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Abstract: Pore structure is a fundamental parameter in determining the hydrocarbon storage capacity
and flow characteristics of a reservoir. Mercury injection capillary pressure (MICP) and nuclear
magnetic resonance (NMR) are two commonly utilized techniques for characterizing rock pore
structures. However, current studies indicate that disparities in testing methodologies due to distinct
physical characteristics lead to a partial misalignment in pore size distributions. We conducted
MICP (dynamic) and NMR (static) experiments on eight tight sandstone and eight shale samples
and proposed a method to utilize information from the differences in MICP and NMR pore size
distributions, aiming to enhance the accuracy of rock quality analysis. We observed that in rock
cores where large pores are interconnected with smaller pore throats, MICP tends to overestimate the
proportion of these smaller pores and underestimate the larger ones. Furthermore, we integrated
information from both dynamic and static experimental processes based on physical significance and
found that the fitting accuracy of the newly proposed method is superior to the Winland r35 equation.
Compared to the Winland r35 equation, our new method significantly improves fitting accuracy,
increasing the R-squared value from 0.46 to 0.93 in sandstones and from 0.80 to 0.87 in shales. This
represents a potential high-precision, comprehensive tool for rock quality analysis, offering a new
perspective for an in-depth understanding of rock properties.

Keywords: NMR; MICP; pore throat size distribution; shale; tight sandstone

1. Introduction

Tight oil and gas, as crucial components for increasing petroleum resources [1,2], are
important resources in oil and gas exploration and development. However, the develop-
ment of tight reservoirs is challenging due to their poor petrophysical properties, strong
heterogeneity, and ultra-low permeability [3,4]. The porosity, permeability, pore types
and micro-pore structures in tight reservoirs play a crucial role in determining the fluid
flow and storage capacity of a rock, which are critical factors in rock quality analysis [5–7].
These fundamental petrophysical studies are commonly conducted using the Winland
method and its derivatives [8,9]. Hence, an accurate understanding of the micro-pore and
throat structures in tight reservoirs will benefit the study of their storage capacity and
flow patterns.

At present, micro-CT imaging [10–12], mercury injection capillary pressure (MICP) [13–15]
and nuclear magnetic resonance (NMR) [16–19] experiments, as methods capable of accurately
reflecting micro-to-nano scale pore features, are extensively employed for microscopic porosity
studies in tight reservoirs. All techniques have certain limitations. The micro-CT imaging
method utilizes 2D CT scan data to construct 3D visualizations of pore structures within core
samples. However, high-resolution CT equipment is expensive, and completing 3D imaging
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often requires multiple scans, which will increase the cost and duration of research. The
minimum throat radius measured using MICP is contingent upon the injection pressure; a
heightened injection pressure allows for the measurement of a smaller throat radius. Addi-
tionally, the permeability of the core can also be predicted based on the capillary pressure
curve obtained from MICP [20]. Yet, excessive injection pressure can easily damage the original
pore structure of the sample. In addition, 100% mercury saturation is hard to reach since the
mercury is not in the wetting phase [6,21].

NMR experiments can effectively detect non-connected pores and nano-scale pores
in core samples [22]. Analyzing the distribution and peak positions of the transverse
relaxation time, T2, enables the determination of pore types and their size distribution.
Additionally, the continuity of NMR signals in the T2 relaxation time distribution spectrum
provides insights into the connectivity between pores and fractures [23–25]. However,
NMR experiments cannot intuitively reflect pore diameter size. Fuyong et al. amalgamated
findings from NMR and MICP methods and uncovered that the relationships between
NMR relaxation time T2 and pore size are more in accordance with the power function
relations than the linear relation [26]. Hugh and Andrew utilized accessibility functions for
cubic lattices, combined with coordination numbers obtained from the MICP method, to
determine surface relaxivity and percolating cluster size [27]. Chaohui et al. identified a
novel method that utilizes the transverse relaxation time value (T2c) of the right endpoint of
negative intervals and the corresponding centrifugal radius (rc) to determine the coefficient
C, enabling the conversion of NMR T2 relaxation times into pore sizes [28]. Overall,
integration with other experiments or the use of empirical parameters is necessary to
convert the T2 relaxation time distribution spectrum into a pore size distribution diagram.

In comparative analyses conducted by some researchers on the curves obtained from
MICP and NMR techniques, a degree of discrepancy between the two methods was ob-
served, with the pore size distributions revealed by each not aligning perfectly.

As shown in Table 1, researchers have observed in various porous media that there
exists a crosspoint in the longer T2 relaxation times when comparing NMR and MICP
experimental methods. The MICP method tends to underestimate the proportion of macro-
pores where T2 is greater than the crosspoint, while it overestimates the proportion of meso-
pores. We have prepared a schematic diagram to depict this phenomenon, as illustrated in
Figure 1.

Table 1. The discrepancy between MICP and NMR methods.

Author Porous Media Type Crosspoint Overestimated Part

Marschal et al. [29] Shaly sandstone 170 ms 100~170 ms
Robin et al. [30] Carbonate 1300 ms 700~1300 ms

Hugh and Andrew [31] Sandstone 0.25 µm 0.11~0.25 µm
Sidney [32] Wood’s metal 9 µm 0.05~9 µm

Hongjun et al. [33] Tight sandstone 0.4 µm 0.1~0.4 µm

Figure 1 illustrates a schematic where the MICP method overestimates meso-pores
and underestimates macro-pores. The overestimated part is almost equal to the underes-
timated part. The occurrence of this phenomenon is commonly ascribed to “ink-bottle”
phenomenon [32].

