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Abstract: The reactivation of old landslides can be triggered by heavy destructive earthquakes, heavy
rainfall, and ongoing human activities, thereby resulting in the occurrence of secondary landslides.
However, most existing models are designed for detecting nascent landslides and there are few
algorithms for old landslide detection. In this paper, we introduce a novel landslide detection model
known as YOLOv8-CW, built upon the YOLOv8 (You Only Look Once) architecture, to tackle the
formidable challenge of identifying old landslides. We replace the Complete-IoU loss function in
the original model with the Wise-IoU loss function to mitigate the impact of low-quality samples
on model training and improve detection recall rate. We integrate a CBAM (Convolutional Block
Attention Module) attention mechanism into our model to enhance detection accuracy. By focusing
on the southwest river basin of the Sichuan–Tibet area, we collect 558 optical remote sensing images
of old landslides in three channels from Google Earth and establish a dataset specifically for old
landslide detection. Compared to the original model, our proposed YOLOv8-CW model achieves an
increase in detection accuracy of 10.9%, recall rate of 6%, and F1 score from 0.66 to 0.74, respectively.
These results demonstrate that our improved model exhibits excellent performance in detecting old
landslides within the Sichuan–Tibet area.

Keywords: old landslide detection; optical remote sensing images; YOLOv8; Wise-IoU loss function;
attention module; YOLOv8-CW

1. Introduction

An old landslide is the result of prolonged and intricate geological processes occurring
on slopes [1]. Although the majority of old landslides exhibit long-term stability, they
possess the potential for reactivation and renewed sliding. This reactivation is triggered
by factors, notably seismic events, precipitation, and human-engineered activities, which
exert their influence on pre-existing slide accumulations. The slide mass resulting from old
landslides is a site for human activities, primarily influenced by the underlying topography
and landforms [2]. In recent years, the escalating human engineering activities and ever-
changing global climatic conditions have led to a sharp increase in the frequency of old
landslide reactivations. This phenomenon has resulted in significant harm to both human
life and property safety, as well as the natural environment [3–5]. Therefore, to safeguard
the safety of human lives and property, it is imperative to undertake extensive detection
and monitoring of old landslides on a large scale.

The existing landslide detection methods mainly fall into the following three cat-
egories: (1) Visual interpretation method. This approach relies excessively on expert
experience, demanding a substantial investment of time and effort, leading to relatively low
efficiency [6,7]. Nevertheless, its high accuracy in identifying old landslides compensates
for these limitations; (2) Machine learning method. In contrast to the visual interpretation
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method, this approach exhibits a higher degree of automation [8–12]. However, it necessi-
tates the extraction of a large number of image features and involves conducting extensive
feature selection and hyperparameter tuning experiments based on the feature data, which
incurs a substantial workload; (3) Deep learning method. Over the past few years, Convo-
lutional Neural Networks have witnessed rapid advancements and achieved remarkable
milestones in the domain of image processing [13–18]. In contrast to traditional machine
learning methods, deep learning obviates the need for manual feature engineering and
selection when dealing with landslide characteristics. Moreover, deep learning is amenable
to larger sample sizes and is well suited for landslide detection in more expansive scenes.

The detection of nascent landslides has experienced rapid advancements in the field of
deep learning [19]. However, the detection of old landslides still faces technical challenges
that need to be solved in relevant research areas. The presence of old landslides is charac-
terized by their long history and considerable time interval, leading to various degrees of
transformation over time [20]. Subsequent to the occurrence of a landslide, vegetation often
reestablishes itself over several years, blending with the surrounding environment. As a
result, differentiating old landslides from recent ones primarily relies on scrutinizing the
inherent morphological characteristics of the landslide itself and identifying certain traces
of human-induced alteration [21]. Zili et al. [20] designed an iterative classification and
semantic segmentation network to classify and segment old landslides on the Loess Plateau,
and the results show that the designed network is extremely effective for old landslides that
are difficult to identify there. For the semantic segmentation task, the F1 score increased
from 0.5054 to 0.5448 and the detection accuracy of the old landslide improved to 0.9 com-
pared to the basic network. Yuanzhen et al. [22,23] used Mask R-CNN to automatically
identify old landslides in the loess area. The results show that the two-stage algorithm has
a better ability to detect old landslides in the Loess Plateau. Zhaoying et al. [24] used CNNs
and DEM data to identify old landslides in the Loess Plateau, with a detection rate of 95.7%
and a recall rate of 100%.

