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Abstract: As a structural indicator of dense subgraphs, k-core has been widely used in community
search due to its concise and efficient calculation. Many community search algorithms have been
expanded on the basis of k-core. However, relevant algorithms often set k values based on empirical
analysis of datasets or require users to input manually. Once users are not familiar with the graph
network structure, they may miss the optimal solution due to an improper k setting. Especially in
attribute social networks, characterizing communities with only k-cores may lead to a lack of semantic
interpretability of communities. Consequently, this article proposes a method for identifying the
optimal k-core with the greatest attribute score in the attribute social network as the target community.
The difficulty of the problem is that the query needs to integrate both structural and textual indicators
of the community while fully considering the diversity of attribute scoring functions. To effectively
reduce computational costs, we incorporate the topological characteristics of the k-core and the
attribute characteristics of entities to construct a hierarchical forest. It is worth noting that we name
tree nodes in a way similar to pre-order traversal and can maintain the order of all tree nodes during
the forest creation process. In such an attribute forest, it is possible to quickly locate the initial solution
containing all query vertices and reuse intermediate results during the process of expanding queries.
We conducted effectiveness and performance experiments on multiple real datasets. As the results
show, attribute scoring functions are not monotonic, and the algorithm proposed in this paper can
avoid scores falling into local optima. With the help of the attribute k-core forest, the actual query
time of the Advanced algorithm has improved by two orders of magnitude compared to the BaseLine
algorithm. In addition, the average F1 score of our target community has increased by 2.04 times and
26.57% compared to ACQ and SFEG, respectively.

Keywords: attribute network; dense subgraph; community search; k-core; hierarchical forest

1. Introduction

Graphs are often used to represent complex network structures containing large-
scale entities, where vertices denote entities and edges illustrate relationships between
entities. Common ones include co-authorship relationships in scholar networks [1], friend
relationships in social networks [2,3], and protein reaction relationships in biological
networks [4,5]. Dense subgraph search has attracted widespread attention from scholars,
especially community search based on personalized query conditions such as query vertices
and structural indicators. Unlike traditional community detection, community search can
complete personalized search tasks, making the target subgraph easier to interpret. As an
important community search model, k-core requires each node in the subgraph to have
at least k neighbors. Compared with clique, quasi-clique, densest subgraph, k-truss, etc.,
k-core has become the basis of many dense subgraph algorithm models and has been widely
used in industry and academia due to its simple structure and efficient calculation.

Even though the k-core has a lot of advantages, we find that many algorithm models are
overly idealized when attempting to determine the k value during query execution. Some
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take the median as k for queries based on empirical analysis of the dataset, while others are
manually specified by the user. It should be noted that different datasets show differences
in terms of their characteristics. When employing different structural evaluation indicators
such as independence, maximum density, and conductivity, the scoring trend may not
necessarily be positively (or negatively) associated with k. As for manual assignment, its
uncertainty is greater, and once users are not familiar with the network, the performance
of the model will be greatly reduced. Therefore, this article aims to globally search for the
optimal k-core containing the specified query vertices.

In addition, with the continuous improvement of sensor devices, entities’ semantic
features have become richer, and attribute networks [6–9] have emerged. People are no
longer satisfied with utilizing only structural features to characterize entity relationships in
the target network. To improve the semantic interpretability of queries, many models have
added attribute correlation evaluation indicators to compensate for semantic deficiencies
in simple graphs. However, there is no unified attribute scoring function to evaluate the
attribute correlation of subgraphs. Different algorithm models design different attribute
rating functions for diverse networks and objectives. To adapt to more application scenarios,
we extract the primary keys from different attribute scoring functions in order to grasp
their essence.

Given the attribute graph, an attribute scoring function, a query vertex set, and a query
attribute set, the goal of this article is to find a k-core that contains query vertices and has the
highest attribute rating. This can directly solve the problem of missing the optimal solution
due to improper k value selection and can also serve as the basis for other algorithm models.
A basic algorithm is to find all k-cores containing query vertices, calculate scores one by one,
and return the optimal solution. However, the large computational cost makes it unsuitable
for large attribute graphs. Hence, this article proposes an algorithm for searching for the
optimal k-core on the attribute networks, integrating structural and attribute indicators,
and constructing an index forest, which can improve adaptability and speed. Our main
contributions are as follows:

1. Propose the idea of an attribute-optimal k-core. Since it is possible to miss the optimal
solution by determining k through empirical analysis or manual selection, this article
searches for the optimal k-core on an attribute graph as the target community to find
the optimal solution to the problem.