Some scholars believe that NMR measures the pore size distribution (PSD), while
MICP assesses the pore throat distribution (PTD) [34–36]. Mercury injection is a dynamic
process with recorded pressure, while NMR PSD is a static process where brine pre-saturates
the core to almost 100%. NMR PSD could reflect all the pores saturated with brine, while
MICP is more sensitive to the throat due to the ink bottle effect [37,38]. Multiple researchers
have reported that MICP overestimates the percentage of the meso-pores, corresponding to
the relatively low capillary pressure range [32,39]. This phenomenon reflects the detailed
pore throat matching pattern and is closely linked to the permeability of the core. We
believe that this information could be used to gain a better understanding of pore structure.
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Figure 1. The discrepancy between MICP and NMR methods schematic diagram.

In this study, we focused on Tuha tight sandstones and Hechuan shales, performing
both NMR and MICP assays on a collection of 16 tight reservoir core specimens. Firstly,
the observed difference between mercury injection and NMR PSD is consistent with the
reported cases [29,30,34]. Furthermore, we integrated information from both methods
to explain the reasons behind these discrepancies. Secondly, we proposed a rock quality
assessment method to utilize this information from such differences.

In the Winland r35 method, the percolation threshold [40] is determined based on
statistical principles. Although our method is also based on the principle of the Winland
percolation threshold, our percolation threshold is determined based on the phenomenon
of differences in pore size distribution between MICP and NMR, as demonstrated in Table 1.
Our defined percolation threshold originates from the difference between MICP and NMR;
specifically, it is determined by smaller throats that control the connectivity of larger pores.
By applying Winland fitting results that have actual physical significance, we found it to be
superior to fitting results based on statistical principles. Our innovation lies in utilizing the
differential information between dynamic (NMR) and static (MICP) pore size distributions
to find a percolation threshold that can be applied to the Winland method, providing a
more effective tool for the analysis of rock pore structures.

2. Materials and Techniques
2.1. Rock Samples

MICP and NMR tests were conducted on rock core samples sourced from Jurassic wells
in the Tuha Santanghu basin [41], a tight oil production region [42], and the Permian wells
in the Sichuan Hechuan–Tongnan block [43], a shale gas production region [44]. Specifically,
8 sandstone samples from three distinct wells in the Tuha oil field and 8 shale samples
from four different wells in the Hechuan–Tongnan block were analyzed; the representative
samples are shown in Figure 2.
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In the Tuha oil field, wells S1-2, S1-3, and S1-4 contained conglomerate sandstones,
while the remaining samples from this field were identified as tight sandstones. The
dominant minerals in these samples were quartz and feldspar, accompanied by trace
amounts of clay minerals and dolomite. The helium porosity of these sandstone samples
ranged between 13.66% and 15.88%, with permeabilities spanning from 1.06 mD to 8.20 mD.
For the samples from the Hechuan block, an average helium porosity of 6.86% was recorded,
with an average permeability value of 0.0394 mD. Detailed physical properties of these
samples are presented in Table 2.

Table 2. Basic physical properties of samples.

Well
Number Samples Length (mm) Diameter (mm) Volume (mL) Helium

Porosity (%)
Permeability

(mD) Lithology

S1

1 87.01 24.40 40.69 14.98 1.06 Sandstone

2 71.52 24.50 33.72 13.74 3.06
Conglomerate

sandstones
3 57.78 24.55 27.35 14.61 8.20
4 53.14 24.45 24.95 14.81 5.86

S2
5 72.10 24.55 34.13 13.90 1.83

Sandstone
6 72.10 24.50 33.99 13.66 1.20

S3
7 72.53 24.52 34.25 15.75 2.37
8 67.10 24.45 31.50 15.88 1.29

H1
1 56.30 25.11 27.88 5.49 0.0471

Shale

2 53.31 25.11 26.40 6.16 0.0371

H2
3 40.49 25.40 20.52 6.51 0.0065
4 39.94 25.47 20.35 6.04 0.0141

H3
5 40.49 25.43 20.57 11.02 0.0753
6 41.83 25.37 21.15 6.97 0.0344

H4
7 32.50 25.40 16.47 6.51 0.0399
8 32.80 25.40 16.62 5.91 0.0177

2.2. Experimental Setups

The NMR measurements were conducted using a MesoMR12-060H-I instrument
from Suzhou Niumag Analytical Instrument Corporation (Suzhou, Jiangsu, China). The
magnetic field strength of the instrument is 0.3 T, and the spectrometer frequency is 12 MHz.

The MICP experiments were performed using a Poremaster-60 high-pressure mercury
intrusion porosimeter from Quantachrome Instruments (Boynton Beac, FL, USA).

2.3. Experimental Procedures
2.3.1. Permeability and Porosity Measurements

The porosity of all 16 core samples was determined using the helium porosity mea-
surement method. The permeability of sandstone was measured using the steady-state
method, while the permeability of shale was determined using the pulse decay method.
Specific measurement steps refer to the Chinese National Standards “GB/T 34533-2023
Determination of porosity, permeability, and saturation of shale [45]”.

2.3.2. NMR and MICP Measurements

The NMR method primarily involves scanning the core for T2 spectra to detect hydro-
gen nuclei in the core, thereby determining the volume of fluid within the core. The specific
experimental procedure follows the standards of the Chinese petroleum and natural gas
industry: Chinese oil and natural gas industry standard “SY/T 6490-2023 Specification for
laboratory measurement of NMR parameter of rock samples [46]”.

The MICP method involves applying pressure to liquid mercury, allowing it to over-
come capillary resistance and enter the pores. Then, based on the fraction of pore volume
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filled with mercury and the corresponding pressure, the pore size distribution of the core
is obtained. The specific experimental procedure follows the Chinese National Standard
“GB/T 29171-2023 Rock capillary pressure measurement [47]”.

The primary signals detected using NMR in the rock core were mainly water signals
(with shales containing kerogen, asphaltene, and structural water). The maximum mercury
intrusion pressure for the MICP could reach up to 200 MPa. The pore throat distribution
obtained from MICP and the T2 relaxation time distribution from the NMR test can be
further analyzed to examine the fluid distribution in different pore sizes of the rock core.
The specific experimental steps are shown in Figure 3.
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Figure 3. The process of rock quality evaluation.