However, the relevant algorithms for the detection of old landslides in the southwest
river basin of the Sichuan–Tibet area are extremely lacking in this field and need to be
improved [25]. In the existing research, the landslide detection model is relatively complex,
with limited accuracy and generalization ability for the location and range of the old
landslides in the southwest mountainous area.

To solve the above problems, this paper proposes a detection method based on the
improved YOLOv8 [26,27] (YOLOv8-CW). This method improves the detection accuracy
of old landslides in various geomorphic environments and exhibits robust performance
in detecting complex old landslides. The primary contributions of this paper can be
summarized as follows: Firstly, an old landslides dataset is compiled using Google Earth
images, with a focus on the southwest river basin of the Sichuan–Tibet area in China as
the designated research area [23]. Then, the boundary box loss function Complete-IoU
(CIoU) loss function is replaced by the Wise-IoU (WIoU) loss function [28–30], which solves
the problem of model training caused by low-quality samples and introduces a CBAM
attention mechanism to improve model detection ability [31–35]. Finally, we compare
the WIoU loss functions of different versions and different attention mechanisms. The
experimental results clearly demonstrate that the improved method has superior detection
ability and generalization and has great application value to the detection of old landslides
in the Sichuan–Tibet area of China.

2. Study Area and Dataset

The research area is located in the southwest river basin of the Sichuan–Tibet area,
which is renowned for its abundance of hydraulic resources, as shown in Figure 1. The
study area encompasses 359,945 km2 across the river basins of the Dadu River, Jinsha
River, Nujiang River, and Minjiang River in the Sichuan–Tibet area. The diverse plane
morphologies of old landslides encompass long-tongue shapes, ovals, trumpets, irregular
formations, and more. These old landslides have typically evolved through the gradual
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accumulation of rockfalls, resulting in an inverted triangle, conical, or fan-shaped appear-
ance on the plane (Figure 2). Notably, some large and extra-large old landslides have
distinctive armchair landforms with clear boundaries, which have now become inhabited
areas, serving as the main living places for present-day residents [36,37]. The dataset used
in this study comprised Google Earth images with a spatial resolution of 2 m and covered a
time span from 2012 to 2022. According to the analysis provided by geological experts, a
total of 329 landslides have been identified within the southwest river basin of the Sichuan–
Tibet area. Leveraging the manipulation of Google Earth’s three-dimensional perspective
and adjusting the timing of image acquisition, a multitude of landslide remote sensing
images were successfully captured. Subsequently, the collected image data underwent
processing using the LabelImg tool to construct the dataset. To facilitate model training
and evaluation, the dataset was divided into training and validation sets in an 8:2 ratio.
Additionally, data augmentation techniques, such as image cropping and rotation, were
employed to enhance the diversity and robustness of the data. The augmented training
dataset comprised 2500 images, while the validation dataset encompassed 600 images.
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3. Method

Firstly, high-resolution old landslide image data in the study area are collected based
on Google Earth images. These images are subsequently segmented into sizes of 640 × 640,
labels are marked, and data enhancement is performed to complete the dataset production.
Next, the network structure of the YOLOv8 model is improved by adding a CBAM attention
mechanism to the backbone network and modifying the IoU loss function at the detection
head to enhance model accuracy. Finally, the finished dataset was trained on the improved
model for accuracy assessment. Figure 3 illustrates the old landslide detection process
using the improved YOLOv8 algorithm.
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3.1. YOLOv8 Model

