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Abstract: This paper presents an electric vehicle (EV) switched reluctance motor (SRM) drive with
incorporated operation capabilities integrated into the utility grid, the microgrid, and another EV.
The motor drive DC-link voltage is established from the battery through an interleaved boost/buck
converter with fault tolerance. The varied DC-link voltage can improve driving performance and
reduce battery energy consumption over a wide speed range. Through a well-designed current control
scheme, speed control scheme, and dynamic commutation tuning scheme, the established SRM drive
possesses good performance in the motor driving mode. During deceleration, the regenerative
braking energy can be effectively recovered to the battery. When the EV is in idle mode, the grid-to-
vehicle (G2V) charging operation can be conducted through the bidirectional switch mode rectifier
(SMR) and CLLC resonant converter. Satisfactory charging performance with good line drawn
power quality and galvanic isolation is preserved. Conversely, the vehicle-to-grid (V2G) discharging
operation can be performed. The EV can make movable energy storage device applications. Finally,
the interconnected operations of the developed EV SRM drive to vehicle and microgrid are presented.
Through vehicle-to-vehicle (V2V) operation, it can supply energy to the nearby EV when the battery
is exhausted and needs roadside assistance. In addition, microgrid-to-vehicle (M2V) and vehicle-
to-microgrid (V2M) operations can also be conductible. The EV battery can be charged from the
microgrid. Conversely, it can also provide energy support to the microgrid.

Keywords: EV; SRM; battery; interface converter; resonant converter; SMR; inverter; G2V; V2G; V2V;
M2V; V2M

1. Introduction

In recent years, the climate warming and energy crisis due to extra consumption of
fossil fuels is becoming worse and has received much attention worldwide. The employ-
ment of EVs to replace the conventional internal combustion engine (ICE) vehicle can
effectively reduce fossil energy consumption and carbon dioxide emissions, thus lessening
the aforementioned problems. Similarly, the popularization of a microgrid using renewable
sources also possesses these benefits. Moreover, the cooperated M2V/V2M operations
can further boost these purposes. The development of EV SRM drives and performing
M2V/V2M operations are presented in this paper.

Basically, EVs can be categorized into hybrid EV (HEV), plug-in HEV (PHEV), and
battery EV (BEV). Until now, although various types of EVs have been extensively com-
mercialized, there are still many technical aspects that need to be continuously improved
and developed. The reviews for existing EV technologies can be referred to in [1–3], and
the future development trends and challenges are explored in [2,3]. In the comparative
environment aspects between ICE vehicles and EVs, much typical research has been made
from the viewpoints of eco-driving effects [4], urban traffic energy chain and efficiency [5],
well-to-wheel emission [6], and carbon footprint of city electric buses [7], etc.

Until now, the induction motor (IM) and the permanent magnet synchronous motor
(PMSM) have been the mainstream motors for EVs due to their high power density, high
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efficiency, and mature technologies. However, the switched reluctance motor (SRM) still
possesses potential for EV application [8–10] owing to its inherent merits. It is (i) suited
for high speed driving with its simple and rigid structure; (ii) it has no magnet on its
rotor, reducing the cost, and is cogging torque free; (iii) it has high generating torque and
acceleration capability like a series DC motor. But, some key issues [11–17] should be
properly treated to counteract its nonlinear torque generating characteristics and back
electromotive force (EMF) effects. The current control should be the first concern [11–14].
The hysteresis current control and average PWM current control are typical methods for
SRM. The hysteresis current control is robust and model-free. Regarding the average PWM
current control, its control characteristics are highly affected by the design of the feedback
controllers. It is suggested to apply the back-EMF feedforward control to compensate
the influence of back-EMF [14]. When SRM is driven at high speed, the winding back-
EMF will worsen the current response. To reduce the effects, it is necessary to adopt the
commutation shifting approach to properly adjust the turn-on and turn-off angles of the
phase current [14,15]. As generally recognized, SRM inherently possesses higher ripple
torque, vibration, and acoustic noise owing to the doubly salient structure and concentrated
armature windings. A typical example that studies the reduction of these defects can be
found in [16,17].

In the propulsion system, there are two DC-link structures. One is the battery direct-
powered DC-link. Without voltage boosting ability, the battery voltage level must be
adequately set considering speed and load ranges. The other is the battery with followed
interface converter. Adding a bidirectional DC/DC converter between the motor drive and
the battery can make the motor drive DC-link voltage more stable and adjustable [18,19].
The battery voltage selection will be more flexible, and better driving performance over
wide speed range can be achieved. In addition, the propulsion system with this structure
makes the onboard battery more compatible with other hybrid energy storage sources.
In [20], DC-link voltage and temperature variations are considered in the EV traction
system design. And the voltage control approach for a Z-source inverter-fed PMSM drive
is presented in [21]. Some DC/DC converters used for interface converters can be found
in [18,22–24]. For an EV drive with regenerative braking capability, bidirectional convert-
ers [18] must be adopted. On the other hand, interleaved converters can be employed to
have fault tolerance and lower current ripples [24]. In the developed EV SRM drive, the
interleaved boost/buck converter is adopted as the battery followed interface converter.

