
Citation: Kelmar, T.; Chierichetti, M.;

Davoudi Kakhki, F. Optimization of

Sensor Placement for Modal Testing

Using Machine Learning. Appl. Sci.

2024, 14, 3040. https://doi.org/

10.3390/app14073040

Academic Editors: Mickaël Lallart

and Yves Gourinat

Received: 8 February 2024

Revised: 28 March 2024

Accepted: 29 March 2024

Published: 4 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Optimization of Sensor Placement for Modal Testing Using
Machine Learning
Todd Kelmar 1, Maria Chierichetti 1,* and Fatemeh Davoudi Kakhki 2,*

1 Department of Aerospace Engineering, San José State University, San José, CA 95192, USA;
tkelmar@gmail.com

2 Machine Learning & Safety Analytics Lab, School of Engineering, Santa Clara University,
Santa Clara, CA 95053, USA

* Correspondence: maria.chierichetti@sjsu.edu (M.C.); fdavoudikakhki@scu.edu (F.D.K.)

Featured Application: This study introduces an innovative approach for optimizing sensor placement
in modal testing by applying machine learning with enhanced efficiency and precision.

Abstract: Modal testing is a common step in aerostructure design, serving to validate the predicted
natural frequencies and mode shapes obtained through computational methods. The strategic place-
ment of sensors during testing is crucial for accurately measuring the intended natural frequencies.
However, conventional methodologies for sensor placement are often time-consuming and involve
iterative processes. This study explores the potential of machine learning techniques to enhance
sensor selection methodologies. Three machine learning-based approaches are introduced and as-
sessed, and their efficiencies are compared with established techniques. The evaluation of these
methodologies is conducted using a numerical model of a beam to simulate real-world scenarios. The
results offer insights into the efficacy of machine learning in optimizing sensor placement, presenting
an innovative perspective on enhancing the efficiency and precision of modal testing procedures in
aerostructure design.

Keywords: modal testing; sensor placement; machine learning; finite element method; beam analysis;
multifrequency response

1. Introduction

Mechanical structures are subject to vibrations. These vibrations can be internal (such
as engine vibration), external (such as turbulence), or a combination of both. Therefore,
characterizing the behavior of a system under vibration or other dynamic forces is crucial
to good engineering design and pivotal for the aerospace and automotive industries [1,2].

Although the accessibility and speed of modern computers and FEA solvers may
seem to obviate the need for physical modal testing, the results are only as accurate as
the model being tested [3]. The results of modal testing can be compared with those of
the theoretical model and used to establish if the model accurately describes the structure
being analyzed [1]. Additional uses of modal testing include creating mathematical models
of structures for integration into other analyses or developing models for structural health
monitoring [1].

Modal analysis can be conducted on data acquired in laboratory conditions or from
data acquired while the structure is in regular use [4–6]. In modal testing, sensors placed on
the structure being tested—typically accelerometers and/or strain gauges—are measured
to record their response to an excitation. The input can be provided by a modal shaker—a
device that takes a signal as an input and applies that signal to the structure under test—or a
modal hammer, where an impact is made against the structure to represent an instantaneous
excitation [4]. In more complex tests or for large structures, multiple modal shakers may be
used to induce a measurable excitation in the structure [1]. The outputs of the sensors are then
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post-processed, with the exact methodology being dependent on the excitation signal. These
data may then be analyzed using a frequency response function in order to derive the natural
frequencies and mode shapes of the structure under assessment.

Placing the sensors on the structure must be done with care, as their placement can
substantially influence the results of a modal test. Large numbers of sensors increase
the cost of testing because of the equipment and labor required to set up the test. As
modal testing is principally concerned with structural dynamics, an ideal sensor selection
would result in the lowest number of sensors that allows each sensor’s contribution to the
analysis to be greatest [7]. The goal of optimizing sensor placement is to determine the
most information about the structure’s behavior while minimizing the required number of
sensors [7].

In early modal testing, sensor placement relied on engineering judgment and institu-
tional knowledge derived from the fundamentals of vibration [8]. Although this may still
be used in certain situations, such as with a well-understood structure or for simple geome-
tries, novel structures present difficulties for this approach. Additionally, tight timelines
due to budget constraints or limited access to testing facilities reduce the time available to
refine sensor placement during testing [3]. As such, determining an efficient methodology
for sensor placement has real implications for increasing efficiency. As a result, several
methodologies have been developed to assist engineers in determining appropriate sensor
placement for modal testing and structural health monitoring.

