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Abstract: Seafarers’ unsafe acts as the direct causes of maritime accidents are considered to be the
result of the interaction between complex and dynamic influencing factors. Identifying the risk
evolution characteristics and paths of seafarers’ unsafe acts has always been a challenge in maritime
safety management. For this purpose, the present study introduces association rule technique into
complex network to develop a directed weighted interaction network of seafarers” unsafe acts and
their influencing factors. Through global network topology analysis and local network community
detection, the risk evolution characteristics of seafarers” unsafe acts in maritime accidents are analyzed
from a multidimensional perspective. The results indicate that the developed network has small-world
characteristics, and the top 10 critical nodes all belong to seafarers” unsafe acts, of which failure to
make proper sound and light signals achieves the highest PageRank value. Results from this study
would help maritime stakeholders to understand the evolution mechanism of seafarers’ unsafe acts and
develop safety management strategies for interrupting the risk propagation of seafarers’” unsafe acts.

Keywords: risk evolution; unsafe acts; maritime accidents; complex network; association rule

1. Introduction

Safety at sea has always been a major concern for the shipping industry, due to the se-
rious consequences of maritime accidents [1]. Based on accident causation theory, accidents
occur as a result of the consistent evolution of physical unsafe conditions and human unsafe
acts under the interaction of environmental conditions, management defects, and other in-
fluencing factors. A large number of studies have been devoted to investigate the causes of
industrial accidents and pointed out that human unsafe acts are the main and direct causes
of accidents [2]. The international shipping industry began to recognize the significance of
unsafe acts in the 1970s [3], and 80% of maritime accidents were attributed to unsafe acts of
seafarers [4]. The International Maritime Organization (IMO) called on countries to make
sure that they pay more attention to unsafe acts when conducting maritime transport safety
studies [5]. With the efforts of IMO, the International Convention on Standards of Training,
Certification and Watchkeeping for Seafarers (STCW Convention) and the International
Safety Management Code (ISM Code) were introduced sequentially, which proposed new
requirements for promoting maritime safety from the perspective of seafarer training and
management, respectively. In 1999, to avoid neglecting or missing critical information on
human factors in maritime investigations, IMO adopted the Amendments to the Code for
the Investigation of Marine Casualties and Incidents (A.884(21)), which provides maritime
investigators with methods and procedures for investigating human factors in the maritime
accidents [6]. Although the shipping industry continues to take proactive initiatives to
improve the safety of seafarers’ acts, the incidence of maritime accidents has not been
controlled to the expected level [7,8].

Safety in maritime transportation is based on the coordinated operation of the “human-
ship-management-environment” system [9]. The purpose of maritime safety management
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is to avoid unsafe acts of seafarers, eliminate unsafe conditions of objects, reduce unsafe
management in the organization and control unsafe factors in the environment. Due to the
progress of science and technology, the safety and reliability of ship machinery have been
greatly improved, and the use of various monitoring and warning means has made the neg-
ative influence of environment factors effectively controlled. However, the seafarers, as the
only part of the system with subjective initiative, have uncertainty in their acts. The occur-
rence of seafarers’ unsafe acts is considered to be the result of the interaction among various
complex and dynamic influencing factors [10,11]. Factors from organization, technology,
environment, and individual traits are coupled and superimposed on individual seafarers,
making the generation of seafarers’ unsafe acts uncertain, sudden, and random. As a result,
human factors are recognized as the dominant cause of maritime accidents, accounting for
75-96% of maritime casualties [3,4,7]. Particularly, 79% of tugboat groundings [12], 84-88%
of tanker grounding accidents [13], and 89-96% of collisions [14] were demonstrated to be
triggered by human factors. In order to interrupt the risk propagation of human factors,
clarifying seafarers’ unsafe acts and their influencing factors, and exploring the complex
risk interaction law among multiple factors have always been difficult issues in safety
management and also important research trends in the field of maritime safety.

As the complexity of maritime transportation activities increases, the interaction
between seafarers’ unsafe acts and their influencing factors has deepened. The traditional
probability-based methods are no longer competent for risk assessment and cannot clarify
the complex risk interaction in maritime transportation activities. Therefore, this study
integrates association rule and complex network theory to analyze the interaction of
seafarers’ unsafe acts and their influencing factors in maritime transportation activities.
This study develops the interaction network of seafarers’ unsafe acts and their influencing
factors to investigate the risk evolution law and characteristics of seafarers” unsafe acts and
clarify the critical factors in the risk interaction network.

2. Literature Review

To assess maritime transport risks for maritime safety, IMO has proposed a structured
Formal Safety Assessment (FSA) method. The FSA method takes into account factors such
as ship conditions, organizational management, hardware and external environment to
provide a useful reference for maritime stakeholders in conducting maritime risk assess-
ments [15]. In the context of the FSA, the research process concerning risk assessment of
maritime human-related accidents has been promoted. A variety of quantitative methods
and techniques have been adopted to analyze the risk evolution process of seafarers’ un-
safe acts in maritime accidents, especially probability-based methods such as Fault Tree
Analysis (FTA) [16] and Bayesian Network (BN) [17,18]. Trucco et al. [19] introduced FTA
and BN for maritime transport risk analysis and used BN to estimate the probability of the
basic events in FTA. Ung [13] used FTA and CREAM to assess the probability of human
errors in ship grounding accidents. Deacon et al. [20] developed and validated an accident
risk assessment method to assess the risk of human errors during offshore evacuation. In
addition, Li et al. [15] utilized BN to explore the key maritime risk influencing factors based
on global maritime accident data. Most methodological techniques were used for static
analysis; however, BN could also be developed as a dynamic analysis model to deal with
risk coupling problems. For example, Liu et al. [21] constructed the dynamic BN to charac-
terize the risk evolution in subsea blowout accidents, and Huang et al. [22] quantified the
effect of risk coupling between the operational failures using BN-K2 algorithm. In practice,
clarifying the risk interaction process helps to maintain system safety and is critical for
improving system reliability, especially for maritime transportation systems characterized
by high uncertainty and human intervention.
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Recently, various methodological tools have been proposed to achieve the analysis
of risky interactions. In particular, network-based methods have received much attention.
For example, Lam and Tai [23] used network topological approach to identify complex risk
interactions in railroad accidents, and Liu et al. [24] also investigated related areas and used
causal network method to mine fault information. Due to the high complexity of causal
relationships among risk events, it is difficult for traditional methods to effectively analyze
them. Meanwhile, complex network (CN) has shown powerful applicability because of
the quantitative analysis metrics under the CN theory that are able to assess risk events,
such as degree distributions, clustering coefficients, betweenness, etc., and it has been
widely utilized in the field of coal mines [25], urban railway [26], and construction [27].
Ma et al. [28] stated that complex network could present and analyze complex interactions
between influencing factors and identify key factors more effectively than traditional meth-
ods such as fault tree analysis, event tree analysis, and Bayesian network. Considering
the advantages of complex network, Lan et al. [29] proposed a ship collision causation
network model using complex network and identified the critical factors that effect ac-
cident severity. Further, Gan et al. [1] constructed a network model of China’s coastal
maritime accidents to explore the key factors of maritime accidents, and then proposed risk
prevention measures. Although CN-based risk analysis methods have been introduced in
the maritime accident domain, relevant studies focused on the network topology analysis
without in-depth analysis of the risk evolution mechanisms in the network.

