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Featured Application: Refractive index measurements have many applications. They include
biochemical and environmental analyses. Determining the value of the refractive index is also
useful in the diagnosis of various industrial processes, such as pharmaceutical ones.

Abstract: Tilted fibre Bragg gratings are optical fibre structures used as sensors of various physical
quantities. However, their most popular application is to measure the refractive index of liquids. In
such applications, it is important to obtain high measurement accuracy and the ability to distinguish
two slightly different values of the refractive index. For this purpose, not only an appropriate
periodic structure is needed, but also a demodulation method. We propose averaging the shift of
a group of cladding modes. We use the TFBG grating, of which not all cladding modes exceed the
cut-off limit. Such modes are not subject to leakage but only to shifts under the influence of SRI
changes. To determine the average shift of a group of modes, we analyse cross-correlation algorithms
of intensity-transformed optical spectra. Next, the cross-correlation main lobe is analysed by the
centroid method, the Fourier phase and the Hilbert transform. Furthermore, phase changes of the
main Fourier frequency are used to estimate a shift of part of the optical spectrum. Additionally, we
propose the correction of the determined shift using a shift of another group of modes of the same
TFBG grating.

Keywords: optical sensors; refractive index sensors; tilted fibre Bragg gratings; demodulation algorithms

1. Introduction

Optical sensors are used in many fields of science and technology. They enable online
measurements at a distance by using optical fibre as a transmission medium. One of the
most important physical quantities measured using fibre optic sensors is the refractive
index [1]. The surrounding refractive index (SRI) is the ratio of light velocity in the air to
the velocity in the liquid that surrounds the optical fibre. Determining the relationship
between the value of the desired quantity and the sensor’s response is performed using the
calibration process. On its basis, the sensor’s properties, such as linearity or resolution, can
be determined. One of the most popular optical sensors is the fibre optic Bragg gratings.
Such sensors are based on changing a specific parameter of the optical spectrum under
the influence of an interacting physical quantity. The optical spectrum of the sensor can
be measured using the reflection or transmission method. Bragg gratings are periodic
structures created in the fibre core. Classic FBGs have a Gaussian shape spectrum. In-
formation about the measured quantity is encoded in the position of this shape on the
wavelength axis. Therefore, it is an encoding in the wavelength domain, as opposed to
the classic analysis of spectra, in which the information is contained in the intensity of the
transmission spectrum. Full use of the information contained in the spectrum requires the
use of an appropriate demodulation method. A periodic structure with a tilted refractive
index modulation in the core, called TFBG (Tilted fibre Bragg grating), is a universal op-
tical fibre measurement element that can be used to determine temperature, stress, fibre
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curvature, polarisation angle, and, above all, the refractive index of the fluid surrounding
the fibre. In terms of measurement properties, FBGs and TFBGs differ significantly [2]. The
measurement capabilities are the result of the excitation of several dozen cladding modes.
The transmission spectrum parameters can be converted into the refractive index value
using various mathematical operations. It is mainly SRI measurements that lead to the
creation and research of new structures and applications of TFBGs. The development of
measurement methods for TFBGs also uses special types of optical fibres [3]. Unlike other
fibre optic methods for determining SRI, TFBGs do not require removing the fibre cladding
or implementing a special sensor head [4].