The YOLOv8 model is a one-stage object detection model, which was proposed by
Ultralytics in 2023 [27]. It is an improvement upon the YOLOv5 algorithm [26], featuring a
more streamlined network structure with fewer parameters and higher detection precision.
The basic code for the YOLOv8 algorithm can be obtained from the GitHub website at
https://github.com/ultralytics/ultralytics, (accessed on 24 April 2023). The network
architecture of the YOLOv8 model is composed of three key components: the backbone
network, the neck network, and the head network. It differs slightly from the overall
structure of the previous YOLO model. The main network structure is illustrated in Figure 4.

In the backbone network part, YOLOv8 made a significant improvement by replacing
the C3 module used in YOLOv5 (Figure 5) with the C2f structure shown in Figure 4. The C2f
structure offers a more abundant gradient flow, enhancing the flow of information through-
out the network. Additionally, YOLOv8 adjusted the channel numbers differently for
different scale models, which further contributed to the overall performance improvement.
This enhancement in the backbone network played a crucial role in significantly improving
the performance of the YOLOv8 model, leading to better object detection accuracy and
more robust feature extraction capabilities [38–40].

In the head network section, the previous YOLO model utilized a coupled head
structure (Figure 6) that directly inputted the feature output from the convolutional layer
into the fully connected layer to output target position and category. However, compared to
this structure, the decoupled head (shown in Figure 4) calculates classification and position
loss functions separately for obtained feature graphs. This approach effectively reduces
parameters and computational complexity while enhancing the generalization ability and
robustness of the model. Additionally, YOLOv8 adopts an anchor-free detection method

https://github.com/ultralytics/ultralytics
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that removes preset anchor frames to predict target boundary frames directly. Although
this method has stronger generalization ability, simpler framework design, and better
abnormal scale target detection than anchor frame-based methods, it is not suitable for
general object detection.
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Regarding loss functions, the YOLO series adopted a static allocation strategy. How-
ever, recognizing the superior performance of dynamic allocation strategies, the YOLOv8
algorithm directly incorporates Task Aligned Assigner. The core concept is to select positive
samples based on scores weighted by both classification and regression scores. When calcu-
lating the loss function, the Distribution Focal Loss is introduced to tackle the challenge of
highly imbalanced quantities of positive and negative samples.

3.2. CBAM Attention Mechanisms

CBAM is an attention mechanism designed for Convolutional Neural Networks to
enhance their performance [33]. It consists of two essential submodules: channel attention
and spatial attention (Figure 7).
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Channel attention involves weighted average pooling of the feature for each channel.
The resultant vector undergoes two fully connected layers to obtain a weight vector using
the Sigmoid function. This weight vector is then multiplied with the input original feature
and its residual feature, thereby providing attention weighting to distinct channels. To sum
up, the channel attention is computed as:

MC(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

In Equation (1), MC(F) denotes channel attention mechanism operation, where F is
the input feature, σ indicates the Sigmoid function, and MLP is a multi-layer perceptron.

Spatial attention involves weighted average pooling of pixel features, followed by
two fully connected layers to yield a weight vector. This weight vector is multiplied
with the original feature to produce a weighted feature. CBAM attention mechanisms
enhance model performance by exploiting the interplay between channels and spatial
dimensions. This mechanism has demonstrated substantial success in various large-scale
image classification tasks. The spatial attention is computed as:

MS(F) = σ ( f 7×7([AvgPool(F1); MaxPool(F1)]) ) (2)

where MS(F) denotes spatial attention mechanism operation, f 7×7 denotes a convolution
operation with the filter size of 7 × 7, and F1 denotes the feature output through the channel
attention operation.

