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Abstract: Electrocardiography (ECG) is a simple and safe tool for detecting heart conditions. Despite
the diaspora of existing heartbeat classifiers, improvements such as real-time heartbeat identifi-
cation and patient-independent classification persist. Reservoir computing (RC) based heartbeat
classifiers are an emerging computational efficiency solution that is potentially recommended for
real-time concerns. However, multiclass patient-independent heartbeat classification using RC-based
classifiers has not been considered and constitutes a challenge. This study investigates patient-
independent heartbeat classification by leveraging traditional RC and next-generation reservoir
computing (NG-RC) solely or in a cascade. Three RCs were investigated for classification tasks: a
linear RC featuring linear internal nodes, a nonlinear RC with a nonlinear internal node, and an
NG-RC. Each of these has been evaluated independently using either linear ridge regression or
multilayer perceptron (MLP) as readout models. Only three classes were considered for classification:
the N, V, and S categories. Techniques to deal with the imbalanced nature of the data, such as the
synthetic minority oversampling technique (SMOTE) and oversampling by replacement, were used.
The MIT-BIH dataset was used to evaluate classification performance. The area under the curve
(AUC) criterion was used as an evaluation metric. The NG-RC-based model improves classification
performance and mitigates the overfitting issue. It has improved classification performance by 4.18%
and 2.31% for the intra-patient and inter-patient paradigms, respectively. By cascading RC and
NG-RC, the identification performance of the three heartbeat categories is further enhanced. AUCs of
97.80% and 92.09% were reported for intra- and inter-patient scenarios, respectively. These results
suggest promising opportunities to leverage RC technology for multiclass, patient-independent
heartbeat recognition.

Keywords: arrhythmia classification; ECG signal; reservoir computing; next generation reservoir
computing; nonlinear vector auto-regressive; cardiovascular disease

1. Introduction

Accurate identification and classification of cardiac arrhythmias remains paramount
in clinical cardiology, given their well-established association with significant morbidity
and mortality [1]. Electrocardiograms (ECGs) offer a noninvasive and readily obtainable
window into the electrical activity of the heart, allowing physicians to visually assess for
arrhythmias by analyzing characteristic wave morphology, timing, and presence/absence
(e.g., P wave, QRS complex, T wave, Figure 1). However, manual analysis, particularly of
extended recordings such as Holter ECGs, can be time-consuming, prone to fatigue-induced
errors, and potentially limit diagnostic efficiency. To alleviate the burden of time-consuming
manual analysis, automatic classifiers that extend the capabilities of human experts have
been proposed.
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Figure 1. ECG signal of one heartbeat.

Researchers have developed a plethora of automatic arrhythmia detectors and clas-
sifiers following a four-step process. Initially, the ECG signal undergoes a preprocessing
stage to eliminate undesirable noise. This endeavor is fulfilled via diverse techniques,
including digital filters [2,3], wavelet transforms [4], adaptive filtering [5], and Bayesian
filtering [6]. Subsequently, each heartbeat is delineated and discerned on the basis of its
QRS complex. The extracted features are utilized for the classifier training process, which
represents the third step. The classification process itself represents the final step.

Classification performance is strongly related to the effectiveness of the extracted
features and the type of classifier. Traditional arrhythmia classifiers leverage handcrafted
features extracted from the raw ECG signal across various domains.

Morphological features, such as the amplitude and duration of different waves, can
be extracted from the time domain of the ECG signal [7–11]. Various classifiers trained on
this category of features have been proposed. For instance, a decision tree-based classifier
trained to recognize six arrhythmia types achieved an accuracy of 99.51% [7]. Similarly, a
linear discriminant analysis (LDA)-based classifier produced an accuracy of 94.03% when
used to discriminate between six types of heartbeat [8]. In [12], authors use cluster analysis
to separate the five arrhythmia types. An accuracy of 94.00% is reported. An accuracy of
99.40% is realized using a regression neural network-based classifier to distinguish 5 types
of arrhythmia [9]. Authors in [13] performed a comparative study between four linear
classifiers using a combination of R-R interval and morphological handcraft features.

Detailed characteristics of the ECG signals can be obtained by applying the time-
frequency domain through wavelet coefficients. In general, classifiers trained on wavelet-
based features achieve better performance [14]. Several studies have found that incorporat-
ing rhythmic characteristics of the ECG signal, such as R-R intervals, into the feature vector
enhances classification performance [15,16]. The nonlinear dynamics of the heartbeat ECG
signal were obtained from statistical metrics such as high-order statistics (HOS), which
were used to train a fuzzy hybrid neural network-based classifier. An accuracy of roughly
96.00% is registered [17].