Additionally, complex network is strongly expandable and could be integrated with
other techniques, such as Event Tree Analysis (ETA) [30] and Association Rule (AR) [31].
For instance, Ma et al. [30] used ETA to identify the event chain from 39 ship grounding
accident reports, thereby combining all the event chains to develop the CN, which was
quite time-consuming. However, AR could discover potential, meaningful associations in
a dataset without prior knowledge [32]. It has been widely used in the domains of metro
engineering [33], aviation [34], and road traffic [35]. To the authors’ knowledge, only a few
studies have utilized AR to establish CN in the field of maritime accidents.

The purpose of the present study is to reveal the complex evolution law of seafarers’
unsafe acts involved in maritime accidents, based on which tailored safety management
recommendations are made to reduce the risks of maritime transport activities. Specifically,
the present study introduces association rule (AR) technique into complex network (CN) to
avoid the defect that the edge weights are over-reliant on experts’ subjective experience in
the traditional complex network development process, and to develop a directed weighted
interaction network of seafarers” unsafe acts and their influencing factors. Furthermore,
through global network topology analysis and local network community structure extrac-
tion, the risk evolution characteristics of seafarers’ unsafe acts in maritime accidents are
analyzed from a multidimensional perspective, and the risk propagation paths of seafarers’
unsafe acts and their influencing factors are quantitatively revealed to provide strong
support for interrupting the risk propagation of seafarers’ unsafe acts.

3. Materials and Methodology

The process of risk interaction analysis based on AR-CN is shown in Figure 1. The risk
interaction network is constructed by introducing association rules into complex network.
Specifically, the association rules are decomposed into nodes and edges of the network, and
the confidence value of the rules represents the weight of the edges. The detailed process is
described in Section 3.3.1. Then, the risk evolution characteristics of seafarers’ unsafe acts
are systematically analyzed based on the complex network theory from three perspectives:
topology feature, node criticality, and community detection.
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Figure 1. The process of risk interaction analysis based on the AR-CN method.

3.1. Data Source

Official maritime accident investigation reports are well recognized as a reliable source
that can obtain objective and comprehensive information about the maritime accidents [36].
To ensure the authority and timeliness of maritime accident investigation reports, a to-
tal of 555 maritime accidents that occurred between 2011 and 2020 were collected from
the official website of seven countries’ official maritime investigation authorities, which
recorded maritime accidents that occurred in national waters, including China Maritime
Safety Administration (MSA, Beijing, China), Marine Accident Investigation Branch (MAIB,
Southampton, UK), Swedish Accident Investigation Board (SHK, Stockholm, Sweden),
Australian Transport Safety Bureau (ATSB, Canberra, Australia), United States National
Transportation Safety Board (NTSB, Washington, DC, USA), Japan Transport Safety Board
(JTSB, Tokyo, Japan) and Korean Maritime Safety Tribunal (KMST, Sejong City, Republic of
Korea). The collected reports contain the five most frequently occurring types of maritime
accidents, which are collision, grounding, contact, sinking, and fire/explosion.

In order to ensure that the maritime accident reports involved seafarers’ unsafe acts,
this study initially screened the collected maritime accident reports and removed the
accidents caused exclusively by objective factors such as environmental factors and ship
factors. Finally, 476 maritime accident reports were obtained for further analysis, and the
basic statistical information of the accident reports is shown in Table 1.

Lan et al. [37] developed a classification analysis framework for seafarers’ unsafe
acts. With the help of the framework, this study extracted 31 seafarers’ unsafe acts and 38
influencing factors from the 476 accident reports. Table 2 provides the descriptive statistics
of the seafarers’ unsafe acts and their influencing factors.
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Table 1. Basic statistics of 476 maritime accident reports.
Year Collision Grounding Contact Sinking Fire/Explosion
2011 5 8 / 1 1
2012 3 5 / 2 4
2013 2 11 / 4 1
2014 8 4 2 4 2
2015 47 11 6 4 5
2016 41 15 9 9 8
2017 39 12 10 4 3
2018 56 16 14 7 8
2019 28 11 23 1 3
2020 11 / 3 3 2
Total 240 93 67 39 37
Table 2. Descriptive statistics of the seafarers’ unsafe acts and their influencing factors.
Category Variable Frequency  Category Variable Frequency
Qrganlzatlonal Insufficient device (O1) 13.24% Seafarers’ unsafe acts  Inadequate handover (U1) 1.68%
influences
Lack of operation certificate (O2)  2.73% Fallpre to use protective 2.94%
equipment (U2)
Insufficient education and 30.88% Failure to keep navigational 2319
training (O3) R equipment in working state (U3) ohe
- . o Insufficient manning on o
Insufficient manning (O4) 15.97% bridge (U4) 8.82%
o Failure to take safety measures in o
Poor competence (O5) 23.53% restricted visibility (U5) 0.42%
Poor information transmission of 1.05% Failure to perform safety duties 3.36%
the company (O6) o during berthing (U6) oo
Lack of standardization (O7) 12.39% Drinking/ Alcoholism (U7) 2.31%
Unsafe‘ . Lack of route plan review (S1) 1.89% OOW (officer on watch) falls 4.20%
supervision asleep on duty (U8)
Lack of supervision and o Violation of operational o
guidance (52) 29.41% procedures (U9) 4.62%
Navigation beyond authorized 6.09% Failure to check the course and 5.04%
areas (S3) e position (OOW) (U10) R
Inadequate safety 41.81°% Failure to check the planned route 1.479%
management (S4) e in time (OOW) (U11) e
Insufficient maintenance (S5) 11.13% Steering error (duty sailor) (U12) 0.42%
. o Insufficient use of navigational o
Inappropriate route plan (S6) 4.20% equipment (U13) 7.35%
o Over-reliance on navigational o
Cargo defect (S7) 5.25% equipment (U14) 2.10%
. . N Failure to exhibit proper light o
Failure to correct mistakes (S8) 2.73% and shape (U15) 2.10%
. o Failure to make proper sound and o
Ignore rules and regulations (S9) 4.41% light signals (U16) 9.24%
Precondition for =~ Poor communication between 13.03% Failure to maintain proper 48,327
unsafe acts ships (P1) o lookout (U17) e
Poor communication o Failure to control the ship o
(ship-shore) (P2) 2.52% position (U18) 13.03%
Poor team communication (P3) 13.03% Imprgper selection of anchoring 1.68%
position (U19)
Insufficient utilization of bridge o Improper emergency response o
5.04% 16.81%
resources (P4) measures (U20)
. o Ignore alarm signals o
Inadequate preparation (P5) 1.26% or warnings (U21) 0.42%
. . o Failure of seafarers to follow best o
Poor physical condition (P6) 0.42% practices (U22) 1.26%
. o Failure to execute the planned o
Poor emotional state (P7) 1.26% route (U23) 1.89%
Stress (P8) 0.21% Unsafe speed (U24) 20.17%
Alcohol/Drugs (P9) 1.05% Failure to take effective collision 27.94%