2. Propose the advanced query algorithm. Extract primary keys from commonly used
attribute scoring functions to adapt to various scoring needs. Taking advantage of
the nested nature of k-core, design bidirectional reachable tree nodes, improve the
naming and storage methods of tree nodes, quickly locate tree nodes, and achieve
reuse of the calculation process.

3. We conducted numerous experiments on multiple ground-truth datasets. The experi-
mental results on these datasets show that the Advanced algorithm can effectively
avoid the scoring function falling into local optima. Its main time consumption is in
forest creation, and the actual query time is improved by two orders of magnitude
compared to BaseLine.

The rest of this paper is organized as follows: We review the related work in Section 2.
Section 3 formally defines the model and proposes two algorithms. The experiments
conducted and their results are presented in Section 4. Finally, in Section 5, we summarize
the main work and discuss future research directions.

2. Related Work

k-core is the largest connected subgraph in a network, in which each node has a
degree of no less than k. It was originally used in the social sciences to characterize
network cohesion [10]. Core decomposition can be completed by removing the vertices
of the minimum degree one by one, which is called the peeling algorithm [11,12]. High
computational efficiency makes k-core the foundation of many algorithm models in dense
subgraph mining and community search. Moreover, with the development of large-scale
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social networks, mining dense subgraphs based solely on structural compactness is no
longer sufficient for meeting application requirements. Attribute graph searches [13–21]
have gradually gained the attention of industry and academia.

The ACQ query model [16] attempts to identify the community that contains the
specified query vertices on the attribute graph. It shares the most attributes with the query
attribute set. In contrast to the previous community search model, ACQ enhances the
semantic interpretability of the target community, but the user must specify the appropriate
core number as the query condition. This is too idealistic to assume that the user can be
able to select the appropriate k value, which may result in the algorithm failing to find
the optimal solution. As well, the query algorithm is only applicable to a single query
vertex, and in the process of querying, the subset of attributes is enumerated one by one to
calculate the community score, which is not suitable for social networks with rich attributes.

The target subgraph of the KCCS model [17] needs to contain all query attributes,
and the query path that connects each vertex in the subgraph to the attribute must be as
short as possible. VAC [18] simplifies the startup parameters of the attribute community
query. Users only need to provide query nodes and an integer k to limit the query range so
that the quality of candidate communities can be evaluated according to various attributes
of query nodes (such as geographical location and keyword attributes), which not only
enriches the dimension of community attributes but also effectively avoids the risk of a
rigorous query attribute set. Unfortunately, with regard to structural indicators, both KCCS
and VAC models still require users to input an appropriate k value, which makes them also
subject to the dilemma of selecting a k value.

The ATC model [19] emphasizes that a good attribute scoring function should reward
such communities, i.e., the more query attributes covered, the higher the score, and the
fewer nodes unrelated to query attributes, the higher the score. Consequently, the ATC
model assigns different weights to attributes and develops a community scoring function
on the basis of attribute weighting. The model employs k-truss, which is tighter than k-core,
as the structural indicator, but it still does not avoid the user’s choice of k value, which
limits the application of this model.

Wang et al. [20] have shown that the traditional greedy algorithm may stop prema-
turely during the process of improving the community score and adopt the first local
optimal solution to be the optimal global solution. Therefore, they propose an elastic
expansion method for the greedy algorithm, which allows the scoring function to continue
trial and error within a limited number of times (including the number of trials and errors
and the threshold of score reduction) after finding the first local optimal solution. While
this has effectively improved the accuracy of the greedy algorithm, it does not guarantee
that global optimization will be achieved.

Chu et al. [22] for the first time highlight the dangers associated with manually
specifying the k value in the dense subgraph search problem and propose to find the
optimal k-core globally to eliminate the uncertainty associated with manual selection
and empirical analysis. For the purpose of adapting to a variety of structural evaluation
indicators, they first extract the primary keys from the scoring function, then realize the
optimal query algorithm in space and time by lightweight sorting of nodes and edges.
Unfortunately, the model does global community detection on a simple graph and cannot
perform personalized community searches based on query vertices and attributes, making
the communities found inexplicable. Therefore, we study a variety of attribute scoring
functions and then identify the optimal k-core in the attribute social network according to
the query vertex set and attribute set specified by the user. Its attribute score is the greatest,
which reflects the community’s good semantic characteristics. Table 1 summarizes the
comparison of relevant models.
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Table 1. A comparison of representative models on community detection (CD) and attribute commu-
nity search (ACS).