Combining features from various domains into a single feature vector is a popular
approach for leveraging complementary information captured by each domain. Several
studies were developed with various classifiers, achieving enhanced results [18,19]. Com-
parative studies between morphological-based and frequency-based classifiers have also
been presented [20].

These techniques (i.e., classifiers based on handcrafted features) have been largely
superseded by emerging approaches, particularly those based on deep learning [21–30].
These novel approaches automatically extract relevant features that enhance classification
accuracy, despite their elusive nature.

Despite the numerous arrhythmia classifiers in the literature [22,23,31–38], some of
which have outperformed state-of-the-art methods [22,23,31,32], the need for high-speed
and hardware-compatible classifiers still persists.
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Reservoir computing (RC) models [39,40] provide a potential solution for computation
that can overcome the limitations of conventional methods when it comes to execution
speed and physical implementation [41,42]. These models present new opportunities and
advantages that can improve automatic heartbeat classifiers and relieve various constraints,
such as training speed and hardware compatibility. RC models have been widely applied to
various applications that involve the analysis of ECG signals. These applications comprise
ECG de-noising [43], ventricular heartbeat classification [44], stress detection [45], and
arrhythmia detection [46,47].

Next-generation reservoir computing (NG-RC) [48], which is based on nonlinear
vector auto-regressive (NVAR) transformation, has shown promising results for forecasting
complex dynamic systems. Extensive research has been conducted on reservoir computing
(RC) [49,50], providing detailed explanations of the remarkable success of RCs and leading
to the development of NG-RC. However, there has been insufficient research focused on
the utilization of NG-RCs for arrhythmia classification.

RCs are potentially considered for real-time heartbeat classification due to their poten-
tial for offering a fast, scalable, and reliable solution [44,46,47,51,52]. However, they have
only been considered for binary classification. Their exploitation for multiclass patient-
independent heartbeat classification remains an under-investigated avenue. This study
aims to explore traditional RC (linear RC and nonlinear RC) and next-generation RC for
multiclass patient-independent heartbeat classification. By cascading RC and NG-RC, the
study also aims to improve the classification performance while preserving the inherent
RC’s computing potentiality and hardware amenability. This means that RC’s feature ex-
traction and light training processes must not be burdened by additional trainable models.

2. Materials and Methods
2.1. Materials
ECG Database

The MIT-BIH arrhythmia database [53] is used to evaluate the underlying research.
It comprises 48 records, each lasting 30 min, obtained over a 10 mV range with an 11-bit
resolution and a sampling frequency of 360 Hz. Each file represents a distinct patient’s
pathology. In this study, we excluded four files with paced beats and solely analyzed
44 records.

The AAMI EC57 standard [54] recommends organizing heartbeat classes into five
distinct categories, as specified in Table 1, namely the N, V, S, F, and Q categories. This
study focuses on the classification of three categories: supraventricular (S), normal (N), and
ventricular ectopic (V). Figure 2 illustrates the manifestation of four heartbeat categories in
one patient ECG signal (record 208).

Each heartbeat is represented by a segment of D = 280 samples (X ∈ RD) taken
from the raw single lead ECG signal in the time domain. The ECG in each record has
been normalized to have a zero mean and a standard deviation equal to one. To ensure
accurate heartbeat segmentation, we used precisely annotated QRS complex occurrences
from the MIT–BIH database, which effectively eliminates biases introduced by imper-
fect QRS detection algorithms. This will enable a concise and objective classification
performance assessment.

Table 1. Classes of heartbeat for each category.

Category Class

N Left and right bundle branch block beats (L, R), Normal beat (N),
Nodal (junctional) escape beat (j), Atrial escape beat (c)

S Aberrated atrial premature beat (a), Atrial premature beat (A),
Supra-ventricular premature beat (S), Nodal (junctional ) premature beat (J)

V Ventricular escape beat (E), Premature ventricular contraction (V)
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Table 1. Cont.

Category Class

F Fusion of ventricular and normal beat (F)

Q Paced beat (/), Fusion of paced and normal beat (f) Unclassified beat (U)

Figure 2. Four heartbeat classes (record 208). Each heartbeat is represented by 280 samples (sampling
frequency = 360 samples/s).

