estimation and least-squares point cloud fitting, addresses
the limitations of current neural-network-based fruit-recognition algorithms and tradi-
tional stereo matching methods, enhancing both segmentation accuracy and localization
precision for tomato-picking robots. Zhao et al. [23] developed a robust tomato-recognition
algorithm for autonomous harvesting robots, designed to operate in complex agricultural
environments with disturbances like variable illumination and overlapping fruits. Utilizing
a*-component and I-component feature images from Lab* and YIQ color spaces, fused
through wavelet transformation and refined with an adaptive threshold algorithm, this
method efficiently segments tomatoes from backgrounds, demonstrating a high recognition
rate suitable for low-cost robotic harvesting. Wu et al. [24] introduced a novel automatic
algorithm for the recognition of ripening tomatoes, designed to enhance robotic harvesting
efficiency. This method employs a bi-layer classification strategy, incorporating color and
textural features, feature analysis and selection, and a weighted relevance vector machine
(RVM) classifier, effectively identifying tomato-containing regions and classifying them
with high accuracy, paving the way for the automation of tomato detection and harvesting.
Xiang et al. [25] developed an innovative recognition algorithm for tomato-plant stems,
addressing the challenge of color similarity between stems and leaves. Utilizing a hybrid



Appl. Sci. 2024, 14, 511 3 of 14

joint neural network that combines the duality edge method with deep learning models,
this algorithm effectively detects stems, reducing false negatives and positives, and is opti-
mally suited to various automated processes in fruit and vegetable production, including
targeted fertilization, pruning, and harvesting. Kanda et al. [26] introduced an intelligent
deep-learning-based method for the recognition of nine common tomato diseases, utilizing
a residual neural network algorithm. This research, focusing on various levels of network
depth and learning rates, demonstrates high accuracy in disease identification, outper-
forming many previous methods, although it faces challenges in distinguishing between
closely related disease classes. Zu et al. [27] developed a method using the Mask R-CNN
algorithm for detecting and segmenting mature green tomatoes, which are challenging
to identify due to their color similarity with branches and leaves, as well as their often
obscured and overlapping positions. Utilizing a mobile robot for diverse image collection
in a greenhouse, the method employs RestNet50-FPN as its backbone network and achieves
efficient detection and segmentation, demonstrating its potential for direct application in
automated tomato-harvesting robots. Li et al. [28] proposed an enhanced YOLOv5s-based
algorithm, YOLOv5s-CQE, for the recognition and localization of targets in intelligent
tomato picking. This algorithm incorporates the CARAFE module to optimize upsampling,
along with EIoU and Quality Focal Loss, to address uneven sample distributions, resulting
in improved accuracy and training speed, demonstrating high precision, fast detection,
and robustness, thereby offering a solid foundation for the development of intelligent
tomato-picking systems.

1.2. Objectives

The aim of this research is to develop advanced tomato-image-preprocessing tech-
niques in the context of gravimetric analysis applied to robotic harvesting. The study is
unique as it aims to comprehensively analyze the impact of image-preprocessing tech-
niques on the performance of two-dimensional (2D) correlation matrices, especially in
CNNs, which has not been previously addressed in such a context. We propose new tech-
niques and hypotheses that significantly improve the accuracy and efficiency of automated
tomato harvesting.

1. The development of improved preprocessing techniques: This research introduces
an improved tomato-image-preprocessing technique for robotic harvesting systems,
involving the integration of part affinity fields (PAFs) and confidence maps. This
provides improved accuracy for tomato-center-of-gravity localization, extending the
capabilities of previous approaches focused mainly on fruit detection and localization.

2. Quantitative improvement and practical applicability: In our study, a series of struc-
tured experiments were conducted to evaluate the improvements made by these
methods. We evaluate the practical applicability of these methods in different real-
world agricultural scenarios, providing a detailed understanding of the relationship
between pretreatment and CNN performance.

Our study aims to address the following gaps:

3. The lack of attention to preprocessing in CNNs: Our study fills this gap by focusing on
how image preprocessing affects the accuracy of CNN models, especially in precision
agriculture.