Model Topic Participation
Condition 1

Structural
Cohesiveness

Attribute
Function

Target
Community

[16] ACS q, S, k k-core YES local
[17] ACS S, k k-core YES local
[18] ACS Q, k k-truss YES local
[19] ACS Q, S, k, d (k, d)-truss YES local
[20] ACS Q, S ECOQUG YES local
[22] CD - k-core NO global

Ours ACS Q, S k-core NO global
1 Participation conditions may be a vertex q, a query vertex set Q, a query keyword set S, or some positive integers
k and d.

3. Proposed Approach
3.1. Problem Formulation

The problem studied in this article is defined on an undirected attribute graph G =
(V, E, A), where V, E, A represent the vertex set, edge set and attribute set, respectively.
n = |V| and m = |E| are the number of vertices and edges, generally m > n. For ∀v ∈ V,
v is an entity. Pair (u, v) ∈ E is an edge, implying that there is a certain relationship
between entities u and v (such as co-authorship, friends, etc.). For each v, there is a set A(v)
representing the text attributes of entity v. Different entities may share common attributes,
which means that they may have a certain semantic similarity in these attributes. Table 2
shows the main notations appearing throughout the remain text.

Table 2. Notations and meanings.

Notation Meaning

G = (V, E, A)
G is an undirected attribute graph, including the vertex set V, the

edge set E, and the attribute set A.
A(v) the attribute set of vertex v.
V(H) H is the subgraph of G, V(H) is the vertex set of H.
n(H) the number of vertices in H.

core(v) the core number of vertex v.
Core(H) the core number set of graph H.

Ck a connected graph composed of vertices with core(v) = k
Vw a vertex set with w ∈ A(v)
Nt

i a tree node in attribute k-core forest
bink a list of tree nodes that can be restored to Ck

To clarify the problem to be solved and the algorithm presented in this article, it is
necessary to introduce the relevant concepts first.

Definition 1 (k-core). Given a graph G and a positive integer k, the subgraph H is called a k-core of
G, denoted as Ck, if and only if H is a maximum connected subgraph and ∀v ∈ H, degree(v) ≥ k.

It is worth emphasizing that the k-core obtained by the classical Peeling algorithm may
contain multiple connected subgraphs, some of which can be viewed as multiple kinds of
k-cores. For example, in Figure 1, the subgraph composed of {4, . . ., 26} can be viewed as a
4-core in the past, which contains two connected subgraphs. But in this article, according
to Definition 1, we consider the subgraph composed of vertex set {9, . . ., 14} as a separate
5-core, which is more appropriate in real-world application scenarios and more conducive
to the subsequent creation of forests.
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Definition 2 (core number). For ∀v ∈ G, the core number of a vertex v is core(v) =
max{k|v ∈ Ck}, which is the maximum value of k among all Ck containing vertex v.

Generally, kmax and kmin are used to represent the maximum and minimum core
number of the graph G, while Ckmax represents the most tightly structured subgraph in
graph G.

k-core can only characterize the compactness between vertices structurally, but for
attribute graphs, each vertex has a different number of keywords to describe its characteris-
tics. In order to achieve personalized queries and further explain the reasons for community
formation, various attribute community search models have designed multiple attribute
scoring functions [16,18–21] based on actual application scenarios to evaluate the quality of
attribute communities.

Different models define attribute scoring functions differently, but they are usually
derived from some primary keys. Assuming that H is the subgraph to be evaluated and S
is the query attribute set, this article studies the following primary keys commonly used in
attribute scoring functions:

• V(H): the vertex set of subgraph H;
• n(H): the number of vertices in H, i.e., n(H) = |V(H)|;
• A(v): the attribute set of vertex v;
• Vw: the set of vertices in subgraph H containing the attribute w;

Based on the above primary keys, some attribute scoring functions are defined as
follows.

f (H, S) =
∣∣∣∩v∈V(H)(A(v) ∩ S)

∣∣∣ (1)

Equation (1) determines the number of attributes shared by all vertices in subgraph H
with the query attribute set S.

f (H, S) = ∑
w∈S

|Vw ∩V(H)|2

n(H)
(2)

First proposed by [19], Equation (2) determines the criteria that should be followed for
the rating function of attribute communities. It is particularly pointed out that attributes
have different contributions to community ratings, and the more vertices they are shared,
the stronger the explanatory power of attributes on community semantics. Therefore,
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Equation (2) not only depends on the number of vertices containing the attribute w but also
considers the weight of the attribute w in the subgraph H.