In general, methods for optimal sensor placement can be divided into two broad
categories: model-based methods and data-driven methods. Model-based methods define
the placement of sensors based on information derived from a numerical model, such as a
finite element model or a multi-body model. Specifically in modal testing, existing model-
based methods used for sensor placement include the Effective Independence Method
(EIM) and the Iterative Residual Kinetic Energy approach (IRKE) [9]. Other techniques,
such as those using information entropy, have also been developed [4]. A brief overview of
these techniques is provided in Section 2.

Data-driven sensor placement strategies have also been proposed to extract the oscilla-
tory characteristic directly from experimental measurements without requiring the need
of a numerical model [10–13]. Zhang at el. [10] proposed a sensor placement approach
that relies on a repetition of in situ trial measurements on bridges with different sensor
positioning in order to avoid the need to rely on finite element data. The measured in situ
data are used to train a Recurrent Gaussian Process Regression until a sufficient number
of sensors is identified. However, this approach requires multiple experimental trials of
sensor configurations, which is a costly approach for complex and large systems such as
aerospace structures. Similarly, Suryanarayana et al. [12] employed a data-driven approach
for optimal sensor placement of a multi-zone building. Their method requires that experi-
ments with a large number of sensors are initially completed to collect the data necessary to
apply the sensor placement approach. These data-driven methods often rely on operational
modal analysis to extract the modes of the system during operations. Sashittal et al. [13]
applied data-driven sensor placement to the observation of fluid flows. To the authors’
knowledge, no data-driven methodologies have been proposed for modal analysis to date.

This paper proposes a non-iterative model-based approach for optimal sensor placement
in modal testing. Finite element models are generally available for large aerospace structures
and can, therefore, be used to identify the number and positioning of sensors in the structure.
The approach is based on machine learning techniques to avoid the need for iteration.

Machine learning (ML) techniques are a promising approach for determining sensor
placement in modal analysis. In supervised machine learning, an input dataset is provided
consisting of both the input data and the output. In this case, the input would be data
derived from a finite element model and the output would be the mode shapes and natural
frequencies. Based on this information, the model is then trained to be able to predict
outputs based on new input data. As many of the previously discussed methods for sensor
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placement are iterative approaches, the problem of solving for sensor placement seems to
be one to which machine learning is well suited [14–17].

This paper presents a novel methodology for sensor placement in modal analysis using
random forest techniques. An initial application of the proposed approach is discussed
in Kelmar et al. [18]. The paper is organized as follows. First, a review of traditional
methodologies currently used for sensor placement in modal analysis is presented. Then,
the proposed machine learning approach is presented and validated for a vibrating beam.
The results of the proposed approach are then compared with the results obtained using
one of the traditional methodologies.

2. A Review of Traditional Sensor Placement Techniques for Modal Testing

Several methodologies have been developed to assist engineers in determining ap-
propriate sensor placement for modal testing and structural health monitoring based on
a finite element model. Some of the current existing methodologies include the Effective
Independence Method (EIM), the Mass-Weighted Effective Independence Method (MEIM),
and the Residual Kinetic Energy approach (RKE) [16,19]. These existing methods are based
on the modal analysis characteristics of the undamped structural dynamic system, which
are the solutions of the following real symmetric eigenvalue problem:

KΦ − MΦλ = 0 (1)

where K is the stiffness matrix of the structural system, M is the mass matrix, Φ is the
matrix containing the eigenvectors (modes) of the system, and λ is the eigenvalue of the
system; each n-th eigenvalue λn corresponds to the n-th natural frequency ωn through
λn = ω2

n. Bold notation indicates a matrix or vector quantity.
When modes are normalized to unit modal mass, the orthogonality parameter OR is

defined as follows:
OR = ΦTMΦ = I (2)

The kinetic and strain energy distributions for each n-th mode (KEn and SEn, respectively)
are the term-by-term products (operator ⊗ represents element-wise matrix multiplication):

KEn = {MΦn} ⊗ Φn (3)

SEn = {KΦn} ⊗ Φn/λn (4)

The sum of the kinetic and strain energy distributions for each n-th mode is always
equal to 1 when the modes are mass normalized, such that

KETOT n =
DOF

∑
i=1

KEi,n = 1 (5)

SETOT n =
DOF

∑
i=1

SEi,n = 1 (6)

DOF stands for “degrees of freedom”.