4. Improved robustness and adaptability: The data augmentation and multispectral
image-enhancement techniques used in this study improve the robustness and adapt-
ability of the proposed model, given the variability in environmental conditions and
tomato varieties.

5. Innovative approach to key point localization: This study focuses on the localization of
key points, particularly the center of gravity, offering a new perspective and achieving
high accuracy in this area.

The initial hypotheses of this study suggest that advanced image-preprocessing tech-
niques integrated with CNNs can significantly improve the accuracy of tomato detection
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and localization, improving the efficiency of automated harvesting in real-world envi-
ronments. This research represents a significant advancement in agricultural automation,
affecting crop management and harvesting. It lays the foundation for future advances in
agricultural technology.

Thus, the aim of the study is not only to present a new image-preprocessing technique,
but also to demonstrate its effectiveness in practical applications, filling a critical gap in
agricultural automation.

2. Materials and Methods
2.1. Image Acquisition and Processing

In this study, a unique database containing 2260 tomato images was developed. Of
these, 700 images were taken in greenhouses in Niigata (Niigata Prefecture, Japan). The
remaining 1560 images were carefully selected from various publicly available sources,
including Kaggle and Github [29–31], to ensure the greatest representativeness and diversity.
During the selection, special attention was paid to aspects such as tomato ripeness, lighting
conditions, shooting angles, and background features, as demonstrated in Figure 1. As
a result, the database covers images of tomatoes grown under a variety of conditions,
including greenhouse conditions. This approach to database compilation was deliberately
chosen to increase the reliability and universality of the analysis results.
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Figure 1. Examples of dataset images.

The data-labeling process involved both automatic and manual methods, with initial
labeling performed by a pre-trained CNN model and subsequent manual validation by
agricultural experts. We established clear inclusion criteria, focusing on healthy, mature
tomatoes under different light conditions, and excluded any images that were blurred or
contained multiple overlapping fruits. This approach ensures the relevance and applicabil-
ity of our dataset to real-world agricultural scenarios, addressing the limitations of existing
datasets in representing the diverse conditions encountered in tomato harvesting.

The images were standardized and underwent a number of preprocessing steps to
ensure the uniformity of resolution and brightness. To preserve quality, each image was
resized to 224 × 224 pixels using modern interpolation techniques. The pixel intensities
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were normalized to a maximum value of 255. These processes were implemented in Python
using OpenCV and scikit-image libraries.

The methodology developed in this study was based on a CNN, which was chosen
for its effectiveness in pattern recognition tasks. The CNN consisted of several convolu-
tional layers with rectified linear unit (ReLU) feature activation, max-pooling layers and
fully connected layers for feature extraction, dimensionality reduction, and classification,
respectively.

The dataset was divided into training (80%), validation (10%), and test (10%) subsets.
Training was performed in batches and after each epoch, performance on the validation set
was evaluated to fine-tune the model and prevent overfitting.

A personal computer (Intel i7, 3.60 GHz, 32 GB DDR4, GeForce RTX 2080) running
the Windows 11 operating system was used as the computing machine. The Python
programming language was used to build the system.

The reproductive structure of a tomato is illustrated in Figure 2. It consists of several
biologically distinct components that link the main stem to the fruit. These components
include the peduncle, abscission region, and sepal. The branch emanating from the main
stem bears one or more pedicels, from each of which a separate fruit develops [32]. Anatom-
ically, the pedicel is divided into distal and proximal parts relative to the abscission zone.
This zone is where the physiological detachment of the mature fruit occurs through the
abscission process [33].
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In the context of developing robotic harvesting systems, determining the center of
gravity of an object is a key task. This information is critical for ensuring the balance and
stability of the robot, particularly when manipulators or rakes are used to lift and move
the crop. Accurate information about the location of the center of gravity allows control
and manipulation to be optimized, which minimizes the risk of crop damage and improves
harvesting accuracy. Additionally, this information contributes to energy efficiency by
allowing the robot to move more economically without wasting unnecessary energy on
maintaining balance or adjusting its position.