(1) All samples underwent an extensive cleaning process using Dean–Stark apparatus.
After cleaning, the core samples were dried at 80 ◦C for 72 h. The status of the heated
samples was ascertained using the T2 relaxation time distribution spectrum. If the T2
signal intensity is high, an additional 72 h of vacuum heating is required until the T2
signal intensity becomes constant.

(2) After confirming that the rock core is thoroughly cleaned, a piece is cut for the MICP
experiment with a thickness of 2 cm. The experimental maximum injection pressure is
selected based on the lithology. The compressive strength of tight sandstone is usually
higher than that of shale. Therefore, we have set the maximum injection pressure for
tight sandstone and shale at 200 MPa and 100 MPa, respectively.

(3) The clean rock core is placed in a container and subjected to evacuation treatment
for 24 h. Subsequently, simulated formation brine is injected into the container, and
the pressure is gradually increased to 60 MPa using the step-wise pressure build-up
method [48] at a rate of 5 MPa/h. Water porosity is compared with helium porosity
to confirm full saturation of the rock core (with an error of less than 2% [49]). The T2
relaxation time distribution spectrum of the rock sample is then measured.

(4) Based on the cumulative frequency distribution from both MICP and the NMR T2
relaxation time distribution spectrum, translate the T2 relaxation times into a pore
size distribution.

2.3.3. NMR Pore Size Distribution Calibration

The techniques for measuring nuclear magnetic resonance (NMR) spectroscopy enable
the rapid acquisition of reservoir properties, such as porosity, permeability, oil saturation,
and water saturation, by analyzing the volume, properties, and NMR T2 relaxation time
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distribution spectrum characteristics of fluids within rock core pores. The transverse
relaxation time, T2, of the fluid in the rock core can be determined via surface relaxation,
bulk relaxation, and diffusion relaxation [50,51], as illustrated in Equation (1):

1
T2

=
1

T2S
+

1
T2D

+
1

T2B
(1)

where T2 is the transverse relaxation time in milliseconds (ms), T2S denotes the surface
relaxation time in ms, T2B stands for the bulk relaxation time in ms, and T2D represents the
diffusion relaxation time in ms.

Kleinberg et al. discovered that in scenarios where the pore fluid is water, the contri-
bution of T2B is typically insignificant. Conversely, in cases where the pore fluid consists of
a viscous oil or a solution with a high concentration of paramagnetic ions, bulk relaxation
mechanisms may predominate [52]. When the pore fluid is a single-phase wetting fluid,
the bulk relaxation time T2B is much larger than the surface relaxation time T2S, which can
be neglected in Equation (1). In an NMR system utilizing a homogeneous magnetic field,
the effect of diffusion relaxation becomes negligible. Furthermore, when the gradient of the
magnetic field is minimal and the echo time in the Carr–Purcell–Meiboom–Gill (CPMG)
sequence is adequately brief (less than 1 ms), diffusion effects can also be effectively ig-
nored [53]. The expression for the transverse relaxation time, T2, of porous media can then
be expressed to Equation (2), as per references [31,54]

1
T2

≈ 1
T2S

= ρ2(
S
V
)

pore
(2)

where ρ2 is the transverse relaxation rate, which characterizes the strength of fluid relaxation
at the pore surface, in µm/ms. S/V denotes the specific surface area of a single pore, in
µm2/µm3.

Equation (2) suggests that the transverse relaxation time T2 is related to the specific
surface area of the porous medium. If we simplify the pore structure to be either spherical
or cylindrical, then Equation (2) can be transformed into Equation (3):

T2 =
1
ρ2

(
V
S
)

pore
=

r
ρ2FS

(3)

where FS is the pore shape factor (FS is 3 for spherical pores and 2 for tubular pores,
dimensionless), and r represents the pore radius, measured in micrometers (µm).

According to Equation (3), the transverse relaxation time T2 of the rock core is linearly
proportional to pore radius r. However, after extensive experimental matching, it has been
observed that due to the complexity of the formation pore structure, T2 is proportional to
the pore radius r with a power index (n) [26,33,55]. Therefore, Equation (3) is modified to
obtain Equations (4) and (5):

T2 =
rn

ρ2FS
(4)

r = (ρ2FST2)
1
n (5)

In experimental settings, obtaining definitive values for ρ2 and FS is complex. Con-
sequently, converting the transverse relaxation time T2 distribution into a pore diameter
distribution curve by determining the values of ρ2 and FS presents significant challenges.
By referencing the T2 distribution diagram of the 100% water-saturated rock core and the
high-pressure mercury injection pore throat distribution curve, a conversion between T2

distribution and pore throat radius can be achieved. Let C = (ρ2FS)
1
n , where C is the

conversion coefficient, then
r = CT2

1
n (6)
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In porous rock cores, due to the varied sizes of the pores and throats, high-pressure
mercury intrudes preferentially into the larger pores. As the pressure escalates, it gradually
permeates into the smaller-sized pores. Given that the MICP method has a pressure ceiling,
pores below these thresholds cannot be discerned. On the other hand, the T2 relaxation time
distribution spectrum of rock cores saturated with water at 60 MPa can reflect information
on almost all the pores present within the rock core. Directly juxtaposing the MICP curve
with the NMR pore size distribution curve can lead to significant deviations.

To minimize the discrepancies between the pore size distribution curves obtained
from MICP and NMR, one should begin by plotting the cumulative distribution curves for
both methods. Based on these cumulative curves, calculate the radii of the pore throats
from mercury intrusion and the T2 relaxation times corresponding to the same cumulative
frequencies. Subsequently, by determining the relationship between these two sets of
values, one can derive the constants C and n, facilitating the conversion between the T2
relaxation time and the pore throat radius.