For an EV, it is necessary to make the grid-to-vehicle (G2V) charging operation [25–30]
through the onboard charger when the EV is in idle mode. The charger can be formed using
integrated schematics [25,30], or can be added externally. Generally, battery charging can be
classified between level 1 and level 3 [31–33]. The related standards can be found in [32,33].
Limited by size and weight, the EV onboard charger usually performs level 1 and level 2
charging levels. In order to conduct G2V operation, the EV charger usually includes an
AC/DC switch mode rectifier (SMR) to possess the power factor correction (PFC) function,
and a DC/DC converter is equipped to control the charging voltage and current. The
survey for some existing SMRs is referred to in [34–36]. And some control researches
for SMRs are presented in [37–39]. Furthermore, galvanic isolation is required for safety
reasons. Despite a low frequency transformer for galvanic isolation being very simple to
use, it is too bulky and heavy to equip on the vehicle. To solve this problem, one can employ
the dual active bridge (DAB) converter using a high-frequency (HF) transformer [40,41].
Moreover, the CLLC resonant converters [42,43] can be applied to have higher efficiencies.

EVs can reduce carbon emissions in transportation. However, charging during peak
hours will increase grid demand, which may produce additional carbon emissions in the
electricity sector. Therefore, adopting EV grid-connected operations can reduce the carbon
emissions of power generation. With bidirectional onboard chargers, EVs can conduct the
vehicle-to-grid (V2G) operation [44–46]. When the grid demand is high, EVs can provide
battery power to support the grid, which can utilize the energy effectively. However, the
impacts on the grid must be considered [47–49]. With the equipped schematic for V2G, EV-
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to-home (V2H) [50] and EV-to-building (V2B) [51] can also be made. For the V2B operation,
the energy management optimization controls considering uncertain PV energies can be
found in [51].

There also exist some possible interconnected operations regarding EVs. Vehicle-to-
vehicle (V2V) [52–54] is one example application. It may be applied in roadside assistance
for EVs. In [55–57], the V2V operations using the onboard charger schematic and motor
windings are presented. When an EV has exhausted its battery-stored energy, it can be
charged from another EV. The other possible interconnection is EV to microgrid, performing
microgrid-to-vehicle (M2V) and vehicle-to-microgrid (V2M) operations [58–60]. The EV
battery can be charged from the microgrid. Effectively utilizing the renewable energies to
charge the EV battery can reduce the charging power needed from the grid and consumed
fossil energy [61–63]. Conversely, as the energy deficiency in the microgrid occurs, the EV
battery can provide energy support to the microgrid. The interconnection between the
microgrid and EVs can express their complementarities. Regarding the popularization of
G2V charging and V2G discharging operations between EVs and the utility grid, many
reliability, safety, functionality, interference, and harmonic impacts to the grid are explored
in [64–66].

2. System Configuration of the Developed EV SRM Drive

The developed EV SRM drive with G2V/V2G/V2V/M2V/V2M functions is depicted
in Figure 1. The battery-powered EV drive consists of an interleaved bilateral battery inter-
face converter, an asymmetric converter fed SRM, a mechanically coupled DC generator
(DCG) with load resistor, a flywheel (FW) mounted on the motor shaft, and a dynamic
brake leg. The DCG serves as the dynamic load for the studied SRM. The FW is added to
increase the stored kinetic energy for facilitating the regenerative braking operation when
the motor is decelerated. The incremental encoder (EC) with (A,B,Z) signals is used to
detect the SRM rotor position. The resolution of the employed EC is (2500 pulse/rev).
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Figure 1. System configuration of developed EV SRM drive.

In driving mode, the SRM drive varied DC-link voltage is established by the bat-
tery via an interleaved bidirectional boost/buck converter. The improved motor driving
performance over a wide speed range with reduced battery energy consumption can be
achieved. In idle mode, the grid-connected G2V/V2G operations are conducted through
the bidirectional CLLC resonant converter and the bidirectional 3P3SW inverter. The
bidirectional inverter is operated in inverter mode under V2G operation, and conversely
as an SMR when conducting the G2V charging operation. With the same schematic, the
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vehicle-to-home and vehicle-to-building operations are directly applicable. The critical
loads normally powered by the grid can be transferred to the EV, providing uninterruptible
power as the grid power failure occurs. In addition, the V2V and/M2V/V2M operations
can also be conductible. The functional blocks are shown in Figure 2a,b.
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Figure 2. Interconnected operations of developed EV SRM drive to vehicle and microgrid: (a) V2V;
(b) M2V/V2M.