f (H, S) = |S|

√√√√∏
w∈S

|Vw ∩V(H)|2

n(H)
(3)

Equation (3) is a modification of Equation (2), which rewards larger communities
under the same conditions. That is, if each vertex of a large community covers most of the
query attributes, it should receive a higher attribute score than its subgraph.

f (H, S) =

 1, S ⊆
{

w|w ∈ ∪
v∈H

A(v)
}

0, others
(4)

As shown in Equation (4), some modes only require the target subgraph to cover
all query attributes and then propose more requirements from different aspects, such
as keyword distance [17], community diameter [21,23,24], similarity [18,25], which en-
riches application scenarios. Therefore, the goal of this article is to find the best k-core on
the attribute graph that maximizes Equations (1)–(3). The formal problem definition is
as follows:

Definition 3 (attribute optimal k-core). Given an undirected attribute graph G, a query vertex
set Q, a query attribute set S, and an attribute score function f (H, S), for any kmin ≤ k ≤ kmax, if
Ck contains all query vertices in Q and makes f (H, S) optimal, then the subgraph Ck is the attribute
optimal k-core of G.

3.2. Algorithms for Finding the Optimal k-Core

To find the attribute optimal k-core, this section proposes two solutions, including the
BaseLine algorithm and the Advanced algorithm, and analyzes their complexity.

3.2.1. BaseLine Algorithm

The BaseLine algorithm is easy to understand and implement, including the following
steps:

• Step 1: Perform core decomposition on attribute graph G to obtain the core numbers
of all vertices.

• Step 2: For any kmin ≤ k ≤ kmax, select all vertices with core(v) = k to construct all
connected subgraphs as the candidate Ck set.

• Step 3: Filter out the subgraphs uncovering the query node set Q from the candidate
Ck set, and obtain the feasible solution Ck set.

• Step 4: Calculate attribute scores for all feasible solution Ck, and return the subgraph
with the best score as the optimal solution.

Performing core decomposition on the graph and constructing all Ck based on the
number of core vertices requires traversing all vertices and edges multiple times, which
takes O(kmax ∗ (|V|+ |E|)) time. In the worst-case, if step 3 does not filter out any subgraphs,
then attribute scores need to be calculated for all Ck. Let O(Fk) be the time to compute the
score of Ck, then the time complexity of the BaseLine algorithm is O(kmax ∗ (|V|+ |E|) +
kmax
∑

kmin

Fk). Although the BaseLine algorithm is accurate and can finish in polynomial time, it

is not user-friendly for large attribute networks.

3.2.2. Advanced Algorithm

We find that the performance bottleneck of the BaseLine algorithm lies in constructing
Ck for each kmin ≤ k ≤ kmax and checking whether it contains the query vertex set Q. Most
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of the time, Q may only exist in part of Ck, especially when the graph contains multiple
connected subgraphs, resulting in more invalid computations. In addition, when Q changes,
the previous calculation result cannot be reused, and the feasible Ck set needs to be filtered
again, which is very unfavorable for online queries. Therefore, we deeply analysis the
characteristics of the Ck set and design a two-stage query algorithm:

• Stage 1: Utilize the nested nature of Ck to construct a hierarchical attribute k-core forest
and sort the tree nodes.

• Stage 2: Locate the query vertex set Q to the relevant tree nodes, construct an initial
feasible solution, and then gradually spread to the marginal tree nodes to find the
optimal attribute Ck.

1. Constructing the attribute k-core forest

According to Definition 1, for kmin ≤ k1 < k2 ≤ kmax, their corresponding k-cores
are Ck1 and Ck2 , respectively. If Ck1 and Ck2 belong to the same connected graph, then
Ck2 ⊆ Ck1 , which is the nesting property of k-cores [26,27]. Trees can be used to organize
and represent the relationships between different Ck. Combining the primary keys of these
attribute scoring functions, we define the attribute Ck tree node as follows.

Definition 4 (attribute k-core tree node). For any Ck in attribute graph G, there is a unique
tree node Nt

i , where t is the unique identifier of the tree and i is the index number of the node in
the tree. Nt

i contains parent, children, vertexSet, and invertedIndex, which are, respectively used
to identify its parent tree node, children tree nodes, connected k-shell vertex set, and the keyword
inverted indexes in vertexSet.