3.3. WIoU Loss Function

Due to the influence of weather changes, geological movements, and human activities,
the morphological characteristics of old landslides have significantly changed compared to
their initial formation. Climate warming and accelerated vegetation growth have led to
extensive vegetation cover on the slopes and walls of old landslides. Consequently, when
constructing the old landslide dataset, a large number of low-quality samples can adversely
affect the detection performance. To avoid the detrimental impact of low-quality samples
on the model’s training process and to emphasize the significance of high-quality old
landslide samples, this study replaced the boundary box loss function, Complete-IoU loss
function, in the original YOLOv8 model with the Wise-IoU loss function. This adjustment
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is intended to improve the model’s detection performance when working with historical
landslide datasets.

There are three versions of WIoU, representing three different ways of constructing loss
functions. WIoUv1 constructs the attention-based boundary box loss, while WIoUv2 and
WIoUv3 add a focusing mechanism by constructing the gradient gain (focusing coefficient)
calculation method.

3.3.1. Wise-IoUv1

When training an old landslide dataset, encountering numerous low-quality samples,
commonly referred to as difficult samples, is inevitable. Geometric measures, such as aspect
ratio and distance, can exacerbate the penalty for these challenging samples, resulting in
a reduction in the model’s generalization performance. An effective loss function should
alleviate the geometric penalty when the predicted bounding box aligns well with the
ground truth bounding box, while also emphasizing less intervention training to enhance
the model’s overall generalization ability. Building upon this foundation, distance attention
is crafted based on distance measurements, yielding a WIoUv1 loss function with a two-
layer attention mechanism.

LWIoUv1 = RWIoULIoU (3)

Following Equation (3), RWIoU can be calculated by Equation (4).

RWIoU = exp

(
x − xgt

)2
+

(
y − ygt

)2(
Wg

2 + Hg
2
)∗

, RWIoU ∈ [1, e) (4)

In Equation (4), the parameters are shown in Figure 8. Since the RWIoU is always
greater than 1, this will effectively enhance the LIoU of the ordinary quality anchor frame.
On the contrary, because the LIoU is less than 1, it will notably diminish the RWIoU for
high-quality anchor frames and reduce the emphasis on the center point distance when
the anchor frame and the target frame are well aligned. If the anchor frame and the target
frame are well aligned, to prevent RWIoU from creating gradients that hinder convergence,
Wg and Hg are separated from the calculation step (* indicates this operation). Since it
effectively removes the factors that impede convergence, it does not introduce any new
metrics, such as aspect ratio, normalized length, or other geometric measurements.

Appl. Sci. 2024, 14, 1100 8 of 17 
 

function should alleviate the geometric penalty when the predicted bounding box aligns 
well with the ground truth bounding box, while also emphasizing less intervention train-
ing to enhance the model’s overall generalization ability. Building upon this foundation, 
distance attention is crafted based on distance measurements, yielding a WIoUv1 loss 
function with a two-layer attention mechanism. ℒ = ℛ ℒ  (3) 

Following Equation (3), ℛ  can be calculated by Equation (4). ℛ = 𝑒𝑥𝑝 ∗ , ℛ ∈ 1, 𝑒    (4) 

In Equation (4), the parameters are shown in Figure 8. Since the ℛ   is always 
greater than 1, this will effectively enhance the ℒ  of the ordinary quality anchor frame. 
On the contrary, because the ℒ  is less than 1, it will notably diminish the ℛ  for 
high-quality anchor frames and reduce the emphasis on the center point distance when 
the anchor frame and the target frame are well aligned. If the anchor frame and the target 
frame are well aligned, to prevent ℛ   from creating gradients that hinder conver-
gence, 𝑊  and 𝐻   are separated from the calculation step (* indicates this operation). 
Since it effectively removes the factors that impede convergence, it does not introduce any 
new metrics, such as aspect ratio, normalized length, or other geometric measurements. 

 
Figure 8. IoU diagram. The green box denotes the real box and the red box denotes the prediction 
box. 