3. EV SRM Drive

The detailed power circuit of the established EV SRM drive with isolated grid-
connected function is shown in Figure 3. The motor drive DC-link voltage is established
by the battery via an interleaved bidirectional interface DC/DC converter. To prevent the
DC-link from overvoltage due to the failure of regenerative braking, a chopped dynamic
braking leg is added across the DC-link. The basic SRM drive with fixed DC-link voltage
is first established. Then, the EV SRM drive with varied DC-link voltage provided by the
battery interface converter is developed.
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3.1. DC Source-Powered Fixed DC-Link Voltage SRM Drive
3.1.1. Power Circuit

In the SRM drive shown in Figure 3, the DC-link is directly powered using a com-
mercial DC power supply with fixed voltage. The constituted system components are
summarized as follows:

(a) SRM: three-phase, 12/8, 380 V, 2000 rpm, 2.2 kW.
(b) Asymmetric bridge converter formed using six IGBT modules CM100DY-12H (Mit-

subishi Company) (VCES = 600 V, continuous current IC = 100 A, peak current
ICM = 200 A).

(c) Dynamic brake constructed by an IGBT module CM100DY-12H and a braking resistor
with Rdb = 50 Ω/300 W.

(d) Dynamic load: FW and DCG are coupled to the SRM shaft to serve as its mechanical
load. FW is added to increase the stored kinetic energy for the ease of performing
regenerative braking.

3.1.2. Control Scheme

The proposed control scheme of the SRM drive is shown in Figure 4. It consists
of an outer speed loop, inner current loop, commutation scheme, and PWM switching
scheme. In driving mode, the dynamic commutation tuning (DCT) scheme generates the
advanced shift angle βd to improve the current tracking response. The back-EMF current
feedforward controller (CFFC) yields the control voltage according to the motor speed,
observed inductance slope, rotor position, and current command to compensate the effects
of back-EMF under high speed and heavier load. As the DC-link voltage exceeds the
preset value (570V), the dynamic braking leg chopped operation will be activated. To let
the EV SRM drive successfully perform regenerative braking in deceleration, when the
current command I∗c becomes negative, the commutation angle will be shifted backward
βg = 21.24◦ to let SRM operate as an SRG. The relationship between βd, βg, and dwell
angle (θd) is shown in Figure 5.
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(a) Dynamic commutation tuning scheme

As shown in Figure 5, the DCT scheme is proposed to shift the commutation angle
forward automatically, which excites the stator winding at the small inductance slope region
(∂L(i, θr)/∂θr ≈ 0). By neglecting the winding resistance and back-EMF, and assuming
the constant winding inductance (L(i, θr) = Lmin), the advanced shifted time interval ∆Td
and angle βd can be estimated to let the winding current be raised to the command I∗c
as follows:

∆Td =
Lmin

vdc
I∗c , βd = ∆Tdωr =

Lmin

vdc
I∗c ωr (1)

(b) Current control scheme

In the proposed current control scheme of each phase shown in Figure 4, the PWM
control force vc is composed of the following: (i) the feedback control voltage vcb by
the current controller Gci(s); (ii) the back-EMF feedforward term vcd; and (iii) the cur-
rent command feedforward term vc f . The sensing factor for the winding current is
Ki = 0.03 V/A, the DC-link voltage sensing factor is Kv = 0.00145 V/V, and the mo-
tor speed sensing factor is Kωr = 0.0001 V/ rpm.

(1) Back-EMF current feedforward controller (CFFC)

Based on the estimated SRM inductance slope, the back-EMF feedforward control
terms can be determined as:

vcd = êi =
ω′

r

Kωr

i∗i
Ki

KLi
Kv

v′dc
=

KLiKv

v′dcKiKωr
i∗i ω′

r, i = 1, 2, 3 (2)

where

KL1∆
∂L1(i1, θr)

∂θr
= 0.00373, KL2∆

∂L2(i2, θr)

∂θr
= 0.00437, KL3∆

∂L3(i3, θr)

∂θr
= 0.00369 (3)

(2) Current feedback controller

The current controller is set to PI type as:

Gci(s) = Kpi +
Kii
s

(4)

Due to the DCT scheme, it is assumed that the winding inductance is the smallest at
the beginning of the commutation and there is no back-EMF effect. By setting winding
resistance R = 1.43 Ω, L(ii, θr) = Lmin = 20mH, and KPWM = vdc = 550 V, the desired
closed- loop current tracking transfer function with bandwidth ωn = 2000 πrad/s and
damping ratio ζ = 1, parameters Kpi and Kii can be derived as:

Kpi = 15.145, Kii = 47852.63 (5)

(c) Speed control scheme

After obtaining a well-tracking current through the proposed current control scheme
and DCT scheme, SRM drive speed dynamic behavior can be represented by the control
block shown in Figure 6, where Gcω(s) is the speed controller, Kt is the torque generating
constant, and the dynamic model is:

Hp(s) =
1

Js + B
(6)



Appl. Sci. 2024, 14, 3032 7 of 27

Appl. Sci. 2024, 14, 3032 7 of 29 
 

s
KKsG ii

pici +=)(  (4) 