3. Result and Discussion
3.1. T2 Relaxation Time Distribution Spectrum

In the state where the sandstone core is fully saturated with formation brine (TDS:
4500 ppm), the characteristics of the NMR T2 relaxation time distribution spectrum distri-
bution can effectively elucidate the distribution features of its pore throats. The greater
the number of peaks in the spectrum, the more complex the distribution of the pore
throats [56]. Concerning the Tuha oilfield, the fully water-saturated T2 spectra of the eight
tight sandstones are shown in Figure 4. Based on the T2 spectra, the sandstone cores can be
categorized into two types: monomodal (comprising S1-1, S1-2, S2-5, S2-6, S3-7, and S3-8)
and bimodal (S1-3 and S1-4). The six monomodal cores demonstrate a wide distribution
range for T2 relaxation time, with nuclear magnetic signals mainly detected from 0.03 ms
to 1000 ms. However, their peak values are relatively concentrated, primarily distributed
between 1.5 and 5 ms, indicating that they predominantly feature micropores. The T2
spectra of the two bimodal cores are strikingly similar, both showcasing a left peak with
a signal intensity slightly higher than the right one, and the two peaks are continuous,
suggesting that the reservoir’s overall pore throat distribution is continuous. Both bimodal
cores exhibit a left peak corresponding to a T2 relaxation time of 0.8 ms, which is lower
than the peak T2 time observed in the monomodal state. The right peak’s T2 relaxation
time is 20 ms, aligning with the peak T2 time of the monomodal state. It is noteworthy
that the porosity distribution range for these eight cores is between 13.66% and 15.88%;
however, there is a considerable variation in the total amount of nuclear magnetic signals.
This variation is not due to errors in core saturation but is attributable to the disparities in
the core volume, which leads to significant differences in signal magnitude.

Figure 5 illustrates the 100% formation brine (TDS: 174,000 ppm) saturated T2 relax-
ation time distribution spectra of shales from eight different core samples of four wells
in the Hechuan area. From the T2 spectra, it is evident that the T2 distribution of the
Hechuan shale primarily spans from 0.02 ms to 1000 ms. The T2 relaxation time distribution
spectra of cores H1-2, H2-4, and H3-5 exhibit a distinct bimodal distribution. Notably, core
H2-3 is considerably distinct from the other seven cores, with its signal peak T2 relaxation
time being 0.6 ms, which is lower than the rest. Moreover, the peak position of the H2-3
core has shifted significantly to the left compared to the other cores, suggesting that this
specific core mainly comprises smaller pore sizes than the others, which implies a relatively
lower permeability. Consulting the physical properties of the eight Hechuan shale samples
(Table 2), it is evident that the H2-3 core exhibits the lowest permeability amongst the eight,
measuring 0.0065 mD, which aligns with the T2 spectra measurements.
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Dhananjay pointed out that the horizontal anisotropy of porous media and the chemi-
cal reaction of fluid and core in the reservoir will affect core permeability. Yadav pointed
out that the horizontal anisotropy of porous media and the chemical reaction of fluid and
core in the reservoir will affect core permeability [57,58].

Further observation reveals a trend in the NMR signal peak corresponding to T2
relaxation times for the following core samples: H2-3 < H4-8 < H3-6 ≈ H1-2 ≈ H4-7 < H1-1.
This pattern aligns with the distribution of core permeabilities, indicating that for the
Hechuan shale samples, as permeability increases, the peak value of T2 also rises. However,
a notable exception is observed in the case of the H3-5 sample. Even though H3-5 has the
highest permeability of all the samples, clocking in at 0.0753 mD, the NMR experiment
did not display the longest T2 relaxation time. On the contrary, for core H2-4, it can be
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observed that the T2 relaxation time distribution spectrum has a bimodal shape, and the
left peak is about 0.18 ms, indicating that this core has lower permeability.

From Figure 5, it can be observed that although the curve of the H3-5 core exhibits
a lower peak T2 value, its signal distribution in the short T2 range from 0.02 to 0.3 ms is
minimal, suggesting the least presence of micro-pores. Furthermore, its signal quantity in
the medium to long T2 range from 20 to 600 ms is substantially greater than other cores,
indicating a greater number of macro-pores. These two factors might contribute to the
elevated permeability observed in core H3-5.

3.2. NMR Pore Size Distribution

Porous media exhibit a wide range of pore throat sizes. In MICP, external pressure
is gradually increased on a rock sample to force mercury into its pores, thereby obtaining
a distribution of pore sizes. In contrast, NMR detects the magnetic resonance signals
from hydrogen nuclei within the rock, providing insight into its pore size distribution.
Importantly, NMR is capable of effectively representing the entire volume of pores in the
rock, including disconnected pores. However, the PSD from NMR requires assistance from
MICP for calibration.

To ensure precision in the calculations, it is necessary to remove the influence of the
pockmark effects from the MICP results. Hence, only portions of the T2 relaxation time
distribution spectrum that match the MICP pore throat radius distribution are chosen
for comparison. At points in the NMR T2 cumulative distribution curve that coincide
with the cumulative distribution frequency of the MICP pore throat curve, multi-point
sampling is executed [59]. Using sandstone S1-1 and shale H3-5 as examples, the cumulative
distribution curves for NMR T2 relaxation time and MICP pore throat radius are illustrated
in Figure 6. Subsequently, based on the cumulative distribution frequencies from both
testing methodologies, the relationship between the rock’s T2 relaxation time and pore
throat radius is determined, as presented in Figure 7.
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Figure 6. The cumulative frequency distribution of NMR and MICP (S1-1 and H3-5).

Based on the fitting results from Figure 7, the conversion coefficients C and n values
correlating the NMR T2 relaxation time and pore throat radius for the sandstone S1-1 and
shale H3-5 samples were derived. This pore size matching method has received consensus
among multiple researchers [34,60,61]. By method from Section 2.3.3, the C and n values for
the 8 sandstone samples from Tuha and the 8 shale samples from Hechuan were determined.
The specific conversion coefficients are listed in Table 3.
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Table 3. Conversion factors between NMR T2 relaxation time distribution spectrum and pore throat
radius and correlation index.