3.3.2. Wise-IoUv2 
Lin et al. [41] designed a monotony focusing mechanism for cross-entropy, which 

effectively reduces the contribution of low-quality samples to loss values, makes the 
model pay more attention to difficult samples, and improves classification performance. 
Similarly, the monotonic focusing coefficient, ℒ ∗ , of Wise-IoUv1 is first constructed, and 
the loss function of Wise-IoUv2 is then calculated by Equation (5). ℒ = ℒ ∗ ℒ , 𝛾 > 0  (5) 

During the training of the model, the focusing coefficient ℒ ∗  decreases with the 
decrease of ℒ , resulting in a slow convergence rate in the later training period. There-
fore, the mean value of ℒ  is introduced as a normalization factor, and the Wise-IoUv2 
loss function is calculated by Equation (6). ℒ = ℒ ∗ℒ ℒ , 𝛾 > 0  (6) 

The gradient gain is kept at a high level by dynamically updating the normalization 

factor (𝑟 = ℒ ∗ℒ ), which solves the problem of slow convergence in the late training pe-
riod. 

Figure 8. IoU diagram. The green box denotes the real box and the red box denotes the prediction box.

3.3.2. Wise-IoUv2

Lin et al. [41] designed a monotony focusing mechanism for cross-entropy, which
effectively reduces the contribution of low-quality samples to loss values, makes the model
pay more attention to difficult samples, and improves classification performance. Similarly,
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the monotonic focusing coefficient, L γ∗
IoU

, of Wise-IoUv1 is first constructed, and the loss

function of Wise-IoUv2 is then calculated by Equation (5).

LWIoUv2 = L γ∗
IoU

LWIoUv1, γ > 0 (5)

During the training of the model, the focusing coefficient L γ∗
IoU

decreases with the

decrease of LIoU , resulting in a slow convergence rate in the later training period. Therefore,
the mean value of LIoU is introduced as a normalization factor, and the Wise-IoUv2 loss
function is calculated by Equation (6).

LWIoUv2 =
(L ∗

IoU

LIoU

)γ
LWIoUv1, γ > 0 (6)

The gradient gain is kept at a high level by dynamically updating the normaliza-

tion factor (r =
(L

∗
IoU
LIoU

)γ
), which solves the problem of slow convergence in the late

training period.

3.3.3. Wise-IoUv3

The Wise-IoUv3 loss function directly replaces the IoU value with the outlier degree
to describe the mass of the anchor frame. The outlier degree is calculated by Equation (7).

β =

L ∗
IoU

LIoU
, β ∈ [0,+∞) (7)

As observed in the given formula, the mass of the anchor frame increases as the
outlier becomes smaller, and a non-monotonic focusing coefficient, β, is constructed. This
coefficient, when multiplied by Wise-IoUv1, yields Wise-IoUv3 (Equation (8)). The in-
troduced coefficient allows the regression of bounding frames to focus on anchor frames
with ordinary mass. By assigning smaller gradient gains to anchors with larger outliers,
the model can effectively prevent harmful gradients from low-quality samples. This ap-
proach helps in improving the overall performance and robustness of the model during the
training process.

LWIoUv3 = θLWIoUv1, θ =
β

δαβ−δ
(8)

In Equation (8), α and δ are hyperparameters, which need to be selected according to
specific experiments. Since LIoU is in a dynamic process, the quality division criteria of
the anchor frame are also dynamic, which enables the Wise-IoUv3 loss function to create
the gradient gain allocation strategy that best meets the current situation during each
training process.

3.4. Model Evaluation Methods

In this study, precision, recall, F1 score, and mean average precision are used to
evaluate the prediction ability of the model [42]. The above indexes can be calculated by
the confusion matrix (Table 1).

Table 1. The confusion matrix.

Real
Predicate

Landslide Background

Landslide TP FN
Background FP TN
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The precision, recall, and F1 score in Table 1 are computed using Equations (9)–(11),
respectively. Based on these calculations, a precision–recall rate curve can be plotted,
with the recall on the horizontal axis and the precision on the vertical axis. The AP
represents the area between this curve and the axis, which can be determined using
Equation (12). After obtaining the AP for each category, the mean average precision is
calculated as Equation (13).