2.2. The Inter- and Intra-Patient Paradigm

To alleviate classification bias and address over-training concerns for inter-patient
cases, the database was partitioned into two patient-independent sets according to AAMI
EC57 guidelines. Specifically, a training set (Set-1) consisting of records: 101, 106, 108, 109,
112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, and 230, as
well as a testing set (Set-2) containing records: 100, 103, 105, 111, 113, 117, 121, 123, 200, 202,
210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233, and 234 are created (Table 2). It is worth
noticing that the inter-patient paradigm refers to the situation in which training and testing
datasets are not patient-dependent.

Table 2. The count of heartbeats in each category.

Category Set-1-Raw Set-1-SMOTE Set-1-REPLICA Set-2-Raw

N 44,198 44,198 45,796 45,738
S 1836 46,032 45,168 941
V 3217 46,249 45,360 3782
F 415 - - 388
Q 8 - - 7

In the patient-dependent case or simply intra-patient paradigm, the training and
testing datasets are regrouped into one set, shuffled, and subsequently randomly di-
vided into two new sets with a percentage of 70% and 30% for the training and testing
processes, respectively.

2.2.1. Data Imbalance and Overfitting Issues

Overfitting occurs when a model exhibits deteriorated classification performance on
the unseen data while achieving the highest scores on the training data. For both readouts
(i.e., linear ridge and MLP) we leveraged the regularization technique to mitigate this issue.
To combat the MIT-BIH imbalance issue, two techniques are used, namely, synthetic minor-
ity over-sampling technique (SMOTE) [55]) and oversampling by replacement (REPLICA).
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The SMOTE technique generates synthetic samples for minority classes by perturbing
existing samples using rotation and skew-like operations in their feature space, while the
REPLICA technique replicates minority class samples to achieve parity with the majority
class in terms of sample count. As depicted in Table 2, the dataset Set-1-Raw (original count),
Set-1-SMOTE (dataset Set-1-Raw augmented by SMOTE), and Set-1-REPLICA (dataset
Set-1-Raw augmented by REPLICA) are used in the training phase, while Set-2-Raw is used
as test dataset.

2.2.2. Reservoir Computing Model

Reservoir computing presents a powerful and efficient framework for various machine-
learning tasks, particularly appealing for its computational efficiency, scalability, and
flexibility. Due to these distinctive features, RCs have garnered attention in various fields
such as control theory [56], classification schemes [57], modeling complex systems [58],
and forecasting and prediction schemes [59,60]. They are physically implemented through
diverse technologies [61,62]. Consequently, many software frameworks and libraries have
been developed and published in the literature [63,64].

Three layers constitute conventional RC models, Figure 3. The input layer receives
observed data Xin(n) ∈ RD at time step n, with D = 280 being the feature number of each
heartbeat. Before being broadcast to the reservoir nodes, the data undergoes a reshaping
process (c × h) = (10 × 28) and then is projected onto the input weights Win.

Figure 3. Basic architecture of traditional RC. Three layers, the input layer receives the input data.
The reservoir extracts the features. The readout layer maps the extracted features representing the
input into the corresponding class. ‘Xin’: input data (280 samples for each heartbeat). ‘Win’: input
weights (initialized randomly and fixed). ‘W’: reservoir’s internal weights (initialized randomly and
fixed). ‘Wout’: output weights (the only trainable parameter). ‘SVM’: support vector machine. ‘MLP’:
multilayer perceptron. c = 20, h = 28.

The core of the RC is the reservoir (encoder), which has a pool of N internal nodes or
states (r(n)). In general, nodes are fully or partially interconnected by fixed random weights.
In response to input data (input data projected onto the input weights), the nodes act like
dynamical systems that evolve into novel high-dimensional space states r(n + 1) ∈ Rc×N ,
which are used as representative features of the corresponding input data. In other words,
the reservoir acts as a feature extractor. Equations (1) and (2) are the differential equations
that govern the evolution of the internal states for linear and nonlinear RC, respectively [50]:

r(n + 1) = (1 − α)r(n) + α(Wr(n) + WinXin(n) + b) (1)

r(n + 1) = (1 − α)r(n) + α tanh (Wr(n) + WinXin(n) + b) (2)

where α is the decay rate of the node, and b is the bias vector. The hyperbolic tangent
function tanh provides the RC with the required non-linearity. Win (D × N) denotes the
input-weight matrix, and W( N × N) represents the forward and recurrent connection
weights between the reservoir’s internal nodes.