Definition 5 (parent tree node). Given the attribute graph G, for kmin ≤ k1 < k2 ≤ kmax, their
k-cores are Ck1 and Ck2 , respectively, and their tree nodes are represented by Nt

k1
and Nt

k2
. If Nt

k1

and Nt
k2

belong to the same tree, Ck2 ⊆ Ck1 , and there is no k1 < k∗ < k2, then Nt
k1

is the parent
tree node of Nt

k2
.

Definition 6 (attribute k-core forest). Given the attribute graph G, create attribute k-core tree
nodes for each kmin ≤ k ≤ kmax. If the tree node has a parent tree node, then connect them. All trees
form the attribute k-core forest.

It is important to note that k may not be continuous, so a tree node’s core number does
not necessarily equal its father tree node’s core number minus 1. As shown in Figure 2,
subtrees with roots N0

1 and N0
2 can be restored to 2-core and 4-core, respectively. However,

due to the lack of vertices with core(v) = 3, N0
2 becomes the legitimate child node of N0

1 ,
but their core numbers are not continuous. Furthermore, according to Definition 1, the
subgraph composed of {9, . . ., 14} is actually a 5-core. So, although N0

2 and N0
5 are both

child nodes of N0
1 , they are located at different Ck. Therefore, in the algorithm design for

building attribute forest, we should only create tree nodes for the actual k that exists, rather
than all integer in 0 ≤ k ≤ kmax.

In order to quickly locate the tree node where the query vertex is located during the
query phase, we store the tree node in a set of Bins. We organize Bins according to the
following rules:

• If core(v) of the connected k-shell set in Nt
i equals k, then add Nt

i to bink.
• For tree nodes in the same bink, sort them by tree number t first. Then, for nodes

belonging to the same tree, sort them by the minimum rank of vertices in the vertexSet.

So when locating the query vertex, we only need to search for the bink based on core(v),
and further locate its corresponding tree node with help of binary search algorithm. Note
that if the located tree nodes belong to different trees, the query ends immediately because
our target subgraph is at least a connected graph.
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Algorithm 1 shows the pseudo-code for constructing a hierarchical forest. On the
basis of core decomposition, hierarchical trees are constructed for each connected subgraph,
finally resulting in a hierarchical forest. Lines 5, 6 create the root node of each tree, and
line 7 recursively constructs its child nodes. Note that in Procedure Build_child_node,
the tree nodes are numbered in the preorder traversal order. It also maintains parent_k
and child_k during each recursive, which can avoid establishing blank tree nodes and
reduces the storage cost of forests. In addition, the algorithm initially leaves bins empty
and then creates a new bink when discovering an unclassified core number k. In other cases,
only update the corresponding bink. For a parent tree node, after all its child nodes are
created, its attribute inverted index can be constructed as shown in line 10 of Procedure
Build_child_node, since now all nodes in its vertexSet belong to the same connected k-shell.

Algorithm 1 Building forest

Input: A graph G = (V, E, A)
Output: the hierarchical forest Bins
1: t← 0 , Bins← ∅
2: compute core(v) of each vertex in G by core decomposition;
3: construct connected Subgraphs from G;
4: for graph in Subgraphs:
5: kmin ← min(core(v)) in Core(graph) , node_index ← 0 ;
6: create root tree node Nt

node_index and update binkmin
;

7: Build_child_node(Nt
node_index, kmin);

8: update tree indicator t;
9: return Bins.
Procedure Build_child_node(parent_node, parent_k):
1: select vertices with core(v) > parent_k as candidate children vertex set;
2: if candidate children vertex set is not empty:
3: obtain connected subgraphs composed of candidate vertex sets as children_graphs;
4: for each graph in children_graphs:
5: node_index ← node_index + 1 ;
6: select min(core(v)) in this graph as child_k;
7: create child_nodeNt

node_index and update binchild_k;
8: update parent_node;
9: Build_child_node(child_node, child_k);
10: create attribute reverse index for parent_node;
11: end Build_child_node

As shown in Figure 2, the hierarchical forest corresponding to the network in Figure 1
is composed of two trees, including a total of eight tree nodes. Starting from the root of
the tree, as the depth increases, the core number of tree nodes gradually increases (not
necessarily continuously), indicating an increasingly compact structure.
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2. Node localization and extended query

We apply the attribute hierarchical forest to the Advanced query algorithm, which
consists of two parts: identifying the Lowest Common Ancestor node (LCA), and expanding
the query, as shown in Algorithms 2 and 3.