Determining the center of gravity is also important for adapting robotic systems to var-
ious types of crops, which can vary significantly in size, shape, and weight. This increases
the flexibility of the system and allows it to adapt to a variety of harvesting conditions.
Additionally, the correct understanding of this aspect prevents potential accidents and
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mishaps, which ensures the safety of both the robot and the environment. Considering the
center of gravity in the initial design stages contributes to improving the efficiency and
reliability of robotic harvesting systems, which increases the overall productivity and safety
of agricultural operations.

2.2. Enhanced Pose Estimation via CNNs

The proposed methodology uses dual 2D matrices to improve estimation of tomato
position using both confidence maps and PAFs, which builds on the foundations established
in [34,35]. Confidence maps are probabilistic heat maps that locate key points that define
the point in the center of gravity, with each tomato in the dataset represented by a unique
map that consists of multiple channels [36]. These channels directly correlate with various
key points on the tomato. The spatial distribution of these key points is mapped to the
individual channels for each tomato image, with the true value of S∗ for each pixel given by

S∗
j,k(p) = exp

−

∣∣∣p − xj,k|22
σ2

, (1)

where j and k represent the key point type and tomato index, respectively, and σ2 is an
adjustable parameter that determines the confidence spread for the key point.

Furthermore, CNNs are used to optimize the training and evaluation of these confi-
dence maps, and provide high accuracy and robustness [37]. The collective confidence map
for a given key point across all tomato plants is computed using the maximum operation:

S∗
j (p) = max

k
S∗

j,k(p). (2)

The physical orientation of each tomato is determined by the key points detected by a
PAF. The PAFs represent the relationships between key points as 2D vectors that indicate
the location and orientation of the tomato parts [38]. The number of links each relationship
has is C, with the PAF L∗ for each relationship defined as

L*
c,k(p) =

{
v if p on limb c, k
0 otherwise,

(3)

where v is a unit vector directed from one key point to the other:

v =

(
xj2,k − xj1,k

)
∣∣∣xj2,k − xj1,k|2

. (4)

The criterion of a point that belongs to a pattern is defined by its perpendicular
distance to the line segment between the key points, which must not exceed σ1:

0 ≤ v ·
(

p − xj1,k

)
≤ lc,k and

∣∣∣v⊥ ·
(

p − xj1,k

)∣∣∣ ≤ σl . (5)

To determine the true value L∗, the average PAF over all images for a particular part is
calculated:

L∗
c =

1
nc(p)∑k L∗

c,k(p), (6)

where nc(p) corresponds to the number of non-zero PAF values at point p for a given part
in all images.

The integration of CNNs not only improves the accuracy of key point detection but
also greatly improves the PAF calculation, which is very important for accurate robotic
tomato harvesting based on gravimetric analysis.
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2.3. Comparative Analysis of Preprocessing Techniques in Image-Feature Delineation

In the realm of image processing, preprocessing plays a pivotal role in enhancing
the quality of an image or preparing an image for further operations. In this study, three
pre-eminent image-processing methods were meticulously chosen and their efficacy in
delineating features was determined (Figure 3).
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1. Thresholding at an intensity of 110: This technique involves setting a threshold at an
intensity value of 110. Pixels with an intensity that exceeds this value are labeled as
the object (in this case, a tomato), whereas those with an intensity below this value
are designated as the background. This approach is particularly advantageous for
discerning the primary contours of the object in scenarios in which specific lighting
conditions prevail.

2. Thresholding at an intensity of 120: The functionally of this technique is similar to
that mentioned above. The technique uses a slightly elevated threshold value. It has
been proven to be particularly effective for images that have pronounced contrast or
were captured under intense illumination.

3. Dithering: Dithering is a sophisticated method that capitalizes on quantization errors
to metamorphose the image into a monochromatic version, albeit with the enhanced
retention of intricate details and textures. This method is instrumental in enabling the
analytical model to pinpoint and identify complex regions or areas of the tomato that
exhibit low contrast, which might otherwise be overlooked when using rudimentary
binarization techniques.