The [W, Win] (the encoder parameters matrix) are randomly initialized and kept con-
stant during the training process.
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The output layer (decoder) could be constructed by various readout mechanisms such
as linear regression, support vector machine, or multilayer perceptron. Here, two tech-
niques are investigated, namely linear Ridge regression and MLP.

In the case of linear Ridge readout, the RC states are linearly combined through the
output trainable weights (the only trainable parameters of the classifier) to map the input
to the desired output (class labels), as outlined in Equation (3):

y(n + 1) = Woutr(n + 1) + bout (3)

where [Wout, bout] are the decoder weights, and y(n) is the network output.
When the readout is an MLP neural network, the weights Wout designs the MLP weights.

2.2.3. Next-Generation Reservoir Computing

In contrast to traditional RCs, NVAR-based RCs (i.e., next-generation RCs) are straight-
forward to build and do not entail any computational burden. The input data X(n) is
transformed into a novel nonlinear form that encompasses nonlinear parts of the input
data, such as squared samples, first-order nonlinear polynomial samples, and the original
inputs, Figure 4.

Here, we construct the NG-RC by combining the original input data with its first-order
nonlinear polynomial, as shown in Equation (4). We have not taken squared samples in the
construction of the NG-RC.

r
′
= [r(i,1), . . . , r(i,N), r(i,1) × r(i,2), . . . , r(i,n−1) × r(i,n)]

T (4)

Figure 4. Next-Generation RC concept (NVAR transform).

The experiments performed in this study (training and testing processes) were devel-
oped using Python 3.11 and Tensorflow 2.12. The software was installed on an MSI laptop
with 2.6 GHz, a quad-cores processor, and 16 GB of RAM running under Windows 10.

2.3. Methods
2.3.1. Ng-Rc Based Classifier

First, we investigate NG-RC for the classification process, Figure 5. Before broadcasting
the input data into the linear ridge, or MLP, the data is transformed into novel nonlinear
features through the NVAR transform, as illustrated in Figure 4.
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Figure 5. NG-RC-based classification. ‘Xin’: input data (280 samples for each heartbeat). ‘NVAR’:
nonlinear vector autoregressive. ‘PCA’:principal component analysis. Readout Ridge: Linear ridge
regression. Readout MLP: Multilayer perceptron. ‘N, V, and S’: heartbeat categories.

We evaluated the two readouts (i.e., linear ridge and MLP) on the raw and the NVAR-
transformed data to assess how the NVAR transformation affects classification accuracy.
Following the path in Figure 5, we obtained four classifiers. They will be referred to
as the Original Data + Ridge classifier (path ‘a-b’), Original Data + MLP (path ‘a-d’),
NVAR + Ridge (path ‘c-b’), and NVAR + MLP (path ‘c-d’).

2.3.2. Rc Based Classifier

Due to the richness of RC architecture, RC-based classifiers can be constructed in
various configurations. For instance, an RC-based classifier is constructed using linear
nodes in the reservoir (LRC) and a linear ridge (Ridge) in the readout layer. This classifier is
depicted as LRC + Ridge (path ‘a-b-c’) as a naming convention to simplify the designation
of all possible combinations. Similarly, NLRC + Ridge (path ‘e-f-c’) is a classifier constructed
using nonlinear nodes in the RC reservoir and the linear Ridge in the readout layer. As a
result, two additional classifiers can be constructed based on the traditional architecture,
namely the classifier LRC + MLP (path ‘a-b-g’), and the classifier NLRC + MLP (‘e-f-g’).

2.3.3. Cascade Based Classifier

When a cascade configuration is considered (i.e., RC in cascade with NG-RC), the NG-
RC (NVAR) model will be cascaded with all RC-based classifiers. Four additional classifiers
were obtained. Following the naming convention, the classifier LRC + NVAR + Ridge (path
‘a-d-c’) refers to the classifier constructed using linear RC in cascade with NG-RC and a
linear Ridge. Finally, eight classifiers were obtained, which are illustrated in Figure 6. A
comparative study of the eight classifiers will be performed to select the configuration that
achieves the best classification performance.