Algorithm 2 LCA algorithm

Input: the hierarchical forest Bins, the query vertex set Q
Output: the lowest common ancestor LCAncestor
1: Nodelist← ∅ , i_min← None , i_max← None
2: for v in Q:
3: locate bink according core(v);
4: perform a binary search the tree node Nt

i , where v ∈ Nt
i .vertexSet;

5: add Nt
i to Nodelist;

6: update i _min and i _max;
7: end for
8: if the tree indicator t of Nt

i in Nodelist are different:
9: return None # the query nodes do not belong to the same tree and have no common ancestor.
10: else:
11: compute the lowest common ancestor for Nt

i_min and Nt
i_max as LCAncestor;

12: end if

According to the hierarchical tree construction process shown in Algorithm 1, the tree
nodes are numbered in a preorder traversal manner, which endows the tree nodes with the
following query properties.

Property 1. For tree nodes Nt1
i and Nt2

j , if t1 ̸= t2, then they do not belong to the same tree, that is,
the vertices in their vertexSet are not connected.

Property 2. For tree nodes Nt
i1

and Nt
i2

, if i1 < i2, then Nt
i1

is created before Nt
i2

.

Property 3. For tree nodes Nt
i1

, Nt
i , Nt

i2
, if i1 < i < i2, then the LCA of Nt

i1
and Nt

i2
is also the

LCA of all of them.

Firstly, the Algorithm 2 locates relevant tree nodes (see lines 3, 4) based on the core
number of the query vertices, and records the minimum and maximum tree node index
( i _min and i _max, respectively). According to Property 1, if the located tree nodes do not
belong to the same tree, the query ends prematurely. According to the Properties 2 and 3,
the LCA of Nt

i_min and Nt
i_max is also the LCA of all tree nodes in Nodelist. Therefore, it is

only necessary to perform a classic LCA search algorithm for Nt
i_min and Nt

i_max once. If
you want it to be faster, you can consider a fast LCA algorithm. The subtree with the LCA
node as the root node can be restored to the tightest subgraph containing all query vertices.
Algorithm 3 takes it as the initial feasible solution and enters the expanding query stage to
search for the optimal solution.

As shown in Figure 2, when Q = {4 , 9 , 16 , 25}, Algorithm 2 locates relevant tree
nodes as Nodelist =

{
N0

2 , N0
3 , N0

4 , N0
5
}

, i_min = 2, i_max = 5. Simply locating the LCA of
N0

2 and N0
5 as N0

1 , which is also the ancestor of N0
3 and N0

4 . The subtree rooted on N0
1 can

be restored to a connected 2-core, which is the initial feasible solution containing all query
vertices.
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Algorithm 3 Expanding query algorithm

Input: the hierarchical fores Bins, the query attribute set S, the attribute score function f (H, S)
and LCAncestor
Output: the optimal attribute k-core Cbest
1: V(H)← ∅ , Vw ← ∅ , Cbest ← None , score_best← None
2: initialize V(H), Vw by traversing the subtree rooted in LCAncestor;
3: score_best← compute f (H, S) with V(H) and Vm;
4: Cbest ← H ;
5: f inished_subtree← LCAncestor ;
6: while f inished_subtree.parent exists:
7: current_root← f inished_subtree.parent ;
8: if current_root has more than a child tree node:
9: for each child in current_root.children but not the f inished_subtree:
10: traverse the subtree rooted on child in pre-order, and iteratively update primary keys
V(H), Vw;
11: compute score of H;
12: if score is better than score_best:
13: update score_best, Cbest;
14: f inished_subtree← current_root ;
15: return Cbest

In Algorithm 3, the primary keys and optimal solution Cbest are first initialized with
the subtree rooted in LCAncestor, as shown in lines 2–4. If LCAncestor is not the root of the
tree, then we take its parent tree node as current_root and enter the expansion phase. Note
that the subtree rooted on LCAncestor has completed the calculation of the primary keys
and can be recorded as f inished_subtree (line 5). Subsequently, only other child subtrees
of current_root will be traversed. The traversal process continuously updates the primary
keys, and only calculates the score of the new graph when tracing back to current_root, as
shown in lines 9–13. After that, we update f inished_subtree again and continue to expand
upward until the root of the tree to obtain the optimal solution Cbest.

Assuming Q = {4, 16, 25}, according to Algorithm 2, the LCAncestor is located as
N0

2 , that is, the initial feasible solution is C4. According to Algorithm 3, since N0
2 is not the

root of the tree, it needs to be extended upward to the N0
1 node to calculate subgraph C2.