Well Number Samples Saturation of MICP (%) C n R2

S1

1 93.194 0.0197 1.0121 0.9059
2 85.503 0.0112 0.8718 0.9951
3 78.665 0.0129 0.7945 0.9950
4 81.174 0.0179 0.8916 0.9878

S2
5 92.531 0.0261 1.0490 0.9475
6 88..878 0.0231 1.0635 0.9498

S3
7 89.929 0.0179 0.9565 0.9157
8 92.171 0.0213 1.0685 0.9447

H1
1 94.802 0.0281 1.3238 0.8993
2 93.544 0.0245 1.4426 0.8858

H2
3 59.246 0.0192 1.3348 0.8872
4 79.073 0.0204 1.3472 0.9088

H3
5 83.450 0.0086 1.0868 0.8859
6 89.400 0.0173 1.2396 0.8662

H4
7 83.649 0.0227 1.3416 0.8995
8 75.774 0.0207 1.2822 0.8448

3.3. Comparative Analysis of Sandstone Pore Throat Distributions

Using the conversion coefficients C and n and Equation (6), the transverse relax-
ation time T2 was converted into a pore size distribution. As illustrated, for core S1-1,
a comparison chart of the pore throat distribution derived from the Tuha sandstone’s
NMR T2 relaxation time distribution spectrum and the MICP pore throat distribution was
constructed, as depicted in Figure 8.

From Figure 8, it can be observed that the signal frequency curves of pore size dis-
tribution converted from both MICP and NMR do not align perfectly. Comparing the
two methods, it is noticeable that the NMR-detected signal frequency is higher than that
of the MICP method for pores smaller than 0.0037 µm (micropores). This discrepancy is
attributed to the sandstone mercury injection pressure set at 200 MPa, which is incapable of
detecting pores smaller than 0.0037 µm. However, NMR can detect all hydrogen-containing
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fluid volumes in the rock sample; hence, for pores smaller than 0.0037 µm, the distribution
frequency detected using NMR is higher than MICP.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 25 
 

Table 3. Conversion factors between NMR T2 relaxation time distribution spectrum and pore throat 
radius and correlation index. 

Well Number Samples Saturation of MICP (%) C n R2 

S1 

1 93.194 0.0197 1.0121 0.9059 
2 85.503 0.0112 0.8718 0.9951 
3 78.665 0.0129 0.7945 0.9950 
4 81.174 0.0179 0.8916 0.9878 

S2 
5 92.531 0.0261 1.0490 0.9475 
6 88..878 0.0231 1.0635 0.9498 

S3 7 89.929 0.0179 0.9565 0.9157 
8 92.171 0.0213 1.0685 0.9447 

H1 1 94.802 0.0281 1.3238 0.8993 
2 93.544 0.0245 1.4426 0.8858 

H2 3 59.246 0.0192 1.3348 0.8872 
4 79.073 0.0204 1.3472 0.9088 

H3 5 83.450 0.0086 1.0868 0.8859 
6 89.400 0.0173 1.2396 0.8662 

H4 7 83.649 0.0227 1.3416 0.8995 
8 75.774 0.0207 1.2822 0.8448 

3.3. Comparative Analysis of Sandstone Pore Throat Distributions 
Using the conversion coefficients C and n and Equation (6), the transverse relaxation 

time T2 was converted into a pore size distribution. As illustrated, for core S1-1, a compar-
ison chart of the pore throat distribution derived from the Tuha sandstone’s NMR T2 re-
laxation time distribution spectrum and the MICP pore throat distribution was con-
structed, as depicted in Figure 8. 

 
Figure 8. A comparison of pore throat size distributions in sandstone S1-1 as determined via NMR 
and MICP measurements. 

From Figure 8, it can be observed that the signal frequency curves of pore size distri-
bution converted from both MICP and NMR do not align perfectly. Comparing the two 
methods, it is noticeable that the NMR-detected signal frequency is higher than that of the 
MICP method for pores smaller than 0.0037 μm (micropores). This discrepancy is at-
tributed to the sandstone mercury injection pressure set at 200 MPa, which is incapable of 
detecting pores smaller than 0.0037 μm. However, NMR can detect all hydrogen-

0

2

4

6

8

10

12

14

16

0.001 0.01 0.1 1 10 100

Fr
eq

ue
nc

y 
di

str
ib

ut
io

n 
(%

)

Pore radius (μm)

MICP PSD

NMR PSD

2

1

Figure 8. A comparison of pore throat size distributions in sandstone S1-1 as determined via NMR
and MICP measurements.

In the pore throat radius range of 0.0037~0.2 µm, while the distribution frequency of
the NMR signal mostly agrees with that of MICP, the discrepancy between the two methods
increases with decreasing pore throat radius. This is likely due to the inability of mercury
intrusion to access some of the smaller and non-connected pores. In region 1 (0.2~1.8 µm),
the distribution frequency from MICP is notably higher than NMR, whereas in region 2
(1.8~7 µm), it is lower than NMR. This divergence is due to the inherent differences in
the two detection methods. When the core is fully saturated, the NMR T2 relaxation time
distribution spectrum distribution only reflects the distribution of pore size and pore throats
in the rock sample. The intensity of the NMR signal represents the proportions of differently
sized pores, uninfluenced by the connectivity of pores and throats. In contrast, the MICP
method calculates the frequency distribution based on the volume of mercury that enters
the rock sample at a specific injection pressure. For homogeneous rock samples, the MICP
method yields accurate pore throat results. During the formation of reservoirs, depositional
environments, diagenesis, tectonic actions, fluid activities, formation temperature, and
pressure all have significant impacts on rock pore structures [3]. Due to the complex nature
of stratification, especially in heterogeneous reservoirs where large pores connect with
small throats, discrepancies arise, as shown in Figure 9.