2.3.4. Performance Evaluation Criterion

Due to the significant class imbalance, that characterizes the MIT-BIH arrhythmia
database, we utilized the the Area Under Curve (AUC) criterion as a performance metric
for hyper-parameter selection and classification evaluation. We leveraged the AUC crite-
rion during the benchmarking process to select the best classifier because it is a concise
single-value metric for overall classification performance and can be easily interpreted and
compared. In addition, the AUC is a robust metric for the case of imbalanced datasets, such
as the MIT-BIH database.
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Figure 6. Architecture of the classifiers based on reservoir computing (NG-RC and RC). Each path in
the schematic illustrates a scenario of classification. ‘LR’: linear RC states. ‘NR’: nonlinear RC states.
‘PCA’: principal component analysis. ‘MLP’: multilayer perception. ‘BD’: bidirectional. ‘Xin’: input
data (280 samples for each heartbeat). ‘Win’: input weights (initialized randomly and fixed). ‘NLRC’:
nonlinear circular. ‘LRC’: linear circular. ‘NVAR’: nonlinear vector autoregressive.

AUC is calculated by integrating the area under the receiver operating characteristic
(ROC) curve over all possible thresholds. The ROC curve plots the true positive rate (TPR)
against the false positive rate (FPR) at different thresholds, Figure 7. More information
about AUC and ROC can be found in [55,65]. The convergence towards the upper-left
quadrant signifies high performance characterized by both high sensitivity and specificity.

Figure 7. ROC curve. As the ROC curve approaches the upper left corner of the coordinate (1, 0), the
AUC metric correspondingly increases. The blue and black curves are two ROC curves.

The ROC curve reflects the sensitivity (TPR) and specificity (1-FPR) of the model’s
classification performance. The accuracy metric cannot be alone employed for evaluating
the classification performance of a predictor trained on an imbalanced dataset since it results
in a biased evaluation. However, when benchmarking with the literature, we utilized the
overall accuracy (ACC) Equation (5), with sensitivity (SEN), Equation (6), positivity (PPV),
Equation (7), and specificity (SPEC), Equation (8) metrics so that an unbiased evaluation
could be performed. These metrics are commonly used in an imbalanced multi-class
heartbeat classification problem.
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ACC =
TP + TN

TN + TP + FN + FP
. (5)

SEN =
TP

TP + FN
. (6)

PPV =
TP

TP + FP
. (7)

SPEC =
TN

TN + TP
. (8)

2.3.5. Principal Component Analysis

Since the reservoir produces high-dimensional data, reducing its dimension space
before the training process is paramount. Principal component analysis (PCA) [66,67] is
a statistical technique that can reduce the dimensionality of data while preserving the
most important information. Here, we leveraged the PCA to simplify the complex data
generated by the RC. The PCA model projects the RC state’s high-dimensional space (c*N)
into a reduced space, referred to as (dim). This parameter (i.e., dim) is selected through a
scanning process to be dim = 40.

3. Results
3.1. Classifier Training Process

The proposed classifier has three sets of weights (namely, Win, W, Wout, and bout).
However, only the readout weights are trainable (Wout and bout). A fixed seed value is
employed for the pseudo random number generator responsible for initializing the model
weights. The algorithm run for 5000 epoch.

To achieve optimal classification performance, the hyperparameters of the classifier
components should be tuned.

3.1.1. Rc Hyperparameters Selection

The effectiveness of the RC for feature extraction hinges on a set of crucial hy-
perparameters, which govern the internal dynamics and representation capabilities of
the RC:

• The number of RC’s internal nodes N, which controls the RC capacity.
• The spectral radius ρ, which designs the scaling of the internal connections within

the reservoir.
• The connection percentage β, which determines the sparsity of connections within the

RC’s nodes.
• The leakage percentage l, which introduces a decay factor to the RC’s internal activa-

tions over time.
• The input scaling ω, which scales the input data.

Three hyperparameters are considered in the scanning process, namely the spectral
radius ρ, and the internal nodes N. Experiments were conducted for the two spectral
regimes of the RC (i.e., LSR (ρ = 0.1) and HSR (ρ = 0.98)). Figures 8 and 9 illustrate the
results obtained while selecting the conventional RC internal state number N when the
Ridge and MLP readouts are considered. Here, ‘dim’ is fixed to 24 features. The remaining
hyperparameters are empirically selected. The connection percentage is selected to be equal
to β = 0.98, the leakage percentage is l = 0.98, input scaling is ω = 0.1, and noise level is
ξ = 0.001.

The highest score was obtained when N = 15 in the MLP readout case, whereas N was
55 in the Ridge readout case. However, some classifiers achieve better results for different
dim hyperparameter values.
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Figure 8. Classification performance as a function of the reservoir internal node number in the case
of linear Ridge readout. Experiments were performed to select the optimal number of the reservoir’s
internal nodes.