P =
TP

TP + FP
(9)

R =
TP

TN + FP
(10)

F1 =
2 × P × R
(P + R)

(11)

AP =
∫ 1

0
precision(recall)d(recall) (12)

mAP =
∑K

i=1 APi

K
(13)

4. Results
4.1. Experimental Setup

In this study, experiments are carried out on a workstation featuring an Intel i5-
13400F processor (Intel, Santa Clara, CA, USA), 32 GB of Random Access Memory (RAM)
(Dell, Round Rock, TX, USA), and an NVIDIA RTX 4080 graphics processor (NVIDIA,
Santa Clara, CA, USA) equipped with 16 GB of video memory. The experiments are
conducted using the PyTorch 3.8 deep learning framework and implemented in the Python
programming language.

The Stochastic Gradient Descent (SGD) optimizer is employed for all training proce-
dures, with an initial learning rate of 0.001 and a batch size of 32. The training consists of
200 epochs, incorporating a weight decay factor of 0.005 and a momentum factor of 0.937.
The prediction box threshold is set at 0.7. Within the optimizer, the learning rate decay is
managed through the cosine annealing scheduler. During the training phase, the input
images are normalized within the range of (0, 1).

4.2. Model Assessment
4.2.1. Model Results for Old Landslide Detection

After the experiment, the improved YOLOv8 model was compared with the original
YOLOv8 model, and the results are shown in Table 2. The YOLOv8 model, after adding
a CBAM attention mechanism and replacing the IoU loss function, performs better than
the original YOLOv8 model. Among them, the YOLOv8-CW2 model using the WIoUv2
loss function performs the best. The F1 score is 0.74, and the precision rate is increased by
10.9%, the recall rate by 6%, and mAP by 11% compared to the original model. Compared
with the YOLOv8-CW1 model and the YOLOv8-CW3 model using WIoUv1 and WIoUv3
functions, respectively, the YOLOv8-CW2 model also achieved better experimental results.
The improved YOLOv8 is compared with classic models such as YOLOv5 and Retinanet,
demonstrating its superior detection ability. The test results reveal a significant increase in
F1 scores of 9.4% and 10.2%, respectively, validating the suitability of the YOLOv8-CW2
model for old landslide detection.

Figure 9 shows a comparison of the detection results between the original YOLOv8
algorithm and the improved YOLOv8 algorithm applied to the old landslide dataset in
the study area. From the graph, it is evident that the original YOLOv8 model exhibits
differences in detection performance compared to the improved YOLOv8 model, both
for small and large old landslides. The complexity of the background environment in
high-resolution remote sensing images is much greater than that of natural images, leading
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to the original YOLOv8 model incorrectly identifying certain objects in the background
environment, such as exposed soil that resembles landslide image characteristics.

Table 2. Comparison of detection performance for different models.

Model Precision (%) Recall (%) mAP (%) F1 (%)

YOLOv8 69.2% 63.1% 62.8% 66.0%
YOLOv8-CW1 76.7% 65.9% 68.2% 71.0%
YOLOv8-CW2 80.1% 69.1% 73.8% 74.0%
YOLOv8-CW3 79.0% 66.8% 70.3% 72.0%
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detection results of the YOLOv8-CW3 model).

Comparing the detection results of the three improved YOLOv8 models, it is observed
that the YOLOv8-CW2 model achieves highly accurate detection for both small and large
old landslides. In the case of large old landslides, the YOLOv8-CW3 model performs
exceptionally well, with higher accuracy compared to the other two improved models.
However, the YOLOv8-CW3 model shows a higher number of overlapping detection boxes
when detecting small old landslides, leading to inaccurate detection of the actual locations
of the landslides.

Overall, the improved YOLOv8 models demonstrate better performance in detecting
old landslides in the study area, especially for small and large landslides, indicating their
effectiveness in addressing the complexities of high-resolution remote sensing images.