It is crucial to understand that the efficacy of each method is contingent on the specific
attributes of the image in question and the overarching objective of the image-processing task.

2.4. Architecture for Tomato Pose Detection

In this study, a modified methodology is developed to improve the efficiency of tomato
gravimetric analysis (Figure 4). The architecture includes a backbone for feature extraction,
an initial prediction stage to construct confidence maps and PAFs, and a series of refinement
stages to improve accuracy. In the initial stage, feature sets are extracted in the backbone,
and trust maps and PAFs are predicted. In subsequent stages, these predictions are refined
using previous feature maps and results as inputs [39,40].

The network-training process uses a loss function that carefully compares the predicted
confidence and PAF values with the corresponding “true” values of S∗

j and L∗
c , as defined

in the loss function:
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f t
s =

J
∑

j=1
∑
p

W(p)
∣∣∣St

j(p)− S∗
j (p) |22

f t
L =

C
∑

c=1
∑
p

W(p)
∣∣Lt

c(p)− L∗
c (p) |22

f = ∑T
t=1 f t

s + f t
L,

(7)

where t denotes the refinement stage, St
j(p) and Lt

c(p) are the confidence maps and PAF
predictions at each stage, respectively, and W(p) is a binary mask used to prevent penalties
for true positives in unannotated regions. The multi-tomato pose-recognition process uses
these confidence maps and PAFs, and the predictions of the last step are used to output the
fully trained model. This process is discussed in more detail in Section 3.

This study methodically assesses the individual contribution of each component of our
hybrid CNN-PAF model. By systematically removing or modifying certain elements, CNN
layers, PAFs, and preprocessing methods, we evaluate their impact on model performance.
This analysis provides valuable insights into the importance of each component and further
justifies our design choices.
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Clarification stages (Figure 4):

1. Initial stage: This stage contains a PAF branch and heat-map branch, denoted by L1
and S1, respectively. A PAF is used to encode parts of the objects and their connections,
whereas the heat map branch is used to localize key points.

2. Refinement stage 1: As with the initial stage, this stage involves reusing PAF branches
and heat maps (L2 and S2) to further refine the results.
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3. Refinement stage t+1: This represents the final stage in an iterative refinement process,
where ‘t’ indicates the number of intermediate refinement stages. Each subsequent
stage involves the further improvement of localization accuracy.

Figure 4 illustrates a complex and multi-layered approach to detecting and localizing
fruits and their peduncles, which involves a series of image-processing steps and feature
analyses.

3. Results

Results were obtained for the developed hybrid model that combined CNNs and dual
2D matrices for the classification and PAFs. The results of the visualization of the tomato
detection and positioning method within the DL and the image processing for subsequent
robotic harvesting systems are presented in Figure 5. The figure shows unripe tomatoes
with color-coded labels that indicate key analysis points: the fruit centers (1: green dot),
sepals (2: red dot), and abscission zones (3: sky blue dot), and the branching points of
the branches (4: black dot). These labels help to identify and evaluate the plant structure
for accurate robotic harvesting. The supporting images (a, b, c, and d) show various
image-processing and -analysis steps, such as segmentation and contour detection, with the
identification of the points in the center of attachment. The results suggest the high accuracy
of object recognition achieved by the model, which indicates its application potential in real
agricultural conditions. Errors in key point detection were more common in the images
with small or clustered fruits; however, overall, the model demonstrated a high level of
performance and provided useful data for robotic control.
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Figure 6 shows six tomato-brush images that demonstrate various stages of tomato
ripening and arrangement, not including indistinguishable tomato key points. In each
image, the tomato plants are marked using colored dots and connected by lines to highlight
key anatomical points and their relationships. The lines that connect these points are
represented in their respective colors, which indicate the anatomical relationships between
these elements.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 14 
 

 

Figure 6 shows six tomato-brush images that demonstrate various stages of tomato 
ripening and arrangement, not including indistinguishable tomato key points. In each im-
age, the tomato plants are marked using colored dots and connected by lines to highlight 
key anatomical points and their relationships. The lines that connect these points are rep-
resented in their respective colors, which indicate the anatomical relationships between 
these elements. 