Figure 9. Classification performance as a function of the reservoir internal node number in the case of
MLP readout. Experiments were performed to select the optimal number of the reservoir’s internal nodes.

3.1.2. Linear Ridge Training Process

The regularized least-squares regression supervised learning algorithm is used to train
the linear ridge parameters Wout and bout. Usually, this is achieved by optimizing the ridge
regression loss function, Equation (9), imparting flexibility to RCs in the training process and
parameter adjustment while imposing minimal computing resource requirements [57,68]:
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[W∗
out, b∗out] = min

1
2

∥∥∥Woutr + bout − y
∥∥∥2

+ λ
∥∥∥Wout

∥∥∥ (9)

The r’s in the precedent equation represent the reservoir model space proposed in [57].

3.1.3. Linear Ridge Readout Hyperparameters Selection

Linear ridge regression only requires tuning a regularization parameter λ to combat
overfitting during training. Here, we selected this parameter empirically (λ = 10 ).

3.1.4. Mlp Training Process

The MLP neural network has four layers: the input layer, two hidden layers, and
the output layer. The backpropagation algorithm is used to train the MLP weights. L2
regularization is used to deal with the overfitting phenomenon. Its value has been selected
empirically to be L2 = 0.001 .

3.1.5. Mlp Readout Hyperparameters Selection

The first layer of the MLP comprises an input layer with a size equivalent to the
hyperparameter dim (i.e., 40 neurons). The optimal number of neurons in the first hidden
layer is determined through a scanning process evaluated on three activation functions:
logistic, tangent hyperbolic (tanh), and Rectified Linear Unit (ReLU). The second hidden
layer is empirically set to have 3 neurons. Finally, the output layer consists of 3 neurons,
corresponding to the number of categories to be classified. Our experiments reveal that
employing 10 neurons in the first hidden layer alongside the ReLU activation function
achieves the best performance among the tested configurations, Figure 10.

Figure 10. Classification performance as a function of the first hidden layer neuron’s number.
Experiments were performed to select the optimal number of the first hidden layer of MLP readout
evaluated on three activation functions: Tanh, ReLU, and Logistic.

3.2. Results of the Ng-Rc Based Classification

The results of the first scenario, which focused on the application of NG-RC alone
to the classification process, are presented in Table 3. The NG-RC, employed with the
MLP-based classifier, achieved the highest AUC scores of 90.33% and 74.79% for intra-
and inter-patient cases, respectively. An increase in the AUC score of 5.78% and 0.79%
are observed for intra- and inter-patient cases when the NVAR transform was used with
MLP readout. Similarly, an enhancement of 4.18% and 2.31% are registered for intra- and
inter-patient cases when the NVAR transform was used with ridge readout. Conversely, the
ridge readout produced the lowest score when only using the original data. This indicates
that the arrhythmia classes are not linearly separable in the feature space, which requires
nonlinear schemes. The obtained results of the NVAR+MLP are illustrated in the flowing
confusion matrix, Figure 11.
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Figure 11. Confusion matrix corresponding to NVAR+MLP-based classifier.

Table 3. NG-RC evaluated alone in the intra- and inter-patient classification with Ridge and MLP readout.

Intra-Patient Inter-Patient
Classifier AUC% AUC%

Original Data + Ridge 82.92 70.57
NVAR + Ridge 87.10 72.88

Original Data + MLP 84.55 74.00
NAVR + MPL 90.33 74.79

3.3. Results of the Benchmarking Process

A benchmarking process was conducted to evaluate the performance of the eight
classifiers performance under the inter- and intra-patient paradigms. First, the results
obtained before using data balancing techniques will be presented. Subsequently, the
results of applying these techniques will be illustrated.

Results before Data Balance Techniques

The results in Table 4 illustrates that the NLRC+NVAR+Ridge-based classifier with
N = 55 and dim = 40 yielded the most pronounced AUC score, achieving 92.09% and 97.80%
for the inter- and intra-patient paradigm, correspondingly. The highest AUC score of
76.94% was attained via the LRC+NVAR+MLP-based classifier when MLP-based classifiers
were considered. The RC’s hyper-parameters are N = 15 and dim = 24. Figure 12 shows the
confusion matrices of the obtained results.

Table 4. Ablation study for intra- and inter-patient classification for all scenarios.