Note that N0
1 has two child nodes, but N0

2 has already completed the calculation. It only
needs to visit N0

5 , update V(H) and Vw, and complete the calculation of the 2-core score
when going back to N0

1 . In the same way, continue to expand to N0
0 and calculate the score

of C1. At this time, Cbest is obtained.
Although the time of the Advanced algorithm can be divided into two parts: forest

creation and extended query, once the hierarchical forest is created, it only needs dynamic
maintenance [28]. Therefore, the main query time depends on the depth of LCAncestor.
The greater the depth, the more iterations and the longer the time. Since Algorithm 3
computes scores only on the ancestor path of LCAncestor, the statistical results of primary
keys can be reused, the query time will be significantly reduced.

4. Experiments and Results

In this part, multiple experiments are designed to verify the effectiveness and ef-
ficiency of the proposed algorithms. In order to find the optimal attribute k-core, we
implement the BaseLine and Advanced algorithms for the attribute scoring functions (see
Equations (1)–(3)) listed in Section 3.1.

The datasets in the experiments are shown in Table 3, where A(V) is the number of
unique attributes in the dataset, A(v) is the average number of attributes per vertex, and
kmax is the maximum core number of the dataset. Each dataset contains several high-quality
ground-truth communities and attributes. In particular, for the Facebook dataset, which
contains 10 different heterogeneous networks. For convenience of expression, we use FX to
represent the heterogeneous network centered on vertex X, such as F414. The Facebook
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dataset can be obtained from SNAP, and the Twitter and Flickr datasets are quoted from
the literature [29,30].

Table 3. Statistics of datasets.

Dataset n m A(V) A(v) kmax

Twitter 2403 3715 9067 15 59
Facebook 4039 88,234 1283 9 115

Flickr 7575 239,738 12,047 24 93

For the fairness and effectiveness of the experiment, we selected the top 10 ground-
truth communities with the largest scale from each dataset for querying. For each com-
munity to be evaluated, select the top 30% of attributes that appear the most frequently
and are different from other communities as their representative attributes. The F1 score
is used as an evaluation indicator when evaluating community quality. By default, the
number of query vertexes is 12, and the query attributes are all representative attributes
of a community. A single-factor evaluation method is employed to evaluate the impact of
parameters on the model.

4.1. Evaluating the Effectiveness of Algorithms

We refer to the subgraph containing all query vertices as a feasible solution. In order
to observe the ratings of different k-cores as comprehensively as possible, we identify the
most tightly structured ground-truth communities. By executing the BaseLine algorithm
and recording the scores of all feasible solutions, Table 4 shows the optimal k-core with
different scoring functions. Note that f1, f2, and f3, respectively, represent the scoring
functions shown in Equations (1)–(3).

Table 4. Best k for different attribute scoring functions.

F0 F107 F348 F414 F686 F698 F1684 F1912 F3437 F3980 Twitter Flickr

f1 18 69 29 23 19 8 39 109 19 7 49 85
f2 16 63 24 18 7 6 37 70 16 5 38 73
f3 20 66 26 19 9 9 41 72 20 7 51 89

As can be seen from Table 4, for the same query conditions, the optimal k-core is
quite different when adopting different attribute scoring functions. Figure 3 shows the
rating curves of networks F107, F348, F1684, F1912, Twitter, and Flickr when adopting
Equation (3). The results illustrate that the same scoring function has different trends on
different datasets, and there are many local optimal solutions. This fully demonstrates that
determining the k value by manual selection or dataset analysis cannot guarantee global
optimality, which also means that the problem proposed in this article is necessary.
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4.2. Evaluating the Performance of Algorithms

The time of the BaseLine algorithm includes core decomposition and score computa-
tion, while the time of the Advanced algorithm additionally includes building the forest.
We have calculated the execution time of each part, which helps identify the efficiency
bottleneck of the algorithm. Since multiple heterogeneous networks on Facebook differ
significantly in scale, only the query times of a few larger heterogeneous networks are
displayed here, as shown in Figure 4.
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The experimental results show that regardless of the datasets, the Advanced algorithm
is always faster than the BaseLine algorithm. Upon careful observation of the time con-
sumption at different stages of the algorithm, we find that in the BaseLine algorithm, score
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calculation accounts for the largest proportion of time. This is consistent with theoretical
analysis since the BaseLine algorithm must calculate the score of every feasible solution,
and the calculation process cannot be shared. As for the Advanced algorithm, building a
hierarchical forest costs the most time. The actual query time includes two parts: locating
the LCA for query vertices and extending queries. With the excellent properties of attribute
tree nodes and iterative updates of primary keys, the Advanced algorithm’s computa-
tion time is greatly reduced. If the forest construction time is not taken into account, the
Advanced algorithm is two orders of magnitude faster than the BaseLine algorithm. By
dynamically maintaining the forest, the Advanced algorithm can achieve millisecond-level
online queries.