Changes in SRI values determined using TFBGs are used in measurements in many
areas. They include, for example, biomedical measurements such as the detection of
rheumatoid arthritis biomarkers [5] or solution concentration measurement [6]. By apply-
ing an appropriate coating, a TFBG can be used to monitor transformer oils [7]. In such
practical applications, a data processing method must be developed, selected or modified.
This is done in order to improve the metrological parameters obtained from the measure-
ments. Many methods using the transmission amplitude changes of the TFBG optical
spectrum have been developed. Most of them use the envelope created by the cladding
modes. The entire spectrum is then represented only as an envelope. It changes under
the influence of interacting factors. Such algorithms do not use the possibilities offered
by advanced methods such as pre-processing, signal enhancement and feature extraction.
Methods other than the mode envelope are much less frequently used. Algorithms cal-
culating the amplitude parameters of the spectrum are susceptible to the unfavourable
influence of changes in the background spectrum as well as measurement noise. The
determined spectrum parameters are often limited to identifying the graphical relationship
between a specific spectrum parameter and an influencing quantity. Taking into account the
literature reports, it can be concluded that there is a lack of studies obtaining information
from local spectrum parameters. Most quantitative measurements of SRI values use the
envelope parameter of the cladding modes [8]. The cladding mode envelope was also
used to determine the cross-correlation function and calculate its statistical parameters [9].
One of the recently proposed methods is to determine the most sensitive mode and then
use it to determine the SRI value [10]; another method is to calculate the length of the
optical spectrum [11]. To avoid selecting the single most sensitive resonance, a method
of tracking 27 cladding mode resonances to distinguish two slightly different SRI values
was proposed [12]. Differences in the shift of four resonances allowed distinguishing the
simultaneous influence of temperature, stress and SRI on the TFBG spectrum [13].

The structure of the cladding mode comb of the optical spectrum of the TFBG depends
on the tilt angle. For larger angles, the cladding mode comb shifts towards shorter wave-
lengths [14]. The most common approach to determining SRI from TFBG spectra is to look
for changes related to the disappearance of cladding modes. Therefore, gratings with a
tilt angle of 6–8 are typically used. Gratings with smaller angles have not been presented
in the literature for SRI measurements so far. The method of analysing optical spectra
proposed in this article uses a TGBG with a smaller tilt angle than those commonly used
for measurement. The developed algorithm allows the use of a specific spectrum range
containing a group of cladding modes. The proposed idea is relatively simple and involves
determining the shift of the group of cladding modes in the wavelength domain.

2. Cross-correlation, Phase Correlation and Their Modifications

The cross-correlation method has many applications for signals analysed in the time
domain. It is useful in cases where the measurement resolution is high and when the
determined shift is much larger than the length of the analysed signal shape. Detecting the
maximum of such a correlation function is possible, in principle, with accurate resolution
of the signal measurement. Some increase in accuracy can be achieved by interpolating the
correlation function at additional points. In the case of the analysis of optical spectra, the
limitation is the spectral resolution of the optical measurement. If S1(λ) is the spectrum
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measured in reference conditions, then in the event of the influence of a specific physical
quantity, the spectrum will be shifted by the value ∆λ:

S2(λ) = S1(λ − ∆λ), (1)

The single measured spectrum S1(λ) is a vector of length N, the individual values cor-
responding to the appropriate wavelengths λn where n varies from 0 to N − 1. The spectral
resolution of the measurement is the difference between subsequent values δλ = λn−λn−1.

The cross-correlation of the reference spectrum and the shifted spectrum can be written
as follows:

Cc(m) =
N−1

∑
n=−N+1

S1(λ)·S2(λ − m·δλ), k = 0, 1, 2, . . . (N − 1). (2)

The maximum of the cross-correlation function occurs for the sought shift ∆λ. How-
ever, we can only know its value with an accuracy up to the measured spectral resolution δλ.
High accuracy of the method can only be achieved when ∆λ ≫ δλ. Accuracy can be im-
proved by approximating the cross-correlation function with a polynomial or by calculating
its maximum using the centroid method.

The correlation operation can also be performed in the Fourier transform domain. The
optical spectrum can be represented as the amplitude and phase of the Fourier spectrum:

X1(k) =
N−1

∑
n=0

S1(n)·e
−2π jnk

N , k = 0, 1, 2, . . . (N − 1), (3)

X2(k) =
N−1

∑
n=0

S2(n)·e
−2π jnk

N , k = 0, 1, 2, . . . (N − 1), (4)

where k are the frequency indices in the Fourier domain. The values of individual frequen-
cies are as follows:

f (k) =
k

N·δλ
, k = 0, 1, 2, . . . (N − 1). (5)

From the properties of the Fourier transform, it is known that the correlation and
convolution of two sequences can be replaced by their multiplication in the Fourier domain:

Cc(m) = F−1(X1(k)·X∗
2 (k)). (6)

The product of the Fourier transform:

X12(k) = X1(k)·X
∗
2 (k), (7)

being the Fourier transform of the cross-correlation function is referred to as cross-power
spectral density.