Intra-Patient Inter-Patient
Classifier AUC% AUC%

NLRC + Ridge 97.55 91.48
NLRC + MLP 92.88 76.59 1

LRC + Ridge 97.02 91.55
LRC + MPL 92.43 75.69

NLRC + NVAR + Ridge 97.80 92.09
NLRC + NAVR + MPL 93.82 76.94 2

LRC + NAVR + Ridge 97.75 91.07
LRC + NAVR + MPL 93.72 76.63 3

1 These results are obtained using specific configurations of the underlying classifiers: N = 55 and dim = 18. 2 N = 15
and dim = 24. 3 N = 55 and dim = 35.
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Figure 12. Confusion matrix corresponding to NLRC+NVAR+Ridge-based classifier with N = 55 and
dim = 40.

3.4. Results after Data Balance Techniques

Table 5 illustrates the results obtained after data augmentation by the two techniques:
SMOTE and REPLICA. the AUC score decreases for all the classifiers presented in the table.

Table 5. Benchmaking classification results of classifier after database augmentation.

Raw SMOTE REPLICA
Classifier AUC% AUC% AUC%

NLRC + Ridge 91.48 88.79 62.07
NLRC + MLP 76.59 1 76.01 63.05
LRC + Ridge 91.55 91.47 62.65
LRC + MPL 75.59 75.36 63.94

1 These results are obtained using specific configurations of the underlying classifiers: N = 55 and dim = 18.

4. Discussion
4.1. Discussion of the Hyperparameters Selection Results

Conventional RCs constructed with LSR exhibit deteriorated classification perfor-
mance compared with HSR-based RCs. This could be interpreted by the instability and
randomness of the RC internal states triggered by HSR configuration. Effectively, arrhyth-
mia category features seem to be projected into more separable regions of the state space,
which facilitates their recognition.

4.2. Discussion of the Ng-Rc-Based Classification Results

The first paradigm experiment’s findings (NG-RC alone) indicate that the NVAR-
based classifier produces better results for both intra- and inter-patient paradigms using
linear Ridge and MLP readouts compared with the original data. These outcomes show
that NG-RC improves classification performance by providing additional nonlinearity to
the linear classifier (NG-RC with a Ridge readout). However, for the nonlinear classifier
(NG-RC with MLP readout), the technique tends to overfit the model, which indicates that
the greater the nonlinearity over the data, the greater the overfitting.

4.3. Discussion Benchmarking Results

The benchmarking indicates that classifiers constructed using Ridge readouts outper-
form those based on MLP in both paradigms. Similar to the findings of the first scenario,
overfitting phenomena appear when the MLP classifier is considered and are accentuated
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when combined with the NVAR. In contrast, overfitting is reduced when the Ridge readout
is considered.

Typically, inter-patient outcomes are less accurate than intra-patient outcomes. There-
fore, the classification results presented in Table 6, which are obtained with the current
algorithm, are promising. The high ACC of 96.06% is noteworthy, especially when com-
pared to algorithms trained with balanced data (marked with an asterisk (*)), which is not
the case for the proposed classifier. However, this classifier performed poorly in identifying
the S category, with low levels of SPEC, SEN, and PPV pointing to its failure. The difficulty
of correctly identifying the S category for the inter-patient classification task is due to
its complex nature and its high similarity to the N category (see Figure 2) that requires
additional rhythmic information, like the R-R interval (i.e., the interval between successive
beats) [69]. Additionally, classifiers based on RCs are still in the early stages of develop-
ment, and further improvements are necessary to adapt them to inter-patient classification
in general.

Table 6. Benchmarking of the proposed algorithm with state-of-the-art work for the inter-
patient scheme.

Overall (%) N (%) V (%) S (%)
Methods Acc SEN SPEC PPV SEN SPEC PPV SEN SPEC PPV

Jiang et al. [22] * 99.89 99.87 98.56 99.84 99.98 99.97 99.94 96.69 99.98 97.06
Mousavi et al. [23] * 99.53 99.68 96.05 99.55 99.94 99.97 99.50 88.94 99.72 92.57
Acharya et al. [1] 96.68 98.72 62.46 96.22 68.08 98.43 77.91 23.27 99.97 94.80
Ye et al. [70] 75.20 80.20 - 78.20 50.20 - 48.50 03.20 - 10.30
Sun et al. [71] 98.70 99.90 - 99.10 97.10 - 99.10 94.70 - 96.80
Xia et al . [72] 94.69 97.79 - 95.69 72.26 - 94.09 27.12 - 32.44
Xia et al. [73] 97.66 97.35 71.09 96.47 73.26 96.42 71.67 70.28 99.44 82.90
This method 96.05 98.00 60.34 95.99 69.54 97.68 70.79 02.81 99.93 32.08

* Trained with balanced data.