Due to the DCT scheme, it is assumed that the winding inductance is the smallest at the 
beginning of the commutation and there is no back-EMF effect. By setting winding re-
sistance Ω= 43.1R  , ( ) =riiL θ, mH,20min =L  and V,550== dcPWM vK  the desired closed- 
loop current tracking transfer function with bandwidth rad/s2000πω =n  and damping 
ratio 1=ζ , parameters piK  and iiK  can be derived as: 

15.145=piK , 63.78524=iiK (5) 

(a) Speed control scheme 
After obtaining a well-tracking current through the proposed current control scheme 

and DCT scheme, SRM drive speed dynamic behavior can be represented by the control 
block shown in Figure 6, where  )(sGcω is the speed controller, tK  is the torque gener-
ating constant, and the dynamic model is: 

BJs
sH p +

= 1)( (6) 

The dynamic model parameters are estimated using a step response approach at 
rpm1000=∗

rω under no load ( ∞=gR ) to be: 

2mkg 2761.0 ⋅=J , m/rpmN10086.3 3 ⋅×= −B , m/A0.2323N35 ⋅=tK (7) 

 
Figure 6. Speed loop control block. 

The speed controller is set to PI type as: 

s
KKsG i

pc
ω

ωω +=)( (8) 

The closed-loop transfer function can be derived from Figure 6 as: 

ωr
iωpωt

ωr
iωpωt

sLT
r

r
c

K
s
KsK

BJs
K

K
s
KsK

BJs
K

s
ssH

))((1

))((

)(
)(Δ)( 0)( +

+
+

+
+=

Δ
′Δ

=Δ∗ω
ω

ω
 

(9) 

The desired speed tracking response is defined by a first-order reference model: 

s
sH

r
r

ω
ω τ+

=
1

1)(
 

(10) 

By letting )()( sHsH rc ωω = , one can derive to yield: 

rtr
p KK

JK
ωω

ω τ
= , 

J
BK

K p
i

ω
ω =

 
(11) 

The desired (s)1.0=rωτ  is chosen. From (11), the designed speed controller param-
eters can be found to be: 

52.063=ωpK , 582.0=ωiK (12) 
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Figure 6. Speed loop control block.

The dynamic model parameters are estimated using a step response approach at
ω∗

r = 1000 rpm under no load (Rg = ∞) to be:

J = 0.2761 kg · m2, B = 3.086 × 10−3 N · m/ rpm, Kt = 530.2323 N · m/A (7)

The speed controller is set to PI type as:

Gcω(s) = Kpω +
Kiω

s
(8)

The closed-loop transfer function can be derived from Figure 6 as:

Hωc(s) ∆
∆ω′

r(s)
∆ω∗

r (s)
|∆TL(s) = 0 =

(
Kt

Js+B )(
Kpωs+Kiω

s

)
Kωr

1 +
(

Kt
Js+B )(

Kpωs+Kiω
s

)
Kωr

(9)

The desired speed tracking response is defined by a first-order reference model:

Hωr(s) =
1

1 + τωrs
(10)

By letting Hωc(s) = Hωr(s), one can derive to yield:

Kpω =
J

KωrKtτωr
, Kiω =

BKpω

J
(11)

The desired τωr = 0.1 (s) is chosen. From (11), the designed speed controller parame-
ters can be found to be:

Kpω = 52.063, Kiω = 0.582 (12)

The simulated speed tracking response by the designed PI controller due to the speed
command change ω∗

r = 1000 rpm → 1100 rpm at Rg = ∞Ω is shown in Figure 7a. The
result indicates that the response specified in (10) with τωr = 0.1 s is satisfied. Under
the same condition, Figure 7b depicts the measured response, which is very close to the
simulated one.
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3.1.3. Measured Results

The developed EV SRM drive is powered by a commercialized power supply with
vdc = 550 V. Some measured results are provided to verify the designed control schemes.

The measured i∗1 and i1 without the DCT scheme under Rg = 35 Ω at two speeds are
shown in Figure 8. The results show that the winding current response becomes slower
as the speed is increased, owing to the effects of back-EMF. The measured

(
i∗1 , i1

)
with

the DCT scheme under Rg = 35 Ω at 1000 rpm and 2000 rpm are shown in Figure 9a,b,
wherein the advanced shift angle βd and dwell angle θd are labeled. The convention of the
defined βd and θd are shown in Figure 5. In Figures 8b and 9b, one can find that the current
response in high speed is improved by adopting the DCT scheme. Without applying the
advanced shift, the winding current becomes single-pulse mode without PWM switching.
After applying the proposed DCT approach, the PWM switched winding current with
smaller magnitude is yielded.
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3.2. Battery-Powered Varied DC-link Voltage SRM Drive 

Figure 9. Measured
(
i∗1 , i1

)
using DCT scheme with labeled shifted angle βd and dwell angle θd under

(vdc = 550 V, Rg = 35 Ω): (a) ω∗
r = 1000 rpm; (b) ω∗

r = 2000 rpm.