4.2.2. Comparison of Different Attention Modules

In this study, two attention modules, SE and SK, are integrated into the baseline model
for comparative analysis. Subsequently, the most suitable attention module is selected to
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construct the optimal model [34,35]. Table 3 shows the results of the experiment using the
same old landslide dataset.

Table 3. The effects of different attentional mechanisms.

Model Precision (%) Recall (%) mAP (%) F1 (%)

YOLOv8-CW1 76.7% 65.9% 68.2% 71.0%
YOLOv8-CW2 80.1% 69.1% 73.8% 74.0%
YOLOv8-CW3 79.0% 66.8% 70.3% 72.0%
YOLOv8-SEW1 73.2% 68.3% 63.4% 71.0%
YOLOv8-SEW2 75.6% 71.5% 70.6% 74.0%
YOLOv8-SEW3 76.6% 63.4% 66.1% 69.0%
YOLOv8-SKW1 74.9% 70.0% 70.9% 72.0%
YOLOv8-SKW2 74.4% 70.3% 70.7% 72.0%
YOLOv8-SKW3 73.3% 66.8% 64.7% 70.0%

It is obvious from the table that the model with a CBAM attention mechanism has
better performance. The accuracy and mAP of the YOLO-CW2 model are much higher
than those with the SE and SK attention mechanism. In terms of recall rate, the model with
the SE attention mechanism has better performance. In short, the YOLOv8-CW2 model is
selected as the improved model in this experiment.

5. Discussion
5.1. The Effects of the WIoU Loss Function on the Model

The effects of using the WIoU loss function to detect old landslides are obviously better
than those of using the CIoU loss function to detect old landslides, as shown in Table 4.
After replacing the loss function, the model is significantly higher than the original model
in all evaluation indexes. Figure 10 shows the training loss curves of the CIoU, WIoUv1,
WIoUv2, and WIoUv3 networks, respectively. The loss curves decreased significantly at the
beginning of the training and the decline trend began to slow down after 100 epochs. The
total loss function converges to 0.39787, compared to the original loss function of YOLOv8.
The improved loss function after the introduction of WIoU can make the network converge
faster, so the improvement of the network loss function in this paper is reasonable.

Table 4. Comparison of ablation experiment results.

CBAM SE SK CIoU WIoUv1 WIoUv2 WIoUv3 mAP (%)

Base line - - -
√

- - - 62.8%
1 - - - -

√
- - 68.3%

2 - - - - -
√

- 67.2%
3 - - - - - -

√
67.9%

4
√

- -
√

- - - 65.8%
5

√
- - -

√
- - 68.2%

6
√

- - - -
√

- 73.8%
7

√
- - - - -

√
70.3%

8 -
√

-
√

- - - 63.7%
9 -

√
- -

√
- - 63.4%

10 -
√

- - -
√

- 70.6%
11 -

√
- - - -

√
66.1%

12 - -
√ √

- - - 64.6%
13 - -

√
-

√
- - 70.9%

14 - -
√

- -
√

- 70.7%
15 - -

√
- - -

√
64.7%
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5.2. The Effects of the Attention Mechanism on the Model

To investigate the impact of the attention mechanism on the YOLOv8 model, this
experiment compares the YOLOv8 model without the addition of the attention mechanism,
and the research results are presented in Table 5. From Table 5, it is evident that the
improved model with the CBAM attention mechanism performs better; in particular, the
YOLOv8-CBAM model with the attention mechanism shows a 1.7% increase in recall rate
and a 3% increase in mean average precision, with its F1 score rising from 0.66 to 0.71.

Table 5. The effects of attention mechanisms.