The phase correlation method uses the phase of the Fourier transform to determine the
shape shift in both one-dimensional and two-dimensional images. The method is known
primarily for its ability to determine the shift with an accuracy better than the distance
between pixels. The algorithm also deals with the intensity difference between the two
compared images. It is also immune to noise in the data. Phase correlation exploits the fact
that the shift in the fundamental domain (usually time or space) is represented in the phase
of the individual components of the Fourier transform of a given signal. Phase correlation
uses the Fourier domain shift calculated for the normalised cross-power spectrum, which
can be determined by the following formula:

X1(k)·X∗
2 (k)

|X1(k)|·|X2(k)|
=

|X1(k)|·|X2(k)|ejϕ2(k)−jϕ1(k)

|X1(k)|·|X2(k)|
= ejϕ2(k)−jϕ1(k) = ej·∆ϕ(k). (8)
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Correlation methods for images use two ways to improve the accuracy of shift es-
timation [15]. The first is a better interpolation of the cross-correlation function in the
fundamental domain [16]. The second is the processing of the cross-power spectrum itself.
It is also possible to pre-amplify specific signal features through bandpass filtering. Various
weighting functions are also used for selected signal types. Such an algorithm can be
written mathematically as [17]:

Cc(m) = F−1(φ(k)·X1(k)·X
∗
2 (k)), (9)

where in the simplest formula (normalized cross-power spectrum), the weight function
will take the form:

φ(k) =
1

|X1(k)|·|X2(k)|
. (10)

The weight function is intended to sharpen the peak generated in the fundamental
correlation domain as well as reduce the influence of noise. The algorithm using weight
functions is called generalised cross-correlation [18]. For shift estimation in the field of
images, computationally fast methods are also sought.

The correlation computed in the Fourier domain using the fast Fourier transform is
a computationally efficient algorithm. Analysis of the result in the fundamental domain
gives good results in the case of large shifts in the signal shape. For shifts comparable to
the measurement resolution and smaller, more accurate information will be obtained based
on the Fourier transform phase if we write the Fourier transforms of both spectra as

X1(k) = |X1(k)|·e−jϕ1(k), (11)

X2(k) = |X2(k)|·e−jϕ2(k). (12)

Multiplication in the Fourier domain means the product of the transform modules and
the product of the exponents related to the phase. Therefore, if both modules are identical:

|X1(k)| = |X2(k)|. (13)

There is only a phase difference between both signal spectra:

∆ϕ(k) = ϕ2(k)− ϕ1(k). (14)

The phase difference can be calculated for each frequency with index k:

∆ϕ(k) =
2·π·k·∆λ(k)

N·δ , (15)

For each frequency with index k, the shift associated with the phase change is

∆λ(k) = ∆ϕ(k)· N·δ
k·2·π , k = 1, 2, . . . M < N. (16)

This principle is used by the fast-phase correlation method [19]. Because the measure-
ment data contain noise and the signal shape itself may be slightly distorted, the shifts
calculated for each frequency will differ. Therefore, to determine the correct shift value, the
median of several M initial frequencies is used [19]:

∆λ(k) = ∆ϕ(k)· N·δ
k·2·π , k = 1, 2, . . . M < N. (17)

In all methods using the Fourier transform phase, the problem is the uniqueness of
the determined phase. The phase value can range from −π to +π. A method to reduce
ambiguity is to rotate the measured signal so that the difference in shifts is less than one
sample in the wavelength domain. The total shift is, therefore, equal to the integer and
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fractional parts of δλ [20]. A similar method called shifted phase correlation has also been
recently proposed for shape from focus measurements [21].