A dynamic braking leg is connected across the DC-link to limit the DC-link voltage
at vdc,max = 570 V during deceleration. The measured (ω∗

r , ω′
r, I∗c , vdc, idb) developed SRM

drive due to the reversible speed command at
(

Rg = 320 Ω, v∗dc = 550 V) with acceleration
and deceleration rates of 300rpm/s is shown in Figure 10. The satisfactory control perfor-
mances, including reversible running, generator operation of SRM, and dynamic braking
voltage limitation caused by the recovered stored kinetic energy, are seen in the results.
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3.2. Battery-Powered Varied DC-link Voltage SRM Drive
3.2.1. Battery Interface DC/DC Converter

Figure 11a,b show the schematic and control scheme of the established interleaved
boost/buck converter with two cells. The switching signals between the two cells are phase-
shifted by 180◦. The interface DC/DC converter can be operated in the following modes:
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Figure 11. Interleaved boost/buck converter: (a) power circuit; (b) control scheme.

(a) Discharging mode. In the motor driving operation, the DC-link voltage vdc is estab-
lished from the battery voltage vb in boost mode.
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(b) Charging mode. In the battery charging mode or regenerative braking mode, the
power flow is from vdc to vb. The bidirectional boost/buck converter is operated as a
buck DC/DC converter.

The power circuit and control scheme of the interface converter are specifically de-
signed in boost mode. The designed components are also employed under buck mode,
with the adequacy being verified.

(a) Power circuit

The ratings and the designed system parameters are as follows:

(1) Ratings: Vdc,max = 550 V, Pdc = 2.2 kW.
(2) Battery bank: nominal voltage Vb = 158.4 V.
(3) PWM switching frequency: fs = 20 kHz.
(4) DC-link capacitor: Cdc = 1100 µF/900 V.
(5) Battery side capacitor: Cb = 4700 µF/400 V.
(6) Energy storage inductors: Lb1 =1.837 mH and Lb2 = 1.833 mH at 20 kHz.

(b) Control scheme.

The control scheme shown in Figure 11b consists of an outer voltage loop and an inner
current loop. The current command of each cell (i∗Lb1 and i∗Lb2) is generated by the voltage
controller Gcv(s). And the PWM control signal of the two cells (vcont1 and vcont2) is yielded
by the current controller Gci(s). The two PWM control signals are compared with two
sawtooth waves (vsaw1 and vsaw2) phase-shifted by 180◦ to generate the switching signals.

(1) Current controller
(i) Feedback controller

The compensated control characteristics of the current closed-loop gain are defined
as having the crossover frequency at 1 kHz with a phase margin of 89.3◦. The designed
controller is:

Gci(s) = Kpi +
Kii
s

= 0.7 +
50
s

(13)

(ii) Feedforward controller

The feedforward controller G f f (s) added to yield-improved current tracking response
is set as:

G f f (s) = 1 −
v′b
v∗dc

(14)

Through the feedforward controller, the duty ratio can be directly set to yield the
desired vdc from the sensed v′b.

(2) Voltage controller

The compensated control characteristics of the voltage closed-loop gain are defined as
having the crossover frequency at 20 Hz with the phase margin PM = 90◦. The designed
voltage feedback controller is:

Gcv(s) = Kpv +
Kiv
s

= 10.0641 +
95.0929

s
(15)

Moreover, a robust controller with the weighting function Wv(s) is added. To enhance
the dynamic response, the weighting function is set as:

Wv(s) = 0.6 (16)

3.2.2. Battery-Powered EV SRM Drive

In the developed EV drive, the DC-link voltage command is set depending on the
motor speed. The DC-link voltages set for comparison are listed below:

➢ Fixed DC-link voltage: vdc = 550 V, 0 ≤ ωr ≤ 2000 rpm.
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➢ Varied DC-link voltage: vdc = 170 V, 0 ≤ ωr ≤ 500 rpm.

vdc = 170 V < vdc ≤ 550 V, 500 rpm ≤ ωr ≤ 2000 rpm.
The measured results of the EV SRM drive under fixed and varied DC-link voltages

with trapezoidal speed command at Rg = 210 Ω are shown in Figure 12. Note that Pb
represents the battery output power, and Eb =

∫
Pbdt represents the battery consumed

energy. The battery energy is Eb = 7.84 kJ under varied voltage compared with Eb = 9.31 kJ
under fixed voltage. Figure 13 shows the measured results of the SRM drive under the
speed pattern defined by ECE15 at Rg = 75 Ω with fixed and varied DC-link voltages. The
reduction of battery energy from Eb = 90.4 kJ to 75.1 kJ can also be observed.
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4. G2V/V2G Operations

By setting the mode switch in Figure 3 at position “I”, the isolated grid-connected
G2V/V2G operations can be conducted. The schematic consists of a CLLC resonant
converter and a bidirectional PWM inverter.