Model Precision (%) Recall (%) mAP (%) F1 (%)

YOLOv8 69.2% 63.1% 62.8% 66.0%
YOLOv8-CBAM 77.6% 64.8% 65.8% 71.0%

YOLOv9-SE 74.4% 64.6% 63.7% 70.0%
YOLOv8-SK 72.2% 65.4% 64.6% 69.0%

It is observed that the attention mechanism enables the model to focus more on the
detection target and suppress irrelevant information (Figure 11), by analyzing the heat map
of the feature layer with the added attention mechanism. The CBAM attention mechanism,
which incorporates the spatial attention mechanism in addition to the channel attention
mechanism, exhibits a heightened focus on the landslide surface and enables more accurate
localization of old landslides. By combining both spatial and channel information, the
CBAM attention mechanism ensures that no location information is lost and facilitates
improved detection performance.

5.3. Limitations and Future Challenges

Although the improved YOLOv8 model has demonstrated superior detection per-
formance in the study of old landslides, there remains three major limitations within
this field.

(1) Limited sample size: Deep learning models, including YOLOv8-CW2, require ex-
tensive datasets for optimal training. However, there is a critical shortage of old
landslide data in the Sichuan and Tibet regions of China. It is anticipated that the
performance of the model could be further improved with the availability of more
comprehensive datasets.

(2) Limited data type: The complexity of detecting old landslides in the Sichuan and
Tibet regions is exacerbated by diverse topography, landforms, climate variations,
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and soil types, as well as the high level of vegetation coverage due to minimal human
activity. These factors make the use of optical image data for landslide detection
somewhat reductive. Therefore, we should integrate high-precision DEM (Digital
Elevation Model) data and InSAR (Interferometric Synthetic Aperture Radar) data to
enable a more thorough assessment of old landslides in these areas.

(3) Limited model transferability: The transferability of the improved YOLOv8 model
to other regions and landslide types has not been fully validated. To improve the
model’s robustness and generalization capabilities, it is essential to expand the dataset
with varied types of old landslide data, such as those from the Loess Plateau of China.
This will allow the model to learn additional features relevant to different landslide
characteristics and environments.
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6. Conclusions

This study utilizes Google Earth images as the data source to establish an old landslide
dataset for the Sichuan–Tibet river basin. Leveraging the YOLOv8 deep learning model,
this paper replaces the Wise-IoU bounding box loss function and introduces the CBAM
attention mechanism, constructing the YOLOv8-CW network that incorporates three differ-
ent bounding box loss functions. A general detection method for old landslides is proposed,
demonstrating strong detection capabilities for old landslides in the mountainous region of
Southwest China and presenting promising application prospects. The main conclusions
are as follows:

1. In the detection of old landslides in the Sichuan–Tibet river basin, the improved
YOLOv8-CW2 model achieves a detection accuracy of 80.1%, recall rate of 69.1%,
mAP of 73.8%, and F1 score of 0.74. Compared to the original YOLOv8 model, the
accuracy and recall rate are increased by 10.9% and 6%, respectively. The F1 score is
increased from 0.66 to 0.74.

2. Comparing the detection results of the YOLOv8-CW2 model and the original YOLOv8
model on the old landslide dataset reveals substantial improvements in the accuracy
of both model types. This indicates the effectiveness and feasibility of detecting old
landslides in the Sichuan–Tibet river basin using the proposed optimization method.
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3. To further enhance the stability and recognition ability of the model, multiple types of
landslide data sources can be utilized for training, ultimately achieving accurate iden-
tification of multi-source data and various types of landslides. This approach provides
timely and precise data support for landslide disaster rescue and disaster assessment.

Despite achieving improvements in old landslide detection accuracy, this study ac-
knowledges certain limitations. Due to the non-obvious characteristic form of old land-
slides, there are instances of missed detections, necessitating more precise classification
and segmentation of old landslides. When detecting old landslides, it is recommended to
combine InSAR and other applications, superimpose DEM and other multi-source data
to construct comprehensive datasets, and utilize deep learning and other methods for
accurate landslide detection. As geological disaster detection and identification enters the
era of artificial intelligence, the use of automation technologies such as deep learning can
significantly improve identification efficiency, holding significant implications for landslide
prevention and mitigation across generations.
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