In Figure 9a, the pore throat radii are in the order r1 > r2 > r3. When the injection
pressure of MICP is lower than the capillary force required to break through the smaller pore
throat r2, mercury fluid cannot enter the large pore B. However, when the injection pressure
surpasses the capillary force needed for pore throat r2, mercury fluid infiltrates into the large
pore B, as depicted in Figure 9b. Although pore B gets filled up at the moment the capillary
force needed to penetrate throat r2 is reached, the volume of mercury fluid infiltrated is
measured in the MICP method as the mercury volume corresponding to pore throat r2; this
could be attributed to ink bottle phenomenon [62]. Diamond also indicated in research on
cement-based materials that MICP-generated PSD is not reliable [32]. Essentially, as nearly
all pores are located internally within the sample, the mercury fluid can only make contact
with the majority of these pores through narrow, elongated throats of varying sizes and
shapes [32]. Hence, in the pore size and frequency distribution chart (Figure 8) derived
from both MICP and NMR, the fluid volume in region 1 detected by NMR is lower than
that by MICP, and in region 2, the volume of hydrogen-containing fluid detected by NMR
surpasses the mercury volume measured by MICP.
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Figure 9. MICP schematic diagram: (a) MICP underestimates large pore porosity, (b) MICP overesti-
mates small pore porosity.

Consequently, potential inaccuracies might exist in terms of mercury injection volume
estimation when using the MICP method, especially in non-uniform reservoirs charac-
terized by numerous large pores linked to smaller pore throats. This could result in the
MICP method overestimating the proportion of smaller throats while underestimating the
larger ones. Conversely, the NMR technique stands out when delineating the pore size
distribution in core samples, with its merits of high precision, speediness in measurement,
and an expansive detection scope.

Figure 10 compares the pore throat distribution of the Tuha sandstone core samples
measured by both NMR and MICP methods, with the distribution trend being largely
similar to that of S1-1. The phenomena observed in these eight core samples are consistent
with the mismatch between MICP and NMR reported in the literature [29,30,34]. The
three core samples are noteworthy: S1-2, S1-3, and S1-4. In the pore size range of 0.001 to
0.0037 µm, the proportion of the NMR signal distributions reached 5.39%, 9.07%, and 6.67%,
respectively, significantly higher than the proportions measured via mercury intrusion in
this pore size range.

Interestingly, all three of these core samples are conglomerate sandstones. With
the increase in permeability, the NMR signal frequency for the pores below 0.0037 µm
also increased. This might suggest the presence of many non-flowing micropores in the
gravel, which cannot be detected during high-pressure mercury injection. However, once
saturated with formation brine, the micropores in the conglomerate might be filled and
can be detected via the NMR method. Additionally, gravel particles in rocks are usually
larger, resulting in larger inter-granular spaces. Hence, in most scenarios, the higher the
gravel content in conglomerate sandstone, the higher the core permeability. This offers an
explanation as to why the NMR signal in the microporous segment of the conglomerate
sandstone intensifies with increasing permeability.

3.4. Comparative Analysis of Shale Pore Throat Distributions

Figure 11 displays the pore throat distribution for the Hechuan block H3-5 shale
obtained through both NMR and MICP methods. Observations indicate that within the
pore throat radius range of 0.001 to 0.075 µm, the distribution frequency measured by NMR
is significantly higher than that measured via the mercury intrusion method. There are
primarily two reasons for this phenomenon:

Limitations of the MICP Technique: Since shale has a lower compressive strength com-
pared to sandstone [63], a lower pressure is used to ensure the authenticity of MICP results
for shale. Consequently, with the application of a 100 MPa pressure, pore diameters smaller
than 0.0075 µm remain undetectable when using the MICP method. Characteristically,
shales are highly compacted and contain an abundance of micro-pores; these intricate pores,
due to their diminutive size, are challenging for the MICP technique to detect accurately.
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Figure 10. A comparison of pore-throat size distributions in sandstone as determined by NMR and
MICP measurements: (a) S1-2, (b) S1-3, (c) S1-4, (d) S2-5, (e) S2-6, (f) S2-7, and (g) S2-8.
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Figure 11. A comparison of pore throat size distributions in shale H3-5 as determined via NMR and
MICP measurements.

NMR Signatures from Specific Components in Shale: Shales contain a significant
amount of non-flowing hydrogen-containing components, such as kerogen, asphaltene,
and structural water. These components produce signals in NMR measurements, and these
signals mainly represent the smaller pores. This means that these micro-pores can only be
detectable when using the NMR method.

These two reasons are key to the notable differences in the micropore distributions
obtained from the NMR and MICP methods. In research on core pore size distribution, it is
essential to understand and consider these factors, as they directly influence the accuracy
and reliability of the measurement results.

Within the pore size range from 0.0075 to 0.19 µm, the NMR method shows a slightly
higher porosity distribution frequency than the MICP method. This phenomenon can be
attributed to the high heterogeneity within the shale. Given the complex microstructure
of the shale, which encompasses numerous micropores and nano-scale throats, it is chal-
lenging for the MICP method to achieve full saturation in this pore size range. Specifically,
the capillary forces from the throats and the surface tension faced by the liquid mercury
prevent it from fully entering or filling certain micro-pores. This disparity is especially
pronounced in cores with low permeability. Taking the H2-3 core as an example, the
extremely low permeability (0.0065 mD) and T2 relaxation time distribution spectrum
distribution suggest a significant presence of micro-pores and nano-scale throat structures.
The maximum saturation measured via the MICP method for this core is only 59.246%,
further confirming that in cores with low permeability, mercury struggles to saturate the
micro pores completely. In contrast, the NMR method primarily relies on nuclear magnetic
resonance signals to determine the presence and distribution of fluids within the core. It
can more accurately detect the distribution of water or other hydrogen-containing fluids
within the micro-pores, offering more detailed porosity distribution information. Thus,
when dealing with highly heterogeneous rock samples with intricate microstructures, the
NMR method may offer more advantageous insights into pore size distribution analysis.
When the pore size exceeds 0.19 µm, a phenomenon similar to that observed in sandstones
occurs. Specifically, the cumulative frequency of MICP in region 1 is higher than that of
NMR, while in region 2, it is lower than NMR.