4.1. Bidirectional CLLC Resonant Converter
4.1.1. Power Circuit

The power circuit of the established CLLC resonant is shown in Figure 14. The ratings
and system parameters are given as follows:
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Figure 14. Schematic of bidirectional CLLC resonant converter.

• Primary side voltage: Vdc = 400 V; secondary side voltage: Vb = 158 V.
• Rated power: Pb = 1580 W. The maximum charging voltage is set to 158 V and the

maximum charging current is 10 A in charging mode.
• Nominal switching frequency: fs = 50 kHz.
• Duty ratio: fixed in D = 0.5.
• Transformer turn ratio: n = 23/9.
• Employed ferrite core EE5525 is manufactured by A&T MAGNETICS Co., Ltd. (New

Taipei City, Taiwan).
• Measured magnetizing inductance and other resonant circuit parameters:

Lm = 332.83 µH, Lp = 70.85 µH, Cp = 0.143 µF, Ls = 10.89 µH, Cs =0.93 µF.

4.1.2. Control Scheme

The control schemes of the CLLC resonant converter in two operation modes are
shown in Figure 15a,b.
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(a) Charging mode
(1) Normal G2V charging

In the control system shown in Figure 15a, the battery voltage command is set at 158 V.
And the current command i∗b is yielded by the outer voltage loop and is limited at 10 A.
Hence, before the battery voltage reaches 158 V, the battery charges in a constant current
mode at 10 A. Then, the constant voltage mode is applied after the voltage reaches 158 V.

Through trial-and-error, the voltage feedback controller and current feedback con-
troller are set to PI type as:

Gcv(s) = Kpv +
Kiv
s

= 3 +
50
s

(17)

Gci(s) = Kpi +
Kii
s

= 1 +
100

s
(18)

(2) Trickle charging

The self-discharging phenomenon will reduce the battery store energy and the driving
endurance range. To compensate this loss, the current command in Figure 15a is set as
i∗b = i∗bt with a suitably low value for making the trickle charge [67,68].

(b) Discharging mode

In the discharging mode, only the voltage loop is arranged. The DC-link voltage is
well-regulated at vdc = 400 V via modulated switching frequency. Through trial-and-error,
the voltage feedback controller is set to PI type as follows:

Gcv(s) = Kpv +
Kiv
s

= 3 +
50
s

(19)

4.2. Grid-Connected Three-Phase SMR/Inverter
4.2.1. Power Circuit

The schematic of the established grid-connected SMR/inverter is shown in Figure 16,
with the following specifications and system components:
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Figure 16. Schematic of developed three-phase SMR/inverter.

• Three-phase AC line voltage: VLL = 220 V/60 Hz.
• DC-link voltage: Vdc = 400 V.
• PWM switching frequency: fs = 30 kHz.
• DC-link capacitor: Cdc = 1100 µF/900 V(DC).
• Energy storage inductors: the three inductors are LA ≈ LB ≈ LC = 2.5 mH/30 kHz.

4.2.2. Control Scheme

Figure 17 shows the control scheme of the 3P3W SMR/inverter in G2V charging and
V2G discharging operations. The detailed controller parameters are introduced as follows.
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Figure 17. Control scheme of developed 3P3W SMR/inverter: (a) G2V operation; (b) V2G operation.

(a) G2V operation
(1) Phase-locked loop controller

The PLL controller is chosen to be PI type via trail-and-error as:

Gpll(s) = Kpllp +
Kplli

s
= 10 +

450
s

(20)

(2) Current controller

The decoupling controller Gdc(s) and feedforward controller G f f (s) are set as follows:

Gdc(s) = ωeL/(KPWMKi) (21)

G f f (s) = 1/(KPWMKv) (22)

where Ki and Kv are current and voltage sensing factors, respectively. KPWM = 0.5 Vdc/V̂tri
is the PWM transfer ratio, where V̂tri is the amplitude of triangle carrier and L is the
inductance of energy storage inductors.
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By assuming the ideal feedforward and decoupling controls, the current closed-loop
transfer function between i∗q and i′q can be specified by a first-order transfer function
with time constant τir. Giving τir = 0.5 ms and using the known data, Ki = 0.03 V/A,
L = 2.5 mH, r = 88 mΩ, and KPWM = 200, one can find the current controller:

Gci(s) = 0.833 +
29.333

s
(23)

(3) Voltage feedback controller

At the given operation point (Vdc = 400 V, Rdc = 160 Ω), the voltage regulation
control specifications are defined as (∆vdm = −10 V and tre = 0.2 s) . Due to the step power
change, ∆Pdc = 300 W (Rdc = 160 Ω → 123.07 Ω) . Through careful derivation, one can
find that:

Gcv(s) = Kpv +
Kiv
s

= 1.926 +
11.677

s
(24)

(b) V2G operation

Figure 17b shows the control scheme of the 3P3W inverter in V2G operation. The PLL
controller and current controller parameters are set the same as those in G2V mode. The
q-axis current command i∗q and d-axis current command i∗d can be obtained through the
current command generator depending on the real power command P∗

o and reactive power
command Q∗

o . Generally, id = 0 is set to reach a unity power factor.