After calculating the cross-correlation function, an important element is to precisely
determine its maximum. These methods can be called post-processing. The main lobe of
cross-correlation (peak) can be determined similarly to peaks determined for other types of
signals as a centroid:

∆λ̂ =
∑N

i=1 λi·Ci

∑N
i=1 Ci

. (18)

In the case of an asymmetric shape, the resonance peak does not have to coincide with
the place of the lowest transmission value. Modifications of the basic centroid method have
been proposed for spectroscopic measurements of surface plasmons [22,23].

The cross-correlation function can be further processed by the Hilbert transform. It
has the additional property of reducing noise in the case of a slowly changing signal [24].
The Hilbert transform of the signal x(t) can be written as follows:

xh(t) =
1
π

∫ +∞

−∞
x(t)

1
t − τ

dτ, (19)

which corresponds to the convolution of the input signal with the formula 1/(π·t):

xh(t) = x(t) ∗ 1
π·t . (20)

The peaks of the x(t) signal correspond to the zeros of the Hilbert transform.

3. Analysis of Measurement Data

The spectra of TFBG gratings are measured in the transmission system because
cladding modes are not visible in the reflection spectrum. The modes propagating in
the cladding decay quickly due to the high value of cladding attenuation. The cladding
modes are transferred from the core to the cladding due to the tilt of the changes in the
refractive index in the core. For cladding modes, the propagation takes place in the cladding
and at the boundary of the cladding and its surroundings in the direction opposite to the
propagation of light in the fibre core. For these modes, total internal reflection occurs at the
boundary of the cladding and the surroundings. The effective refractive index of individual
cladding modes depends on the refractive index of the surroundings. For gratings with
a medium tilt angle of the refractive index, increasing the SRI value causes the cladding
modes to switch from total internal reflection to leakage. Subsequent modes at shorter
wavelengths decrease in amplitude and are broadened. A mode that becomes leaky de-
creases in amplitude and stops shifting. Measurements were made using a grating with a
tilt angle of 4 degrees. The cladding modes of such a grating are not subject to full leakage.
In the range above 1520 nm, a shift of individual modes can be observed (Figure 1).

Before exceeding the leakage limit, individual modes only shift towards longer wave-
lengths under the influence of the increased SRI value. The mode presented in Figure 2
(1520.6 nm) for the 1.3994 refractive index value decreases its intensity compared to lower
SRI values. This means that it is nearing the leakage limit. This is, therefore, the wavelength
range with the greatest sensitivity to mode shift as a function of SRI.

The spectra of TFBGs can only be measured in transmission mode. FBGs are measured
mainly in the reflection mode. If the local shifts of individual modes or groups of modes
need to be analysed, it is better to transform the spectrum in such a way that it corresponds
to the reflection spectrum. Such a simple transformation highlights the characteristic
features of the TFBG spectrum much better. This intensity transformation can be written as
follows:

A(λ) = 1 − T(λ). (21)
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In a sense, the absorption spectrum is calculated in a similar way to the analysis
of spectra in spectroscopy. The A(λ) spectrum allows for better use of further signal
transformations. It is also possible to calculate the shift of individual cladding modes using
methods used in the analysis of the shift of FBG spectra.
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Figure 1. Transmission spectra of a TFBG measured for two extreme values of the refractive index.
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Figure 2. Shift of the resonances of two cladding modes due to changes in the external refractive index.

Figure 3 shows the autocorrelation function of a part of the spectrum A(λ) in the
1510–1524 nm range. This part of the optical spectrum has 4000 points. The spectrum
can be moved relative to itself by this number of points, which creates the shape shown
in Figure 3. As can be seen, the correlation has the highest value with a zero shift, and
its envelope decreases with increasing shifts. The individual cladding modes create an
almost periodic signal, which is reflected in the shape of the autocorrelation function.
Autocorrelation has repeating lobes (peaks), which are the result of the repeatability of the
shapes of cladding modes. The decrease in the amplitude of subsequent autocorrelation
side lobes (peaks) results from the decrease in the common area of the product of both
functions when calculating it for larger shifts δλ.