avoidance action early (U25)
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Table 2. Cont.
Category Variable Frequency  Category Variable Frequency
Failure to follow the rules in
Lack of safety awareness (P10) 13.66% special waters such as narrow 17.86%
channel (U26)
Lack of situational o Failure to follow the rules in sight o
awareness (P11) 5.46% of one another (U27) 21.22%
Distraction (P12) 5.88°% Failure to follow the rules in 4.41°%
e restricted visibility (U28) e
Fatigue (P13) 7.35% Vigilance negligence (U29) 7.77%
Failure to determine the impact of
Over-confidence (P14) 0.84% environment on ship 11.13%
maneuvering (U30)
Environmental . . o Failure to determine the o
factors Device failure (E1) 4.83% risk (U31) 31.09%
Flooding (E2) 5.04%
Complex navigation o
environment (E3) 22.48%
Busy traffic (E4) 22.06%
Poor visibility (E5) 16.81%
Strong wind and waves (E6) 7.56%
Tidal current effects (E7) 6.51%
External management (E8) 3.57%

3.2. Association Rule

Association rule (AR) is an important part of machine learning with the purpose of
revealing the interrelationships hidden in massive amount of data [35]. Association rule
technique is more adaptable, because there is no requirement for whether the sample data
obey a normal distribution or satisfy a correlation test using association rule technique [34].
The concept of association rule is as follows: assume that I = {i,ip,...,i,} is a set of items
(items), the length of an itemset denotes the number of items contained in an itemset, and
an itemset of length k is called a k-item set. Given a transaction database T = {t1,f3,...,ts},
where each t is a non-empty subset of I. The association rules are denoted as X — Y, where
X CLYCILXNY = @. Xis the left-hand-side (LHS) and Y is the right-hand-side (RHS).
Each association rule is identified by support, confidence and lift [35], which are calculated
as follows [38]:

Support(X —Y) = P(XUY) (1)
Confidence(X —Y) = P(Y/X) ()
Lift(X = Y) =conf.(X = Y)/supp.(Y) (3)

Support of X — Y represents the probability that the data set contains both X and
Y [39]. Confidence is used to measure the probability of X occurring if Y occurs, i.e., the
conditional probability. A rule is considered strongly associated if it is greater than or equal
to the minimum support and minimum confidence [40]. Lift considers the probability of Y
changing when X occurs to characterize the degree of association between the LHS and
RHS, which could avoid the interference of pseudo-strong association rules and prevent
invalid association rules appearing in the final result. A rule is regarded as a valid strong
association rule when the lift value is greater than 1 [41]. These three thresholds are
manually set according to the needs of data mining [42,43].

There are three typical association rule mining algorithms: Apriori, FP-Growth, and
Eclat. However, no matter which algorithm is used, the basic association rule mining
process is the same, which consists of two parts: mining frequent itemsets and extracting
association rules [32]. First, all frequent itemsets are mined from the database, which
are the itemsets with support greater than or equal to the minimum support. The k-
itemsets that satisfy this condition are called frequent k-itemsets. Then, association rules
are generated, which are the frequent itemsets with confidence greater than or equal to the
minimum confidence.
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Eclat is a classical algorithm for searching frequent itemsets in vertical data formats [38].
The core idea of the Eclat algorithm is to divide the search space into smaller subspaces
using prefix-based equivalence relations, and each subspace is searched independently
using a bottom-up search method to generate frequent item sets. The flowchart is illustrated

in Figure 2.

Scan the database, convert
horizontal data to vertical data

!

Obtain support of each items

Delete items if the support
v <minimum support

Frequent 1-itemsets

!

—| Candidate (k+1)-itemsets

andidate (k+1)-
itemsets=d

N Find the
intersection of sets

A 4
Obtain support of
candidate (k+1)-itemsets

Delete items if the support
N v <minimum support

Frequent k-itemsets

Frequent k-itemsets=®

Figure 2. The flowchart of Eclat algorithm.

3.3. Complex Network
3.3.1. Directed Weighted CN Development Based on AR

A complex network is a simple graph G = (V, E) consisting of a certain number of
node sets V and edge sets E, where V = {v1,vy, ..., v, } represents the set of all nodes and
E = {e1,e2,...,en} represents the set of all edges. The complex network can be expressed
by the adjacency matrix A as follows:

o El,‘]'le'j, l—)]
Aij = { 0, else @)

where a;; (i,j € V) is equal to 1 when event i triggers event j and 0 otherwise. w;; denotes
the weights of the edges between adjacent nodes i and j in the network, i.e., the frequency
of event j triggered by event i. When the adjacency matrix is symmetric, the network
is undirected, and conversely, it is a directed network. If all the w;; are not equal in
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the network, the network can be considered a weighted networks, otherwise it is an
unweighted network.