4.3. Experimental Evaluation

The power circuit of the developed EV SRM drive in conducting the grid-connected
G2V/V2G operations is shown in Figure 18, which consists of a CLLC resonant DC/DC
converter and a six-switch inverter. In a G2V charging operation, the three-phase inverter
acts as a PFC front-end SMR and charges the battery through the CLLC resonant converter.
Regarding the V2G operation, the battery discharges power to the utility grid through the
same power circuits. Reactive and harmonic power compensations can also be achievable.
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Figure 18. Established schematic for G2V/V2G operations.

4.3.1. G2V Operation

The battery charging voltage is set at v∗b = 158 V, and the maximum charging current
is set at i∗b = 10 A. The charging process can be divided into a constant current mode and a
constant voltage mode. In the constant current charging mode, the battery is charged with
10 A. The measured phase voltage van and three line currents (ia, ib, ic) of the three-phase
SMR are shown in Figure 19a, the (vgs, vds, iLp, iLs

)
of the CLLC resonant converter are

shown in Figure 19b, and the voltage and current of battery and DC-link (vb, ib, vdc,idc)
are shown in Figure 19c. Furthermore, the measured results in constant voltage charging
mode are shown in Figure 20. The results of the two power stages indicate that (i) ia
synchronized with van, three-phase balanced, and lowly-distorted line currents (ia, ib, ic)
verify the satisfactory performance of the SMR; (ii) normal operation of the CLLC converter
can be observed from the waveforms of Figure 19b. The zero-voltage switching (ZVS)
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behavior is assured by the relationship between vgs and vds; and (iii) the constant current
charging with ib = 10 A (vb < 158 V) is achieved. As vb reaches 158 V, the constant voltage
charging is applied automatically, with the results depicted in Figure 20a–c. The above
similar comments can also be made for the measured results.
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4.3.2. V2G Operation

The output real power P∗
o of the developed inverter under V2G mode is set at 1 kW.

The measured (vgs, vds, iLp, iLs
)

of the CLLC resonant converter are shown in Figure 21a,
the voltage and current of battery and DC-link (vb, ib, vdc, idc) are shown in Figure 21b,
and the phase voltage van and three line currents (ia, ib, ic) are shown in Figure 21c.
Furthermore, the measured results with P∗

o = 1 kW and Q∗
o = −1 kVAR are shown in

Figure 22, and the results with P∗
o = 1 kW and Q∗

o = 1 kVAR are shown in Figure 23. The
normal operations and good performances of the CLLC resonant converter and the 3P3W
inverter under various scenarios are seen in the results. The preset real and reactive powers
are successfully sent back to the utility grid.Appl. Sci. 2024, 14, 3032 19 of 29 
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In the control scheme of the CLLC resonant converter shown in Figure 26, the battery 
voltage command is set at 165 V, and the maximum current command for charging is 
limited at 6 A. 
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5. V2V/V2M/M2V Operations
5.1. V2V Operation
5.1.1. System Configuration

The system configuration of the developed V2V scheme is shown in Figure 24. EV1
is the vehicle providing energy, and EV2 is the other vehicle receiving energy for battery
charging. The DC/DC converter in EV1 adopts the interleaved boost/buck converter. And
the CLLC converter is used in EV2.
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The detailed power circuit of the developed V2V scheme is shown in Figure 25. The
specifications and system components are listed below:
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• Nominal battery voltages: Vb1 = Vb2 = 158 V.
• DC-link voltage: Vdc = 400 V.
• DC-link capacitor: Cdc = 1100 µF/900 V (DC).
• Energy storage inductors: Lb1 = Lb2 = 1.83 mH.
• Switching frequency of interleaved boost/buck converter: fs = 20 kHz.
• Nominal switching frequency of CLLC resonant converter: fs = 100 kHz.

The control schemes of the developed V2V scheme are shown in Figures 11b and 26. In
the control scheme of the CLLC resonant converter shown in Figure 26, the battery voltage
command is set at 165 V, and the maximum current command for charging is limited at 6 A.
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Figure 26. CLLC resonant converter control scheme of EV2 in developed V2V scheme.