 
Figure 6. Results of recognizing tomato samples that included indistinguishable key points (parts). 

Figure 6 illustrates the methods used to identify the positions of the tomatoes and 
their anatomical parts, which has significant applications for the development of robotic 
harvesting algorithms. The images show both successful and difficult feature recognition 
caused by overlapping or visually merging plant parts, which highlights the importance 
of using an integrated approach to visual information recognition and processing for the 
automation of agricultural processes. 

In our study, the accuracy of the key point localization and the part-detection errors 
were quantified for the proposed method. The key-point-localization errors are presented 
in Table 1, where they are categorized into types: center-of-gravity point, calyx, abscission 
zone, and branching point. The errors were measured at the pixel level and ranged from 
5.4– 10.6 pixels horizontally and 5.8–13.1 pixels vertically. On average, the errors for all 
the key points were 5.3 pixels on the x-axis and 6.2 pixels on the y-axis. The smallest error 
in pixels, approximately 2.6 pixels, was observed for the calyx, and the largest error was 

Figure 6. Results of recognizing tomato samples that included indistinguishable key points (parts).

Figure 6 illustrates the methods used to identify the positions of the tomatoes and
their anatomical parts, which has significant applications for the development of robotic
harvesting algorithms. The images show both successful and difficult feature recognition
caused by overlapping or visually merging plant parts, which highlights the importance
of using an integrated approach to visual information recognition and processing for the
automation of agricultural processes.

In our study, the accuracy of the key point localization and the part-detection errors
were quantified for the proposed method. The key-point-localization errors are presented
in Table 1, where they are categorized into types: center-of-gravity point, calyx, abscission
zone, and branching point. The errors were measured at the pixel level and ranged from
5.4–10.6 pixels horizontally and 5.8–13.1 pixels vertically. On average, the errors for all
the key points were 5.3 pixels on the x-axis and 6.2 pixels on the y-axis. The smallest error
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in pixels, approximately 2.6 pixels, was observed for the calyx, and the largest error was
observed for the branching point (10.6–13.1 pixels), which was three times larger than
the other key points. This high error rate at the branching point occurred due to its low
visibility, often resulting from its merging with stem parts in adjacent areas. Despite this,
the calyx areas and the tomato’s center of gravity point had the lowest pixel errors, which
highlights their geometric importance in enabling robotic systems to accurately identify
harvest points.

Table 1. Position errors for the detected key points.

Axis Center of
Gravity Calyx Abscission

Zone
Branch
Point Total

X (pixel) 5.3 2.6 4.1 10.6 5.65
Y (pixel) 6.2 3.0 4.7 13.1 6.75

Overall average score (%) 97.2 96.7 95.5 96.2 96.4

The last row in Table 1 presents the evaluation of the key point detection for a normal-
ized distance. For this metric, the key point is considered to have been accurately detected
if the error is less than half the length of the bounding box diagonal. An error in this context
means the Euclidean distance between the detected point and the real point. The overall
average score for all the key points was 96.4%, with the highest detection accuracy and
potential for practical application achieved for the center-of-gravity point and abscess.

In this study, an innovative model was developed and tested for the advanced image
preprocessing of tomatoes, with the aim of determining their center of gravity for robotic
harvesting. The integration of a hybrid model that combined CNNs with PAFs was
key to achieving high accuracy and adaptability under various agricultural conditions.
This study underscores the importance of integrating multispectral analysis and data-
enhancement techniques, which enabled the model to effectively adapt to a diverse range
of environmental conditions and tomato varieties. The model’s impressive recognition
accuracy of 96.4% on an extensive dataset of 2260 images indicates its potential in real-
world agricultural applications and may lead to significant reductions in manual labor
and increased harvesting efficiency. This technology not only furthers the automation of
agricultural processes but also paves the way for more research in the fields of gravimetric
analysis and robotic harvesting. In conclusion, this study demonstrates considerable
progress in the development of technologies for agricultural automation, which suggests a
trajectory for future improvements that will have a substantial influence on the agricultural
industry as a whole.