2.1. Effective Independence Method (EIM)

The Effective Independence Method, also known as the effective independence algo-
rithm, is one of the most popular sensor placement techniques, and it bases its analysis on
the sum of the diagonal terms of the Fisher information matrix. The Fisher information
matrix is constructed using the modal characteristics extracted by a finite element model. It
is an iterative method that evaluates the contribution of all possible sensor locations (i.e.,
the nodes of the finite element method) to the linear independence of the mode shapes.
Sensors with small contributions to the linear independence are progressively eliminated
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until the desired number of sensors remains. This final set of sensors maximizes the sum of
the diagonal and the condition number of the Fisher information matrix.

The method begins with a set of target mode shapes that encompass the set of
candidate sensor locations generally derived from an FE model of the structure under
analysis [20,21]. The algorithm attempts to predict the independence of each node based
on the expected measured mode shape, with higher values indicating increased indepen-
dence [20]. For this method, it is necessary to know both the expected mode shape as well
as the location of candidate sensors; therefore, it is well suited for use when a finite element
model is available. The candidate locations are then ranked according to the algorithm,
removing the lowest ranking sensor and recalculating. As potential locations are eliminated,
the relative independence of the remaining solutions increases, and the process is repeated
until the required number of sensor locations is reached.

One of the challenges of EIM is that the optimal number of sensors must be defined a
priori, and the potential locations of the sensors must be available [22]. A very fine grid of
the finite element model allows the user to analyze all the possible locations of sensors, but
the method then becomes very time-consuming owing to the iterative nature of EIM. Some
research also suggests that more optimal results may be produced compared with kinetic
energy methods, although at the cost of less ability to measure unexpected modes [20,23].
Additionally, the EIM approach does not account for unknown modes that may occur in
the real world but do not appear in FEA. At the same time, if there are specific modes in
the FEA results that are of more interest, EIM can provide targeted sensor selection for
those modes that may require fewer sensors than necessary to capture the full behavior of
the structure.

The EIM is derived by Kammer et al. [23] and is based on the concept that each sensor
output us can be represented as a linear combination of the mode shapes of the system at a
given sensor location Φs through the target modal coordinates q:

us = Φsq (7)

The mode shapes of the system are obtained using finite element analysis. Each row
in matrix Φs represents a possible sensor location, and each column is the corresponding
mode shape.

The linear independence of the mode shapes is defined through the Modal Assurance
Criteria (MAC), as follows:

MAC = ΦTΦ (8)

which yields 1.0 on the diagonal when the modes are normalized as such.
An effective independence score EI is calculated for each possible sensor location,

using the reduced modal content of the numerical model.

EI = Φs

(
ΦT

s Φs

)−1
ΦT

s (9)

This diagonal vector EI yields a value that ranges between 0 and 1. A row with a value
close to zero indicates that the sensor location is not able to sense the target modes, whereas
a value close to one indicates that the sensor location is important to observe the target
modes. The higher the effective independence score of a candidate sensor location, the more
important that location is for calculating the independence of the mode shapes. Therefore,
sensor locations with the lowest values are eliminated, and the effective independence
score is then recalculated from the subset of candidate locations.

The lowest ranking row of EI and the corresponding row in Φs are eliminated, and the
new Φs is then input into Equation (2). Where the values of EI are equal, either sensor location
could be removed from the set of sensors without impacting the linear independence of the
target modes.

The process is repeated until the desired number of sensors is reached. The sum of the
column vector EfI must always be equal to the number of target modes and, as a result, EfI
must be recomputed whenever a node is removed as irrelevant. As such, it is optimal to
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remove only one node per iteration. Additionally, it is impossible to have fewer sensors
than target modes. The process is complete when the desired number of sensors is reached
or when all remaining sensor locations have similar effective independence values [20].

The determinant of the Fisher information matrix A0 is used to measure how much
information is covered by a given sensor set:

A0 = ΦT
s Φs (10)

2.2. Mass-Weighted Effective Independence (MEIM)

A drawback to EIM is that it selects sensors by only considering the contribution to
the linear independence of the mode shapes and neglects their orthogonality constraints
through the mass matrix [24].

In fact, the MAC matrix is generally not an identity matrix; therefore, it will not directly
show the mode shapes to be linearly independent. As a consequence, the sensor locations
selected by the effective independence method may not always be appropriate.