5.1.2. Measured Results

The measured results of the developed V2V scheme under charging current i∗b2 = 6 A
are shown in Figure 27. Good control performance can be observed. Figure 28 shows the
measured results under charging current command change i∗b2 = 4 A → 6 A. Satisfactory
dynamic responses can also be observed from the results. Figure 29 shows the measured results
under the preset charging current command pattern i∗b2 = 0 A → 3 A → 6 A → 3 A → 0 A,
where Eb1 and Eb2 are the battery-consumed energy of EV1 and the received energy of EV2
calculated as:

Eb1 =
∫

Pb1 dt, Eb2 =
∫

Pb2 dt (25)
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5.2. M2V/V2M Operations
5.2.1. System Configuration

The bidirectional M2V/V2M operations can be performed by connecting the DC-
link of the EV to the DC microgrid. Under the EV idle mode, the DC microgrid can
charge the EV onboard battery in the M2V operation, while the battery can support the
microgrid in the V2M operation. An available wind SRG/PV-based DC microgrid [67] is
employed here for studying. The PV source is neglected for simplicity. Figure 30 shows the
system configuration of the interconnected operation of the EV and the DC microgrid, and
Figure 31 shows the detailed power circuit of the whole system. The asymmetrical bridge
converter is applied to the SRG for the best control flexibility. Through the interleaved
boost converter, the SRG output voltage is boosted to 400 V. The DC microgrid system
consists of a dump load to prevent overvoltage, a battery energy storage system, and a
DC load. The SRG control scheme and the DC microgrid system can be referred to in [69].
Some key parameters and system components of the wind SRG-based DC microgrid are
listed below:
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• SRG (4-phase 8/6): rated speed = 6000 rpm, rated power = 2.3 kW, rated voltage = 48 V.
• Power switches: IGBT modules CM100DY-12H.
• DC-link voltage: Vdc = 400 V.
• BESS: nominal voltage Vb3 = 48 V, capacity = 28 Ah.

5.2.2. Measured Results

(a) M2V operation

In the M2V operation, the microgrid DC-link voltage Vdc = 400 V is established by
the SRG and interleaved boost converter. The measured results of the M2V operation
under battery charging power Pb1 ≈ 500 W are shown in Figure 32. A successful charging
operation can be seen in the results.
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(c) (vb, ib) of EV onboard battery.

(b) V2M operation

In the V2M operation, through the CLLC resonant converter on the EV, the onboard
battery voltage is boosted to establish the microgrid common DC bus voltage. Then, it
can supply the DC load in the microgrid and charge the battery in the BESS system. The
measured results of the V2M operation under DC load power PL ≈ 500 W and battery
charging power Pb3 ≈ 500 W are shown in Figure 33. A successful discharging operation
can be observed from the results.
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of CLLC resonant converter;

(c) (vdc, vb3, ib3) of battery in DC microgrid.

Summary: After establishing that the developed EV SRM drive has various interconnect
functions, the operating characteristics of all modes are verified by a lot of measured results,
which are briefly summarized as follows:

(1) The battery directly powered basic EV SRM drive with vdc = 500 V is first verified,
including speed dynamic response with defined specifications, the effect of DCT in
enhancing the winding current response, the acceleration/deceleration, the reversible
running, and the regenerative/dynamic braking operations.

(2) The EV SRM drive is powered by battery via interleaved bidirectional interface
converter. The fixed and varied DC-link voltages boosted from battery are used to
power the motor drive, and their comparative performance is evaluated. The loss-
consumed battery energies under the programed speed patterns yielded by various
DC-link voltage approach are demonstrated, as shown in Figures 12 and 13.

(3) The G2V/V2G operations of the developed EV SRM drive are achieved by a CLLC
resonant converter and a bilateral 3P3W inverter. The normal operations and satisfac-
tory performance under G2V mode can be seen in Figures 19 and 20. Regarding the
V2G operation, the results presented in Figures 21–23 demonstrate that the preset real
and reactive powers are successfully sent back to the utility grid.
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(4) V2V/M2V/V2M operations: Figures 27–29 verify the normal V2V operations under
different charge current patterns. And the successful M2V/V2M operations can be
observed from the results depicted in Figures 32 and 33.

6. Conclusions

This paper presents an EV SRM drive and its G2V/V2G/V2V/M2V/V2M operations.
For the established SRM drive, the commutation shifting scheme, current, and speed
control schemes are all properly designed to yield good dynamic and steady-state driving
performance, including reversible and regenerative braking operations. Moreover, thanks
to the varied-voltage DC-link arrangement, improved performance over a wide speed
range and reduced battery consumed energy are achieved.

In idle mode, the isolated grid-connected G2V/V2G operations are successfully con-
ducted based on the battery, CLLC resonant converter, and SMR/inverter. In G2V charging
mode, the inverter is operated as a three-phase or single-phase SMR to charge the battery
from the utility grid, with good PFC characteristics. Reversely, V2G operation can be
performed for sending the real and reactive powers to the grid. Good performances have
been verified from the measured results.

In V2V operation, thanks to the equipped EV power control units and proper power
conditioning control arrangement, the EV with exhausted battery energy can be charged
by the other EV providing auxiliary roadside assistance. Successful operation has been
experimentally demonstrated. Moreover, the M2V/V2M operations of the developed EV
SRM drive have also been experimentally demonstrated.
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