4. Discussion

In this section, we analyze and discuss the findings of our study, in which we focused
on improving automated tomato harvesting through a novel hybrid model integrating
CNNs and PAFs.

1. The core achievement of our research is the development of a hybrid model that
synergizes CNNs with PAFs, which resulted in a remarkable recognition accuracy on
a diverse dataset. This high accuracy, which was consistent under various environ-
mental conditions and tomato varieties, is evidence of the model’s robustness and
adaptability. The integration of DL with state-of-the-art image-processing techniques
made our algorithm significantly outperform existing algorithms, which marks a
substantial advancement in the field of agricultural automation.

2. Despite the overall success of our model, it encountered challenges in key point
detection, particularly for images that contained small or clustered fruits. These errors,
detailed in Table 1, provide crucial insights into the limitations of the current model.
The higher error rates observed for the branching points caused by their frequent
merging with the stem parts highlighted areas for future refinement. By contrast,
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the low number of pixel errors for the calyx and the tomato’s center-of-gravity point
indicate their geometric importance in robotic systems in terms of achieving accurate
harvest point identification.

3. The findings have significant implications for the field of robotic harvesting. The
model’s ability to accurately identify and position tomatoes paves the way for more
efficient, precise, and scalable robotic harvesting solutions. This advancement could
lead to a reduction in manual labor and an increase in harvesting efficiency, which are
crucial for meeting the growing demands of the agricultural industry.

4. Another critical aspect of our study is the model’s performance under various real-
world agricultural conditions. The integration of multispectral analysis and data-
enhancement techniques enabled the model to effectively adapt to various environ-
mental conditions and characteristics of tomato varieties. This adaptability is essential
for the practical application of the technology in diverse agricultural settings.

5. Our study marks a significant step forward in agricultural automation and also
provides opportunities for further research. Areas for future improvement include en-
hancing the model’s ability to process images that contain small or clustered fruits and
refining the detection of more challenging key points, such as branching points. Addi-
tionally, extending the model’s application to other crops and agricultural practices
could broaden its impact on the industry.

To summarize, our study demonstrates a significant breakthrough in the automation
of agricultural processes, particularly in the context of tomato harvesting. The developed
model not only offers high accuracy and adaptability but also provides a foundation for
further advancements in the field. This model has the potential to transform agricultural
practices by contributing to the sustainability and efficiency of food production globally.

5. Conclusions

This research represents a significant leap forward in the field of agricultural au-
tomation, particularly in the context of tomato harvesting. Our study centered on the
development and extensive testing of an innovative hybrid model that integrates CNNs
with PAFs, which is a combination that has been proven to be highly effective in accurately
determining the center of gravity of tomatoes for robotic harvesting.

In this study, we placed a particular emphasis on the integration of multispectral
analysis and data-enhancement techniques, which allowed the model to effectively adapt
to a variety of environmental conditions and characteristics of various tomato varieties.
As a result, the model achieved an impressive recognition accuracy, reaching 96.4% on an
extensive dataset of 2260 images. Despite the successes of the study, we identified areas for
improvement, particularly in enhancing the model’s ability to handle challenging scenarios,
such as small or clustered fruits. Future research could focus on refining key point detection
and extending the model’s applicability to other crops and agricultural processes.

In conclusion, our study contributes significantly to the advancement of technologies
in agricultural automation. The high accuracy, efficiency, and adaptability of the developed
model not only makes more effective and sustainable agricultural practices possible, but
also opens up new opportunities for research and development in this field. The impli-
cations of this study extend beyond tomato harvesting, which suggests a promising path
for the broader application of such technologies in the agricultural industry, which could
transform the way that we approach food production and resource management on a
global scale.
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