There are diverse interactions between seafarers” unsafe acts and their influencing
factors in maritime transportation activities, i.e., the interaction network of seafarers’ unsafe
acts and their influencing factors belongs to a directed weighted network. In a directed
weighted network, nodes, directed edges and edge weights represent seafarers” unsafe
acts/influencing factors, interaction between seafarers’ unsafe acts/influencing factors and
their strengths, respectively. In the present study, based on the complex network theory, the
association rule results are mapped into the directed weighted network, and the mapping
process is shown in Figure 3. The process consists of three main steps [29]:

(1) Each influencing factor/seafarers” unsafe acts in the association rule represents a node
of the network;

(2) The LHS and RHS in the association rules represent two adjacent nodes i and j,
respectively, and each association rule forms a directed edge of the network;

(3) The confidence value of the association rules is used as the weight w;; of the edges.
To clarify the process, suppose five rules, define R as risk factor, and the confidence
values are marked with different colors in Figure 3.

LHS RHS Confidence R1 R2 R3 R4 RS

R1 R3 1.00 R1 0 1.00 [0.85 |0 1.00
R3 RS : R2 0 091 (088 |0 : @ 0.91

R2 R3 0.91 R3 0 0 0 \\

R2 R4 0.88 R4 0 0 0 0

RI | Ra | 085 R5 |0 o |o o ‘

Figure 3. Mapping association rules to directed weighted network.

3.3.2. Network Topology Features

Each network has specific topology features to characterize its connectivity, interac-
tions and dynamic evolution process. Analyzing the topology features of a network could
provide a comprehensive understanding of the network structure and identify the key
nodes and their dynamic interaction characteristics in the network.

(1) Degree

Degree in a complex network is the most basic network topology feature. The degree
of a node d(i) represents the number of edges that connect the node to other nodes. In
a directed network, the degree of node i can be divided into out-degree (dy,(7)) and in-
degree (d;,,(i)). The out-degree of node i is calculated by the number of edges from node i
to other nodes, while the in-degree of node i represents the number of edges from other
nodes to node i, which can be expressed as [30]:

=) i+ ) 4 (5)

jev jev
i)=Y aj (6)
jev
dout (i) z aij @)
jeV

where V denotes the set of all nodes.
The average of the degrees of all nodes in the network (d(7)) is called the average
degree of the network and is calculated as:

= ST at) ®
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where N denotes the total number of nodes in the network.

(2) Average path length

Average path length L is the average of the shortest paths between all possible node
pairs in the network, which can quantify the distance level of the network calculated as [33]:

1
L= NN = 1) i< i ©)
where N denotes the total number of nodes in the network; /; ; is the number of edges of
the shortest path between nodes i and j.
The network diameter is the maximum distance between any two nodes in the network,
i.e., the maximum of all the /; ;. The network diameter is used to measure the density of the
network, the smaller the diameter, the more densely connected the network is.
(3) Clustering coefficient
The clustering coefficient C measures the degree of aggregation between network
nodes, which is defined as:
C = 2d';/di(d; — 1) (10)

where d’; represents the number of edges among its neighbors; d(i) denotes the degree of
the node. The higher the clustering coefficient of a node, the greater the likelihood that
other nodes will cluster around it. The average clustering coefficient (ACC) of the network
is the average of the CC of all nodes.

In directed weighted networks, the clustering coefficients also need to take into account
the weights of the edges. Barrat et al. [44] defined the formula for calculating the weighted
clustering coefficients C}” as follows:

1 Wij + Wi,
Clw = si(di — 1) Z > a;ja;najy (11)
jh

where s; is the sum of the weights of all adjacent edges of node i; w;; denotes the weights of
the edges between adjacent nodes i and j; w;, denotes the weights of the edges between
adjacent nodes i and h.

(4) Betweenness

The betweenness of a node B; is the number of times all shortest paths in the network
pass through the node which can describes the influence of the node in the global network,
and is calculated as [33]:

Nip (i)
Bi= Y (12)
jAitheN Vjh

where Nj, is the number of shortest paths connecting nodes j and /; Ny (i) is the number
of shortest paths connecting nodes j and h and passing through node i; N denotes the total
number of nodes in the network.

The betweenness centrality of a node Cpy;) is the normalized betweenness of the node,

which is calculated as:

2B,

3.3.3. Node Criticality

Critical node mining and assessment are important elements in complex network
research when complex network theory is applied to risk analysis. In general, the criticality
of nodes depends on the network model and topology. Currently, scholars have proposed
various node criticality assessment methods from different perspectives, such as centrality
algorithm [24], K-Shell decomposition [45], and PageRank algorithm [46]. In particular,
the PageRank algorithm is a specialized algorithm developed by Google to measure the
importance of a specific page relative to other pages in a search engine, and is a classic
method for identifying the criticality of nodes in a directed complex network [47].
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The PageRank algorithm assigns an initial PageRank value to each node in the directed
network to indicate the importance of the node in its initial state, and then iterates until
convergence [48]. During the iteration, each node assigns its current PageRank value
equally to all connected edges of the node, and then each node obtains a new PageRank
value by summing up the PageRank values assigned to all edges pointing to this node. The
process iterates until the result converges to obtain the final PageRank value of the node.
Note that the PageRank values of the nodes form a probability distribution on the network,
so the sum of the PageRank values of all nodes will be 1. The PageRank value of node i can
be defined as:

PR = 7Y, L PR+ 1T (14
t r jev dou t( ]) ] N

where y € [0, 1) is a damping factor ensuring the algorithm never gets stuck in a “sinking
node”; N denotes the total number of nodes in the network.

The interaction network of seafarers’ unsafe acts and their influencing factors to be
constructed in this study belongs to a directed weighted network, therefore, considering
the weighted characteristics of the network, the weighted PageRank algorithm is used to
perform the node criticality analysis, which is expressed as [49]:

w]-l-
Sout (f)

1—7

N (15)

PRi =7} iy PR; +
where wj; is the weight of the edge of node j pointing to node i; sou¢(j) is the sum of the
weights of all output edges of node j.

3.3.4. Community Detection

Complex networks are usually locally clustered and considered to be composed of
different “clusters” depending on the density of connections between different nodes in
the network. A cluster is a community structure in a network, where nodes in a cluster are
more densely connected, while nodes between clusters are more sparsely connected [50].
Exploring the community structure in the interaction network of seafarers” unsafe acts and
their influencing factors could help to understand the structure and function of the global
network and further discover the local patterns of interaction between seafarers’ unsafe acts
and their influences in the network. The same pattern represents the same risk mechanism
among nodes and is more likely to propagate risk than nodes outside the pattern.