If instead of autocorrelation, we calculate the cross-correlation of the spectrum for
SRI = 1.334, with the spectra for subsequent SRI values, we will obtain the functions shown
in Figure 4. What is characteristic here is the shifting of the main and other lobes.

Various methods can be used to determine the position of the main lobe of individual
cross-correlation functions. The simplest method is to determine the wavelength for
maximum intensity. However, this is a low-resolution method limited by the spectral
resolution of the measurement. To improve this resolution, the centroid method can be
used to determine the maximum. The shift of the main lobe of the cross-correlation function
calculated in this way depending on the SRI value is presented in Figure 5.
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Figure 5. Shift of the peak of the main lobe of the cross-correlation function according to the value of
the SRI coefficient.

More points of the cross-correlation function can be used by computing the Hilbert
transformation of the function. It is presented in Figure 6.
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Figure 6. Hilbert transformation of the cross-correlation function for SRI = 1.334 with another
spectrum measured for the same SRI value.

The following Figures 7 and 8 present fragments of the Hilbert transformation of the cross-
correlation function for shifts between the correlated functions from −4 to 1 nm, respectively.
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Figure 7. The main part of the Hilbert transform of a cross-correlation function of the grating spectrum
for SRI = 1.334, with the spectra measured for the four SRI values.
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Figure 8. Hilbert transformation of the main part of the cross-correlation function of the grating
spectrum for SRI = 1.334, with eight spectra for SRI values ranging from 1.334 to 1.406.
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The part of the Hilbert transform with the highest slope can be approximated using
a linear function (Figure 9). The zero of such an approximation is a parameter indicating
the location of the main lobe peak of the cross-correlation function. The dependence of the
Hilbert transform shift on SRI is presented in Figure 10.
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Figure 9. Linear approximation of the Hilbert transformation of the cross-covariance function.
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Figure 10. The relationship between wavelength shift and SRI value determined using the zero of the
linear approximation of the Hilbert transform.

Determination of the cladding mode group shift using the Fourier transform phase is
characterised by good metrological properties. Direct determination of the cross-correlation
function phase will not bring good results due to the pseudo-periodicity of the optical
spectrum. The solution to this problem may be to calculate the correlation function over a
limited range of shifts. Because the cross-correlation function shapes repeat and overlap,
an additional anodization function was used to reduce the intensity of the optical spectrum
at its ends (Figure 11).

For the processed part of the cross-correlation function, the mode group shifts were
determined using fast phase correlation (Figure 11). The shift was determined as the
median of the phase shifts of the first few dozen frequencies of the Fourier transform of the
cross-correlation function presented in Figure 12.

The previously presented methods are modifications of determining the shift of the
main lobe peak of the cross-correlation function. They amount to a precise analysis of
the main lobe peak, for which methods known from FBG analysis can be used. Phase
correlation can also be used in a slightly different way. The considered part of the optical
spectrum (Figure 13a) has a Fourier spectrum, shown in Figure 13b. The optical signal
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consists of a constant component and several main harmonic components: first, second,
third, fourth and fifth harmonic components related to the regularity of the cladding
modes. The bandwidth of individual harmonics in the frequency spectrum indicates that
the distance between modes is not constant. The distance between modes successively
located towards longer wavelengths decreases slightly. The phase of the frequency from
the first harmonic group corresponding to the fundamental distance between modes can
be used to determine the shift of the cladding mode group.
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Figure 11. The middle part of the cross-correlation function multiplied by the window function.
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Figure 12. Wavelength shift of the central part of the cross-correlation function calculated using the
fast phase correlation method.

Figure 13b shows the main harmonic (1.0625 1/nm) related to the occurrence of
cladding modes. In the range from 1517 to 1526 nm (Figure 13a), the maxima of the
sinusoid coincide with the resonances of the cladding mode comb. The shift determined on
the basis of the first harmonic frequency phase is shown in Figure 14a.