4.3. Estimating the Quality of Communities

In order to evaluate the quality of the target community discovered by the Advanced
algorithm, we compare it with the communities queried by the ACQ and SFEG algorithms.
This is because ACQ uses k-core as the structural indicator and constructs a k-shell tree for
the entire graph, which is similar to our forest; SFEG proposes an elastic mechanism to
alleviate premature stopping of greedy algorithms, which expands the applicability of local
optimal solutions.

As shown in Figure 5, our target community quality is superior to that of ACQ
and SFEG. The reason is that ACQ only supports one query vertex. When the query
vertex set has multiple vertices, ACQ randomly selects one of them as the query vertex.
Especially in large attribute networks, the attribute density of vertices is higher, coupled
with overlapping communities, leading to poorer query performance, such as in Flickr.
Although the SFEG algorithm supports multiple query nodes, it still requires manually
specifying the challenge threshold for the greedy algorithm. This makes it unable to avoid
falling into local optima.
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4.4. Parameter Sensitivity

This section evaluates the impact of query vertices and query attributes on algorithm
efficiency and effectiveness through experiments. As mentioned earlier, after the forest
construction is complete, the Advanced query algorithm only includes two stages: LCA
(Algorithm 2) and Expand (Algorithm 3). This section will illustrate how parameters Q and
S affect the efficiency of the Advanced algorithm and the quality of the target community.

As shown in Figure 6, the larger the query attribute set, the longer it takes to calculate
the score, as there are more primary keys to calculate. The attribute density of a dataset
also affects query time. In Flickr, A(v) = 24.5, while in F1684, A(v) = 7.85, which leads
to a significant difference in the number of representative attributes of the ground-truth
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community. The higher the attribute density of the dataset, the more representative it
contains, and the longer the average query time. The more representative attributes a query
attribute set contains, the more accurately the community can be queried.

Figure 7a shows that the more query vertices there are, the more related tree nodes
can be located, and the distribution may be broader as well. More importantly, the depth of
their common ancestors may be shallower, which to some extent reduces the query time.
Nevertheless, the core number of vertices in the dataset has a significant impact on query
time. For example, despite its smaller size, F1912 has a much higher kmax and average
degree than Twitter, resulting in more query iterations and longer query times. Too many
query vertices can lead to excessive dispersion of related tree nodes, large community size,
and mixing with low-quality vertices. Especially in loosely structured networks, such as
F1684 in Figure 7b, LCA is too close to the tree root, resulting in a loss of community quality.
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Overall, the algorithm proposed in this article can quickly find the globally optimal
k-core for the target community. But the experiment conducted in this article is based on
high-quality, large-scale communities in datasets. If applied to development scenarios, the
model’s accuracy will be affected. Additionally, it is necessary to design stable and efficient
algorithms to maintain attribute forests in dynamic network graphs, which will be the
model’s future improvement direction.
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5. Conclusions

The aim of this article is to find the attribute optimal k-core community within the
attribute network in order to overcome the problem that empirical analysis and manual
selection of k values may miss the optimal solution. Hence, we propose the concept of
global optimal attribute k-core and design the BaseLine algorithm. To address the bottleneck
of the BaseLine algorithm, we have constructed a hierarchical k-core forest that integrates
structural and attribute semantic indicators and utilizes k-core’s nested nature. The attribute
forest can transform complex graph problems into classical tree operations, reducing the
difficulty of queries. Based on attribute forests, we have developed a two-stage advanced
algorithm. It can locate the LCA of all relevant tree nodes at once and iteratively update
the primary keys during the extended query stage, recycling the intermediate calculation
process. Several experiments on real datasets show that the attribute optimal k-core is
primarily affected by the scoring function, the query vertices, and the query attributes.
Excluding the time required to create the forest, the advanced algorithm is two orders of
magnitude faster than the BaseLine algorithm. In terms of community quality, the target
community is significantly better than ACQ and SFEG. In order to improve the effectiveness
and efficiency of the algorithm in the future, we will further adapt more attribute scoring
functions and optimize the forest maintenance method for dynamic graphs.
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