Commonly used community structure detection algorithms include graph partitioning-
based community detection algorithm, clustering-based community detection algorithm,
modularity maximization-based community detection algorithm, and random walk strategy-
based community detection algorithm [51]. In this regard, the community discovery algo-
rithm based on random walk strategy considers that random walk in the network tends to
“fall” into the densely connected part corresponding to the community. As a result, Pons
and Latapy [52] proposed a random walk-based inter-vertex similarity measure method,
which could efficiently discover the community structure of the network when there are
less than 1000 nodes in the network [53].

The basic idea of the method is that short-distance random walk tends to stay in the
same community. The random walk on a network G is driven by its transition matrix P,
which can be obtained from the adjacency matrix A of the network G. The random walk of
length t can be represented by the matrix ', where Pj; = (P') . is the probability of going
from i to j through a random walk of length ¢. The parameter ¢ should be set to make the
random walk long enough to ensure that sufficient information about the network topology
could be collected, but not too long to avoid reaching a balanced distribution. Then, the
distances between all adjacent nodes are calculated by:

_1 _1
rij=|D"2P; — D2P]| (16)
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where ||. || is the Euclidean norm; P! is the i row of P!; P]t is the j row of P; D is the
degree matrix of nodes. When adjacent nodes belong to different communities, the rij
distance is larger; conversely, the rij distance is smaller.

Similarly, the distance between two different communities can be calculated by:

_1 _1
G = 1D ZPé?]. -D ZPéz.H (17)
where Pt is the probability vector that go from community C to vertex j in t steps:

T

t
e

Y P;j (18)

ieC

Next, two adjacent communities are selected to merge into a new community and the
distance between communities is updated, and the process is repeated to minimize the
change Ac(Cy, Cy) between all community pairs in the current division.

1 GG »

Ac(Cy, Cp) = ;mrclq

(19)

As research progresses, many community detection methods are proposed. It is also
crucial to evaluate and compare the quality of the community detection results found
by these methods. Clauset et al. [54] proposed Modularity to evaluate the closeness of
each community structure after the division of the network structure. The basic idea is
that the probability of connectivity between nodes in a community is greater than the
probability of connectivity between nodes in other communities. The higher the connection
density between nodes in a community, the better the quality of the community, which is

calculated as: i
1 idj
Q= L '(Aij - g)é(ci, Cj) (20)

’,

where m is the number of edges; A;; is the element of A adjacency matrix in the i" row
and j* column; d; and d;j are the degrees of nodes i and j, respectively; ¢ (ci, c]-) is used
to determine whether nodes i and j are both in the same community; if they are in the
same community, then 6 (c;, cj) = 1, otherwise it is equal to 0. The modularity takes values
between 0 and 1. When the modularity value is equal to 0, it means that all nodes in
the complex network are classified in the same community. In general, the discovered
community is considered to have a good community structure when the modularity value
is between 0.3 and 0.7 [54].

4. Results and Discussion
4.1. Complex Network Development Based on AR

In the present study, association rule mining is implemented by R 4.3.1 using the
package “arules”. Due to the data imbalance problem in the dataset, in order to focus on
the less frequently occurring interactions among seafarers’ unsafe acts and their influencing
factors, this study set the minimum support to 0.01, the minimum confidence to 0.1, the lift
to greater than 1, and the maximum length of the itemset to 2 after many trials. Finally, a
total of 504 association rules are obtained. Then, the interactions between the LHS and RHS
in these association rules are further analyzed, and the rules with inverse or unreasonable
relationships are removed. Finally, 260 association rules are retained, as shown in Figure 4.
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Figure 4. Scatter plot of 260 association rules.

Based on the generated 260 association rules, this study developed an interaction
network of seafarers’” unsafe acts and their influencing factors with 53 nodes and 260
directed edges, as shown in Figure 5. The circles represent the nodes and the arrows
represent the directed edges.

Figure 5. Interaction network of seafarers’ unsafe acts and the influencing factors.

4.2. Network Topology Feature Analysis

(1) Degree

The degree of a node in a complex network is one of the most important and funda-
mental features for analyzing the network topology. In the developed interaction network
of seafarers’ unsafe acts and their influencing factors, the degree of a node is the number of
seafarers’ unsafe acts and their influencing factors that directly connected to other seafarers’
unsafe acts and their influencing factors. The degree of a node reflects the direct influence
of the node in the network, the more connections a node has, the greater the influence of
that node in the network. The in-degree, out-degree, and total degree values of the nodes
in the interaction network of seafarers” unsafe acts and their influencing factors are shown
in Figure 6.
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Figure 6. Degree of the nodes.

It can be seen that the nodes with high in-degree values include failure to determine the
risk (U31), failure to take effective collision avoidance action early (U25), and failure to make
proper sound and light signals (U16), which are significantly influenced by adjacent nodes
and may lead to serious consequences. In particular, failure to determine the risk (U31) has
the largest in-degree with a value of 22, but the out-degree value is only 5, indicating that
there are 22 seafarers’ unsafe acts and their influencing factors in the interaction network
that can lead to seafarers’ failure to determine the risk. On the other hand, the nodes
with high out-degree values include lack of supervision and guidance (52), inadequate
safety management (54), and lack of standardization (O7), which have a higher direct
impact on adjacent nodes. The nodes with the highest total degree values are failure to
determine the risk (U31) and lack of supervision and guidance (52) with a degree value of
27, followed by inadequate safety management (54) and failure to maintain proper lookout
(U17). These nodes with high total degree values are key nodes in the interaction network,
and taking proactive prevention of these influencing factors and seafarers’ unsafe acts
would effectively reduce the connectivity of the network. In addition, the average degree
value of the network is 9.81, which indicates that each seafarers’ unsafe act/influencing
factor in the network is closely related to 9.81 other seafarers” unsafe acts/influencing
factors on average, i.e., changes in each node in the interaction network would cause
changes in an average of 9.81 nodes that have a direct effect relationship with that node.

(2) Average path length

The average path length of a network is the average of the shortest path lengths
between all node pairs in the network. In the developed interaction network of seafarers’
unsafe acts and their influencing factors, the average path length indicates the risk prop-
agation rate of seafarers” unsafe acts and their influencing factors in the network. If the
average path length of the network is shorter, it means that fewer intermediate nodes need
to pass between nodes, indicating faster risk propagation rate of seafarers’ unsafe acts and
their influencing factors in the network.