In the case of the intra-patient paradigm, Table 7, the inability of the proposed classifier
to detect the S category persists. This is marked by the low values of the SEN and PPV. In
contrast to the S category, the classification performance of the N and V categories could be
compared favorably with that of the literature. On the whole, the intra-patient findings are
similar to other results, but additional effort is required to improve the performance of the
proposed classifier.

Table 7. Benchmarking of the proposed algorithm with state-of-the-art work for the intra-patient scheme.

Overall (%) N (%) V (%) S (%)
Methods Acc SEN SPEC PPV SEN SPEC PPV SEN SPEC PPV

Jiang et al. [22] * 99.97 100.00 99.97 99.70 100.00 100.00 99.97 97.65 100.00 100.00
Mousavi et al. [23] * 99.92 100.00 99.86 98.87 99.50 99.97 99.98 96.48 100.00 100.00
Acharya et al. [1] 97.37 91.64 85.17 96.01 94.07 95.08 98.74 89.04 94.76 98.77
Ye et al. [70] 96.50 98.70 96.30 - 82.60 97.80 - 72.40 94.50 -
This method 98.28 99.50 79.71 97.83 87.66 99.47 92.50 55.05 99.91 94.49

* Trained with balanced data.

We also notice that some classifiers based on the MLP as a readout achieve better results
using a specific configuration, especially a different number of internal nodes "N" and the
number of features "dim". To illustrate, the (NLRC + NAVR + MPL) classifier demonstrates
its optimal performance when utilizing N = 15 nodes and dim = 24 features. Furthermore,
the impact of the circular implementation of the standard RC and the bidirectional nature of
the broadcast data on the classification performance is intuitively positive which conforms
to the results in [57].
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In general, despite the deteriorated performance of the proposed method regarding
the S category recognition. RCs technology applications in heartbeat classification and ECG
signal analysis are paramount and promising avenues. They need more investigations,
especially in their improvement which must take into consideration the training speed and
hardware amenability. RCs have the characteristic to be physiologically plausible which
makes them a powerful hot research topic.

4.4. Discussion of Classification Results after Balancing Technique

For both oversampling techniques used to balance the data (i.e., SMOTE and by
REPLICA), the algorithm’s classification performance deteriorated. This outcome is sur-
prising since usually, the balancing process enhances the classification performance. All the
classifiers exhibit similar outcomes to balanced data. However, the results of the classifiers
trained on the SMOTE-based augmented dataset exhibit a little decrease compared to
those trained on the REPLICA-based augmented dataset. Alternative data augmenting
techniques will be investigated in future works such as generative adversarial network.

5. Conclusions

In this study, we investigated the use of NG-RC in conjunction with typical RC as part
in multiclass patient-independent arrhythmia classification framework. The assessment
process was conducted on the MIT-BIH database, incorporating both intra- and inter-patient
paradigms. We focused solely on three categories, namely the N, V, and S categories. It was
discovered that NG-RC-based classifiers improve classification performance, and mitigate
the overfitting issue in both intra- and inter-patient cases, even when used independently.
Similarly, it turned out that conventional RCs working under the HSR regime outperform
their counterparts working under LSR in terms of classification performance. In addition,
they exhibit less sensitivity to the categories imbalance issue. In terms of intra-patient
scenarios, the attained performance can be favorably compared to that reported in previous
studies. Acceptable outcomes are also observed in the inter-patient paradigm, especially
for N, and V categories. Nevertheless, further refinements are necessary to elevate the
classifier’s efficacy in the case of S category. In addition, we find that classifiers that rely
on the MLP readout are less performant than those based on the Ridge readout, especially
when used with the NG-RC. Furthermore, the former exhibits overfitting in contrast to
the latter despite the use of the regularization technique. This could be the result of the
supplementary nonlinearity that the data have undergone. The results also suggest that
oversampling techniques (oversampling by the synthetic minority oversampling technique
and oversampling by replacement) failed to overcome the data imbalance issue. In future
works, we will try to investigate deep RC with untrained attention-like mechanisms in
order to mitigate S category under-recognition evaluated on various databases.
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