As shown in Figure 12, in the multi-sample pore throat characterization of the Hechuan
shale core, a porosity distribution was observed that was similar to Figure 11 and the
published data. Specifically, for the pore size range in region 1 (refer to Figure 11), the
frequency distribution measured by the MICP method was generally higher than the results
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obtained via the NMR method. In contrast, within the pore size range of region 2, the
porosity distribution frequency, as reflected by NMR, exceeded that characterized by the
MICP method. This observation further confirmed the potential inaccuracies of the MICP
method in porosity distribution characterization.
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Figure 12. A comparison of pore-throat size distributions in shale as determined by NMR and MICP
methods: (a) H1-1, (b) H1-2, (c) H2-3, (d) H2-4, (e) H3-6, (f) H4-7, and (g) H4-8.

3.5. Correlation of Rock Core Physical Properties

The NMR method accurately reflects pore size distribution, whereas MICP mea-
surements may underestimate the proportion of macro-pores and overestimate that of
meso-pores. The discrepancies between the two methods are consistent with numerous
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studies conducted by other researchers. We suggest that the differences in information
obtained from dynamic and static methods reflect meaningful physical characteristics that
can serve as characteristic values for porous media.

Taking the sandstone core S1-1 as an example, the study investigates the volume
overestimated in the MICP method and the pore throat radius controlling mercury intrusion
into the large pores.

Figure 13 illustrates the relationship between cumulative frequency distribution and
pore size in NMR and MICP experiments. It is observed that at larger pore sizes, particularly
when mercury intrusion just begins, the cumulative frequency of NMR is higher than that
of MICP. As the mercury intrusion pressure increases and mercury enters pores of 1.2 µm,
the cumulative frequencies of both methods become equal. The pore radius corresponding
to this equal cumulative frequency is defined as controlled throat radius rc. In MICP, rc
represents the pore throat radius restricting mercury entry into larger pores. When the
injection pressure increases to a point where mercury can enter large pores controlled
by rc, the cumulative frequencies of MICP and NMR align. The cumulative frequency
distribution corresponding to rc is then twice the volume of pores controlled by rc. Defining
the volume controlled by pore throat rc as Frc, it is evident from Figure 13 that in core S1-1,
4.91% of the pore volume is influenced by rc. It is noteworthy that the primary differences
between MICP and NMR are observed in the low capillary pressure range. There is a
significant size disparity between the throats and pores in this range. However, in the high
capillary pressure range, the diameters of the pore throats are similar, and no significant
discrepancies between the two methods are observed. Therefore, it is considered that the
controlled volume by throat size at rc contributes dominantly to the permeability. In the
past, Dr. H.D Winland [64] found that r35 (the radius corresponding to the point at which
mercury intrusion volume reaches 35% of the total pore volume of the core) controlled fluid
volume is dominant in the flow though feature and used r35 to quantify the rock quality
from a statistical point of view. Shohreh et al. [65] classified reservoir rock types based on
micro-CT results and then evaluated rock quality for different rock types using the Winland
method [65].
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Figure 13. The cumulative frequency distribution by NMR and MICP (S1-1).

The empirical expression is as follows:

logr35 = 0.732 + 0.588logKa − 0.864logΦ (7)

where r35 represents the radius corresponding to the point at which mercury intrusion
volume reaches 35% of the total pore volume of the core, measured in µm. Ka is the absolute
permeability of the core, expressed in mD, and Φ is the porosity of the core, denoted in %.
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According to Equation (7), the porosity–permeability graph merged with the Winland
r35 method (Figure 14) can be derived. It is observable from the figure that sandstone and
shale predominantly occupy two distinct regions. Furthermore, the traditional Winland
r35 method underperforms in characterizing the attributes of our samples. Numerous
researchers have also conducted studies using Winland’s method, finding that the constants
in the Winland equation vary for rock cores with different physical properties [8,9,40]. We
performed a comparison between our findings and the Winland equation. The results are
shown in Table 4.
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Figure 14. Porosity–permeability graph merged with the r35 technique of Winland.

Table 4. rc, r35, and Frc for 16 samples.

Well
Number Samples Helium

Porosity (%)
Permeability

(mD)
rc

(µm)
r35

(µm)
Frc
(%)

S1

1 14.98 1.06 1.2048 0.2035 4.9107
2 13.74 3.06 1.5758 0.4464 7.1410
3 14.61 8.20 1.2340 0.5160 11.2015
4 14.81 5.86 / / /

S2
5 13.90 1.83 2.0965 0.6010 4.1977
6 13.66 1.20 1.5316 0.4525 3.8504

S3
7 15.75 2.37 1.7845 0.4321 5.4742
8 15.88 1.29 1.3765 0.3388 3.0388

H1
1 5.49 0.0471 0.3938 0.2034 9.8615
2 6.16 0.0371 0.3662 0.1830 8.9962

H2
3 6.51 0.0065 0.1417 0.0226 6.0439
4 6.04 0.0141 0.2388 0.2581 6.4697

H3
5 11.02 0.0753 0.3586 0.1970 8.8264
6 6.97 0.0344 0.2707 0.0758 8.9040

H4
7 6.51 0.0399 0.3161 0.1665 9.2728
8 5.91 0.0177 0.2028 0.1535 8.6696

Due to the improper removal of the pockmarks effect, the rc and Frc of S1-4 was not detected.
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Based on Equation (8), fitting was conducted for r35, Ka, and Φ using both sandstone
and shale samples in the style of the Winland equation. The results of this fitting are
illustrated in Figure 15.

logr35 = A1 + B1logKa − C1logΦ (8)

where A1, B1, and C1 are the constants in the style of the Winland equation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 25 
 

Due to the improper removal of the pockmarks effect, the rc and Frc of S1-4 was not detected. 