The average path length of the interaction network is 1.8048, which means that a
change in any seafarers’ unsafe act/influencing factor in the network would cause a change
in other seafarers’ unsafe act/influencing factor that is not adjacent to it by only 1.8048 steps
on average. In addition, the diameter of the network is 5, which is the distance between the
lack of supervision and guidance (52) and insufficient utilization of bridge resources (P4),
indicating that it takes at most 5 steps for any one seafarer’s unsafe act/influencing factor
to affect another seafarer’s unsafe act/influencing factor in the interaction network.
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(3) Clustering coefficient

The clustering coefficient refers to the ratio of the adjacent nodes of the nodes in the
network that are also connected to each other. In the developed interaction network of
seafarers’ unsafe acts and their influencing factors, the weighted clustering coefficient is
used to reflect the aggregation of seafarers” unsafe acts and their influencing factors, as
shown in Figure 7.
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0.50
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Clustering coefficient

0.10
0.00

Figure 7. Clustering coefficient of the nodes.

The weighted clustering coefficient of lack of route plan review (S1), failure to correct
mistakes (S8), device failure (E1), failure to perform safety duties during berthing (U6),
drinking/alcoholism (U7), violation of operational procedures (U9), failure to exhibit
proper light and shape (U15), and failure to follow the rules in restricted visibility (U28) is
1. The results indicate that once these seafarers’ unsafe acts or influencing factors change
in the network, they are very likely to lead to chain reactions or even cause larger-scale
catastrophes in the system, so it is necessary to strengthen the pre-control of these seafarers’
unsafe acts and influencing factors to reduce the chain reactions brought by them. The
average weighted clustering coefficient of the interaction network is the average of the
clustering coefficient of all the seafarers’ unsafe acts and their influencing factors, and its
value is 0.6203, which indicates that the nodes in the network tend to surround the hub
nodes with high clustering coefficient, and the risky interaction could be generated through
fewer edges. In addition, the unweighted network clustering coefficient is 0.6042, which
indicates that the relationship between seafarers” unsafe acts and influencing factors in the
network tends to be more clustered based on the effect of weighting.

(4) Betweenness

Betweenness is the number of times all shortest paths in the network pass through the
node. In the developed interaction network of seafarers’ unsafe acts and their influencing
factors, the betweenness can reflect the mediator role played by seafarers” unsafe acts and
their influencing factors in the risk propagation process. The higher the betweenness value
of a node, the greater the role of the node as a mediator in the network. The betweenness
centrality of nodes refers to the normalized betweenness of nodes, and the results are
shown in Figure 8.

There are 23 nodes in the interaction network with a betweenness centrality of 0,
indicating that these 23 nodes do not act as a mediator in the network. Lack of supervision
and guidance (52) has the largest value of betweenness centrality, about 0.0370, which
indicates that the number of shortest paths through this node in the network is the largest.
This is followed by the lack of safety management (S4) and insufficient manning on bridge
(U4), with betweenness centrality values of 0.0230 and 0.0204, respectively.
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Figure 8. Betweenness centrality of the nodes.

In the interaction network, preventing the appearance of these seafarers” unsafe acts
and influencing factors would effectively increase the average path length and diameter of
the network, reduce the connectivity between seafarers’” unsafe acts and influencing factors,
and help reduce the risk propagation rate.

4.3. Node Criticality Analysis

The PageRank algorithm obtains the criticality of all the seafarers” unsafe acts and their
influencing factors in the developed interaction network, as shown in Figure 9. Table 3 lists
the top 10 and bottom 10 important nodes in the network. Failure to make proper sound
and light signals (U16) has the highest PageRank value, followed by failure to take effective
collision avoidance action early (U25), and improper emergency response measures (U20).
It can be seen that the top 10 nodes all belong to seafarers” unsafe acts, which confirms that
seafarers’ unsafe acts are the direct causes of maritime accidents, and effective control of
seafarers’ unsafe acts with higher importance could interrupt the propagation of risks and
thus reduce the occurrence of maritime accidents. On the other hand, most of the nodes in
the bottom 10 are influencing factors, except for “Failure to keep navigational equipment
in working state (U3)”, which belongs to seafarers’ unsafe acts. In addition, five of the
remaining nine influencing factors are external environmental factors, which indicate that
risk management of such external objective influencing factors may have little effect.

Table 3. Top 10 and bottom 10 nodes ranked in criticality.

The Top 10 The Bottom 10

Rank Nodes PR Rank Nodes PR
Failure to make proper sound and Failure to keep navigational

! light signals (U16) 01369 53 equipment on working state (U3) 0.0073
Failure to take effective collision Poor communication

2 avoidance action early (U25) 0.0802 52 (ship-shore) (P2) 0.0073

3 Improper emergency response 0.0563 51 Lack of standardization (O7) 0.0073
measures (U20)

4 Failure to determine the risk (U31) 0.0545 50 Lack of operation certificate (O2) 0.0073

5 Unsafe speed (U24) 0.0478 49 Insufficient device (O1) 0.0073
Failure to maintain proper

6 Jookout (U17) 0.0357 48 External management (E8) 0.0073
Failure to follow the rules in sight of -

7 one another (U27) 0.0329 47 Poor visibility (E5) 0.0073

8 Failure to follow the rules in special 0.029% 46 Busy traffic (E4) 0.0073

waters such as narrow channels (U26)
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Table 3. Cont.
The Top 10 The Bottom 10
Rank Nodes PR Rank Nodes PR
Failure to determine the impact of Complex navigation
9 environment on ship 0.0254 45 P & 0.0073
. environment (E3)
maneuvering (U30)
Failure to check the course and .
10 position (OOW) (U10) 0.0251 44 Strong wind and waves (E6) 0.0073
U16 0.1369
U25 0.0802
U20 0.0563
Us31 0.0545
U24 0.0478
U17 0.0357
U227 0.0329
U26 0.0296
U30 0.0254
U10 0.0251
U18 0.0246
P10 0.0225
U4 0.0214
S2 0.0198
S4 0.0188
Us 0.0173
P11 0.0167
E2 0.0160
Ul3 0.0134
U9 0.0141
U2 0.0121
S3 0.0121
S3 0.0117
U7 0.0112
P3 0.0107
0 S7 0.0103
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Figure 9. Ranking of the nodes’ PageRank value.
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4.4. Community Detection

In the present study, a community detection method based on random walk strategy is
utilized to extract communities from the developed interaction network of seafarers’” unsafe
acts and their influencing factors, and to comprehensively explore the risk propagation
patterns from a multidimensional perspective. In order to obtain a higher modularity value,
after several trails, the modularity value (0.3631) is maximum and greater than 0.3 when
the step length t of random walk is set to 4, which indicates that the community detection
has obtained a good community structure. As shown in Figure 10, the interaction network
of seafarers’ unsafe acts and their influencing factors is divided into five communities, and
it should be noted that there are adjacent nodes between communities, which means that
there is still the possibility of risk propagation between different communities, but their risk
interactions are sparser compared with those within communities. To further explore the
risk propagation patterns in the interaction network, this study conducts specific analysis
for each of the five communities.