The local cladding mode shift calculation methods are sensitive to TFBG temperature.
The measured spectrum may also be subject to slow wavelength fluctuations associated
with the spectrum analyser. Unfavourable shifts can be eliminated by using the second
part of the spectrum; cladding modes in the 1535–1550 nm range experience much smaller
shifts under the influence of SRI than modes in the 1515–1530 nm range (Figure 14b).
They can, therefore, be used to correct the fundamental shift of the considered wavelength
range. Analysing the same number of points allows the use of the same frequency in
the Fourier transform domain. Figure 14a, in addition to the TFBG spectrum, shows the
component associated with the same frequency for which the shift was determined for the



Appl. Sci. 2024, 14, 2458 11 of 14

1511–1527 nm range. Since the modes in this range are closer to each other, this component
has a smaller amplitude.
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Figure 13. Analysed part of the optical spectrum used to calculate the mode group shift (a), frequency
spectrum (Fourier transform) calculated for the part of the optical spectrum (b).
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Figure 14. Shift of part of the optical spectrum calculated using the Fourier frequency phase change
(a). A part of the optical spectrum used for shift correction (b).

The cross-correlation of the part of the spectrum used to correct the shift of the basic
spectrum part is shown in Figure 15. The shift of this part of the spectrum is much smaller
than the shift of the basic fragment. The difference in both shifts will eliminate the shift
component of the entire TFBG spectrum related, for example, to the influence of tempera-
ture. Like any differential method, this will improve the parameters for determining the
value of the measured quantity.

To compare the presented methods, the resolution of SRI determination was deter-
mined as the standard deviation of SRI determination for 15 of its measured values. The
resolution determination results for each of the four methods are presented in Table 1 and
in Figure 16.

Table 1. Comparison of the resolution of the analysed methods.

Method Centroid Hilbert Fast Phase Correlation Direct Phase

Normal 9.6 × 10−5 9.2 × 10−5 10 × 10−5 6.9 × 10−5

Corrected 4.1 × 10−5 5.3 × 10−5 4.2 × 10−5 4.9 × 10−5
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Figure 15. Cross-correlation of the 1534–1556 nm spectrum range.
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Figure 16. Comparison of the relationship between the predicted and actual SRI using different
demodulation methods.

All presented algorithms are characterised by a similar resolution value calculated
on the basis of repeated measurements. For all four algorithms, resolution improvement
occurs with offset shift correction from another optical spectrum part. This is consistent
with the general property of differential methods. For direct methods without correction,
the method of calculating the phase change for the selected Fourier frequency has a slightly
lower standard deviation value. At the same time, it is a computationally efficient method.
After selecting the appropriate frequency, the direct phase method only requires calculating
the Fourier transform value for one frequency. This reduces the number of calculations
to two scalar products of the optical spectrum and basis functions. These are the sine
and cosine functions, respectively, for the previously selected frequency. Based on these
functions, the phase of the signal can be determined. This method is, therefore, the simplest
computationally. Similar resolution values for all methods result from the fact that they
determine the same parameter of shifting part of the spectrum.

4. Conclusions

We have proposed a new approach for the quantitative analysis of the TFBG spectrum.
For this purpose, we used the shift estimation method using cross-correlation. The basic
concept of the proposed methods is based on a slight change in the shape of the considered
part of the spectrum. To some extent, we are only trying to determine the shift of the
spectrum part precisely. Before the correlation and Fourier transform methods, transmis-
sion spectrum inversion was used to pre-process the data. This eliminates the constant
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component characteristic of the transmission spectrum and highlights the components
related to the cladding mode comb. The cross-correlation function of an optical spectrum
part is typical for the correlation of periodic and near-periodic signals. The determination
of the fundamental shift can, therefore, be limited to the fundamental cross-correlation
lobe peak for shifts in a range smaller than the distance between individual modes. The
resolution of the SRI determination based on repeated measurements is similar for all
proposed methods. We have shown that the use of the differential method reduces the
measurement resolution by approximately twofold. The method enables the simultaneous
creation of resistance to shift the entire spectrum. Such a shift may result from the influence
of the temperature and drift of the optical spectrum analyser.
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