Based on Equation (8), fitting was conducted for r35, Ka, and Φ using both sandstone 

and shale samples in the style of the Winland equation. The results of this fitting are illus-

trated in Figure 15. 

log r35 = A1 + B1 log Ka − C1 log Φ (8) 

where A1, B1, and C1 are the constants in the style of the Winland equation. 

 

 
(a) sandstone 

 

 
(b) shale 

Figure 15. The relationship between r35, Ka, and Φ: (a) sandstone and (b) shale. Figure 15. The relationship between r35, Ka, and Φ: (a) sandstone and (b) shale.



Appl. Sci. 2024, 14, 1881 19 of 24

From Figure 15, it is observable that the Winland formula fits well for shale samples;
however, the matching degree for tight sandstone samples is less satisfactory. Lafage
found that the Winland r35 method is not reliable when evaluating the quality of some
carbonate reservoirs [66]. Winland r35 is a trial-and-error method. If r35 is not working,
other r could be tried in the fitting, such as r40, r45, and r50. This is a common choice
for researchers who use the Winland method [9,67]. In addition, different core samples
with identical permeability and porosity may share the same r35 values according to the
Winland r35 equation. However, there can be significant differences in pore size distribution
and connectivity within actual reservoirs. Therefore, relying solely on r35 to assess the
relationship between permeability and porosity in cores might not be suitable for all rock
samples. Figure 16 reveals the saturation of large pores controlled by the smaller pore
throat rc, known as Frc, which reflects the volume of large pores in the core influenced by
pore throat rc. Based on Equation (9), fitting was conducted for Frc, Ka, and Φ in the style
of the Winland equation.

logFrc = A2 + B2logKa − C2logΦ (9)

where A2, B2, and C2 are constants. Frc is the volume controlled by pore throat rc, in %.
Figure 16 presents the nonlinear surface fitting analysis of Frc, Ka, and Φ for both

sandstone and shale samples. It is evident from the figure that the R-Squared is quite high
for both types of rock cores, with sandstone exhibiting an R2 value of 0.9267 and shale at
0.8711. Table 5 summarizes the nonlinear surface fitting formulas for various rock cores,
revealing a significant correlation in both sandstone and shale between the permeability,
porosity, and the volume of large pores controlled by the small pore radius rc.

Table 5. The nonlinear surface fitting analysis.

Lithology Tuha Sandstone Hechuan Shale

A1 2.2573 0.2795
B1 0.1727 0.6397
C1 −2.3085 −0.1437

R2 (r35) 0.4571 0.8003
R2

adj (r35) 0.1857 0.7204
A2 1.2527 1.5502
B2 0.5548 0.2316
C2 −0.6095 −0.327

R2 (Frc) 0.9267 0.8711
R2

adj (Frc) 0.8900 0.8195

Frc shows better fitting since it used all the information from MICP and NMR. Whereas
the r35 method is a trial-and-error procedure, other metrics such as r45, r55, and r65 may
also be used for a better fitting, depending on the requirements. This approach finds a
special pore throat that controls fluid flow in a porous media. It provides a comprehensive
method to cohesively use information from both MICP and NMR, thereby making rock
quality analysis more physically meaningful and accurate. By thoroughly analyzing these
relationships, a more accurate assessment and optimization of the development strategies
for oil and gas reservoirs can be achieved.
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4. Conclusions

In the field of rock pore structure characterization, MICP and NMR are two widely
adopted key techniques. This study delves into a comprehensive comparison and analysis
of the applicability of these two methods in depicting rock pore structures. By leveraging the
discrepancies between NMR and MICP measurements, we have established the Winland
Frc method. Sandstone samples from Tuha and shale samples from Hechuan were selected
for the experimental analysis. After a series of experiments and data evaluations, the
following primary conclusions were drawn:
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(1) In MICP experiments, excessive mercury injection pressures might damage the in-
tegrity of the rock’s pore structure, particularly affecting smaller pore sizes and thereby
constraining its applicability in micro-pore analysis. Conversely, NMR offers a non-
destructive approach to pore structure detection, presenting a distinct advantage in
the identification and characterization of micro-pores;

(2) The heterogeneity of shale and tight sandstone has a noticeable impact on the results
obtained from the MICP method. In heterogeneous rocks where large pores are con-
nected to small throats, MICP might overestimate the proportion of small throats and
underestimate that of large throats. Due to NMR’s ability to detect all pores containing
hydrogen-bearing fluids, it more accurately reflects the rock’s pore distribution;

(3) In shale, specific signals in NMR are provided by kerogen, asphaltene, and bound wa-
ter. These signals predominantly appear in the region of smaller pore sizes, potentially
causing NMR to overestimate the proportion of these small pores;

(4) Based on the Winland r35 method, by integrating information from both NMR and
MICP measurements, we established the Winland Frc method. This approach sur-
passes the fitting accuracy of the traditional Winland method. It represents a potential
high-precision, comprehensive tool for rock quality analysis, enhancing the preci-
sion of analysis and offering a novel perspective for an in-depth understanding of
rock properties.
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Nomenclature

T2S The surface relaxation time, ms
T2D The diffusion relaxation time, ms
T2B The bulk relaxation time, ms
ρ2 The transverse relaxation rate, µm/ms
S/V The specific surface area of a single pore, µm2/µm3

FS The pore shape factor, dimensionless
R The pore radius, µm
C The conversion coefficient, dimensionless
rc Controlled throat radius, µm
Frc The volume controlled by pore throat rc, %
r35 The radius corresponding to the point at which mercury intrusion volume reaches 35% of the

total pore volume, µm
Ka The absolute permeability, mD
Φ The porosity of the core, %
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