Figure 10. Community detection results of the network.

Community 1 includes 10 nodes of insufficient maintenance (S5), cargo defect (S7), lack
of safety awareness (P10), device failure (E1), flooding (E2), strong wind and waves (E6),
failure to use protective equipment (U2), failure to perform safety duties during berthing
(U6), violation of operational procedures (U9), and improper emergency response measures
(U20). The community involves four typical risk propagation paths of seafarers’ unsafe
acts, as shown in Figure 11. The colored arrows refer to typical risk propagation paths.
(1) Due to improper daily inspection and maintenance of the ship, sudden failure of device
(rudder, main engine, etc.) during navigation operations, as well as poor safety awareness
of the seafarers, etc., resulting in untimely and inappropriate emergency response measures,
which eventually lead to ship accidents; (2) Under the effect of strong wind and waves, as
well as ship’s being empty, fully loaded, overloaded and improperly cargo loaded. The
ship deck is on the waves, and water enters inside the cabin, due to the seafarers” poor
safety awareness and other reasons. The seafarer goes to the main deck for side cabin
operation without using safety ropes, wearing life jackets and other appropriate protective
measures, and the emergency response measures are improper, which eventually have
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a greater possibility of leading to the personnel falling into the water and ship sinking
accidents; (3) When the ship moored at berth, under the effect of strong wind and waves,
the ship position is uncontrolled and may be dragging anchor, meanwhile, the seafarers
do not fully perform the safety duties of berthing watch and make routine inspection
of the ship, the seafarers fail to discover the current danger in time and do not take any
emergency measures which may eventually lead to ship accidents; (4) Due to improper
daily inspection and maintenance of the ship, as well as the weak safety awareness of the
seafarers, the seafarers violate the operation procedures when carrying out fire operation,
which tends to cause fire and explosion accidents.

Insufficient
maintenance (S5)

@

Strong wind and
waves (E6)

® .| Device failure 2l Improper emergency response
" (ED) > measures (U20)
Lack of safety , Failure to use protective
awareness (P10) . equipment (U2)
2 .
@ » Flooding (E2)

A

Failure to perform safety duties
during berthing (U6)

Cargo defect (S7)

Violation of operational

procedures (U9)

Figure 11. Schematic diagram of seafarers’ unsafe act risk interaction community 1.

Community 2 includes 21 nodes such as lack of standardization (O7), complex naviga-
tion environment (E3), busy traffic (E4), poor visibility (E5). The community involves the
largest number of nodes, mainly including three risk propagation paths of seafarers’ unsafe
acts, and has typical collision accident characteristics, as shown in Figure 12. The colored
arrows refer to typical risk propagation paths. (1) When there are potential risks in the cur-
rent environment, the relevant shore-based maritime authorities do not provide timely and
accurate navigational guidance and poor ship-shore communication, resulting in the loss of
seafarers’ situational awareness, meanwhile seafarers fail to make full use of navigational
aids and maintain a proper lookout, thus failing to make a full evaluation of the current
dangerous situation, thus causing the subsequent series of seafarers’ unsafe acts (U24, U25,
U26, U27); (2) Due to the irregularity of the company’s operation rules and regulations,
the seafarers do not keep the vigilance required by the special situation in the complex
navigation environment or the busy traffic, and fail to establish effective cooperation and
communication between ships and within the bridge team, which cause the seafarers to
lose situational awareness of the current environment, distracts their attention, and failure
to keep a regular lookout, thus, leading to the subsequent series of seafarers’ unsafe acts
(U31, U24, U25, U26, U27); (3) The seafarers do not keep the AIS and other navigational
aids in working condition, and do not follow the safety rules in restricted visibility, as well
as the seafarers lose their situational awareness and do not maintain a proper lookout, so
that they fail to make a full evaluation of the current dangerous situation, which leads to a
subsequent series of seafarers’ unsafe acts (U16, U24, U25, U26).
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Figure 12. Schematic diagram of seafarers’ unsafe act risk interaction community 2.

Failure to follow the rules in special
waters such as narrow channel (U26)

Failure to exhibit proper light
and shape (U15)

Failure to follow the rules in sight of
one another (U27)

Failure to follow the rules in
restricted visibility (U28)

Community 3 includes 4 nodes of tidal current effects (E7), external management
(E8), failure to control the ship position (U18), and failure to determine the impact of
environment on ship maneuvering (U30). The community involves two risk propagation
paths of seafarers’” unsafe acts, and has typical contact accident characteristics, as shown
in Figure 13. The colored arrows refer to typical risk propagation paths. (1) The current
water is in high tide/low tide situation, the seafarers fail to fully evaluate the effect of
current environment on ship maneuvering, and fail to control the ship’s position during
the process of leaving berth, resulting in ship contact accidents; (2) Due to the defects in the
management of external organizations such as wharf companies, the seafarers fail to fully
evaluate the effect of the current environment on ship maneuvering and fail to control the
ship’s position under the effect of tidal currents, resulting in ship contact accidents.

Tidal current @
effects (E7)

Failure to control the ship
position (U18)

)

4

!

External
management (ES)

Failure to determine the impact of
environment on ship maneuvering (U30)

Figure 13. Schematic diagram of seafarers’ unsafe act risk interaction community 3.

Community 4 includes 13 nodes such as insufficient device (O1), lack of operation
certificate (O2), insufficient education and training (O3), and insufficient manning (O4).
The community involves three risk propagation paths of seafarers’ unsafe acts, as shown
in Figure 14. The colored arrows refer to typical risk propagation paths. (1) Insufficient
device preparation of the ship, such as the lack of paper charts and charts not updated in
time, leads to the omission of the seafarers in designing the route plan, which makes the
route plan with potential danger, meanwhile, due to the insufficient safety education and
training received by the seafarers, the lack of implementation of the safety management
system on board ship and the lack of supervision and guidance, the captain does not
strictly review the route plan, which tends to cause the seafarers’ unsafe acts, resulting in
ship grounding accidents; (2) The ship is a inland ship, the seafarers on board have not
been trained for sea navigation, the safety management system of the ship company has
not been implemented on board. There is a lack of supervision and guidance, and the
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supervisors ignore the relevant regulations, which makes the inland ship navigate beyond
the approved navigation area. In addition, the insufficient competence and manning of
the seafarers, results in insufficient manning on the bridge, which eventually leads to ship
accidents; (3) When the supervisors know the defects of the devices on board, due to the
insufficient safety education and training received, as well as the failure to implement the
safety management system of the shipping company on board, supervisors may ignore the
possible risks of the current situation and fail to deal with the problem in time, which lay
the groundwork for the emergence of seafarers’ unsafe acts.

Insufficient device (O1)

Lack of route plan review
(S

® _|Inappropriate route plan
. (S6)

Lack of operation certificate (02)

Lack of supervision and
guidance (S2)

Ignore rules and
regulations (S9)

A 4

AA

@

Insufficient education
and training (O3)

Fail to correct the
mistakes (S8)

Inadequate safety
management (S4)

YY

(04

Insufficient manning

A 4
Insufficient manning on
bridge (U4)

Navigation beyond the |
authorized areas (S3)

A 4

A

Poor competence (O5)

Figure 14. Schematic diagram of seafarers’ unsafe act risk interaction community 4.

Community 5 includes 5 nodes of fatigue (P13), insufficient utilization of bridge
resources (P4), failure to check the course and position (OOW) (U10), drinking/alcoholism
(U7), and OOW falls asleep on duty (U8). The community has typical ground accident
characteristics, as shown in Figure 15. Seafarers are in a fatigued state and there may be
alcoholism or drinking within 4 h before the watch (operation), and the alarm system such
as BNWAS (Bridge Navigational Watch & Alarm System) is not fully utilized during the
watch on the bridge, resulting in the OOW falling asleep on the bridge, thus, not checking
the course and position as required, which eventually lead to the ship grounding accidents.

Fatigue
(P13)

A

Drinking/Alcoholism (U7)

Insufficient utilization of
bridge resources (P4)

>l OOW falls asleep on duty (US)

y
Failure to check the course and
position (OOW) (U10)

Figure 15. Schematic diagram of seafarers’ unsafe act risk interaction community 5.
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4.5. Results Discussion

The present study introduces association rule technique into complex network and
develops a directed weighted network of seafarers’ unsafe acts and their influencing factors
with 53 nodes and 260 edges, which has a high clustering coefficient (0.6203) and a short
average path length (1.8048). The results show that the interaction network developed
belongs to a typical small-world network, indicating that the network has great connectivity,
and the connection between nodes has randomness and uncertainty, which leads to the
fast and wide risk propagation of seafarers’ unsafe acts involved in maritime accidents.
Meanwhile, certain seafarers’ unsafe acts and their influencing factors play an important
role in the development of maritime accidents, and should be given focused control.
The small-world nature of the network increases the difficulty of maritime safety risk
management, and it is necessary to identify the nodes in the network that have high risk
propagation ability and clarify the risk propagation path of typical seafarers” unsafe acts.

Then, the weighted PageRank algorithm is used to clarify the criticality of seafarers’
unsafe acts and influencing factors in the network, and the results show that failure to
make proper sound and light signals (U16) achieves the highest PageRank value, followed
by failure to take effective collision avoidance action early (U25), and improper emergency
response measures (U20). In addition, the top 10 nodes all belong to seafarers” unsafe
acts, indicating that effective control of unsafe acts with higher criticality would inter-
rupt the propagation of risks and thereby reduce the occurrence of maritime accidents.
Finally, based on the community detection method of random walk, 5 communities in
the interaction network are identified and 13 typical risk propagation paths of seafarers’
unsafe acts are clarified. The results facilitate maritime stakeholders to understand the
evolution mechanism of seafarers’ unsafe acts from a “complex system” perspective, and
to develop safety management strategies for high-risk nodes, so as to improve maritime
transportation safety.

The results of this study are consistent with previous studies. For example, all of the
top 10 critical events in grounding accidents belong to contributing events, i.e., events that
directly lead to the occurrence of ship grounding [30]. Similarly, the top 10 critical nodes in
this study all belong to seafarers” unsafe acts. However, Ma et al. [30] stated that “Deviated
from the ships’ route” was the riskiest hazardous event. The reason for this difference
may be the different types of maritime accident addressed. Additionally, Fan et al. [55]
employed Bayesian network to model the interaction among maritime risk factors, and
most probable explanation (MPE) was used to explore the most probable risky scenario.
However, it is difficult to specify the risk propagation path, because its results may be
changed by the introduction of irrelevant variables.

5. Conclusions

In the present study, inspired by the advantages and applications of directed com-
plex network, association rules are integrated with complex network to develop the risk
interaction network of seafarers’ unsafe acts. Based on complex network theory, the de-
veloped network is quantitatively analyzed, and the risk evolution characteristics and
laws of seafarers” unsafe acts are clarified. The main contributions of the present study are
as follows:

(1) The present study introduces association rule into complex network and develops a
directed weighted network of seafarers’ unsafe acts and their influencing factors with
53 nodes and 260 edges, which avoids the defect that the edge weights are over-reliant
on expert experience in the development of traditional complex networks, providing
a new way to investigate the risk interaction of seafarers’ unsafe acts involved in
maritime accidents.

(2) The risk propagation characteristics and paths of seafarers’ unsafe acts are identified
and demonstrated, which could provide control priorities for interrupting the risk
propagation of seafarers’ unsafe acts so as to improve maritime transportation safety.
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Some limitations of the present study should be noted. Epistemic uncertainty in
the initial data may affect the reliability of the results [56]. Maritime accident databases
often suffer from data errors and missing data. Therefore, the present study selected
accident reports issued by official maritime investigation authorities as research data,
which have a certain degree of reliability. It is important to continue collecting and collating
maritime accident reports, and mining new datasets may produce new research findings.
Then, with the rapid development of emerging technologies such as big data and Internet
of Things, ship intelligence has become an inevitable trend in the development of the
shipping industry, and new seafarers’ unsafe acts and their influencing factors may appear
in maritime transportation activities. Therefore, it is necessary to update the dataset of
seafarers’ unsafe acts and their influencing factors in future research. Additionally, the
combination of GISIS database, AIS data etc., with maritime accident investigation reports
should be considered to further enrich the research data sources, which may generate
interesting findings.
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