When a mass-weighted approach is used, such as the Mass-Weighted Effective Inde-
pendence (MEIM), modes shapes that contribute the least to self-orthogonality are removed
in each iteration as opposed to focusing purely on linear independence when selecting
features. Cross-orthogonality checks are used to determine how analytical and empirical
modal testing results correlate.

Based on Equation (11), a new Mass-Weighted Effective independence parameter is
defined, such that

MWEI = M̂Φs

(
ΦT

s M̂
T

M̂Φs

)−1
ΦT

s M̂
T

(11)

where matrix M̂ is defined to allow M = M̂
T

M̂; therefore, M̂ = M1/2.
One of the drawbacks, however, is that the Mass-Weighted Effective Independence

requires the decomposition of the mass matrix to obtain M̂, which can be computationally
prohibitive, as it requires the calculation of the eigenvalues and eigenvectors of the mass
matrix M or its Cholensky decomposition. The problem is reduced if the mass matrix M
is diagonal, and M̂ could then be found by taking the square root of all diagonal elements
of M [24].

2.3. Residual Kinetic Energy Method (RKE)

The RKE method is a technique that provides information on the sensor location that
exhibits the maximum response for each mode shape and may offer improved performance
over EIM. It is commonly used by NASA to determine sensor placement for modal testing
based on detailed FEA models [25]. The method ensures that the residual kinetic energy
is minimized in all degrees of freedom and modes under consideration. When this is
computed, DOFs with high residual kinetic energy indicate that additional refinement is
needed in order to measure the corresponding degree of freedom in a given mode. After
another sensor is added to cover that degree of freedom, the residual kinetic energy is
recomputed. This process is repeated until the solution is suitably orthogonal [26].

The RKE method ensures all recorded modes are fully orthogonal and, therefore,
independent from each other.

The selection of the optimal sensor locations for modal testing using the RKE method
is based on the partition of the modal vectors Φ

Φ =

{
Φs
Φo

}
(12)

into Φs, which corresponds to “sensed” modal vectors (contains the DOF where sensors
will be placed), and Φo, which corresponds to the “omitted” partition of the eigenvector (no
sensor will be placed at these DOFs). The stiffness and mass matrix can also be partitioned
accordingly, and Equation (1) becomes
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KΦ − MΦλ =

[
Kss Kso
Kos Koo

]{
Φs
Φo

}
−

[
Mss Mso
Mos Moo

]{
Φs
Φo

}
λ (13)

A static Guyan reduction transformation is used to obtain an approximation of the
omitted modes Ψo:

Ψo = −K−1
oo KosΦs (14)

The mass matrix corresponding to the selected sensor location is
∼
Mss:

∼
Mss =

{
I

−K−1
oo Kos

}T[Mss Mso
Mos Moo

]{
I

−K−1
oo Kos

}
(15)

The orthogonality of the reduced modes identified using the selected points Φs can be
tested by parameter ORs, which differ from the identity matrix because a reduced set of
DOF is used to represent the modes:

ORs = ΦT
s
∼
MssΦs ̸= I (16)

Industry and government standards require
∣∣ORs, ij

∣∣ ≤ 10% for i ̸= j. The residual
error can be defined as follows:

R =

{
Φs
Φo

}
−

{
Φs
Ψo

}
=

{
0

Φo − Ψo

}
=

{
0

Φo + K−1
oo KosΦs

}
(17)

The error matrix is, therefore, a subtraction of the “omitted” DOF modes determined
analytically (through finite elements or another analytical method) and the estimated
“omitted” modes.

As the modal kinetic energy for the complete system is defined by Equation (3), a
residual kinetic energy RKE matrix can be defined using the residual error R:

RKE = (MR)⊗ R (18)

Each column of the RKE matrix represents the contribution of each degree of freedom to
the residual kinetic energy of a specific mode. Similarly to R, the RKE matrix is 0 at the rows
corresponding to the sensor positions (measured DOF). The sum of the contribution of each
degree of freedom is 1. Sensors should be placed at the locations of nodes with higher RKE
values. The RKE matrix column will be much lower than 1 if that mode is already appropriately
instrumented. By iterating through this matrix, the location where sensors should be placed can
be determined, as well as the minimum number of sensor locations. This methodology works
well when applied to existing analysis points to identify additional degrees of freedom that are
under-measured by the initial sensor placement, and it has been adopted by NASA and others
to meet NASA and Department of Defense standards for modal testing.

3. Machine Learning Approach for Sensor Selection

Machine learning (ML) techniques are a promising approach for determining sensor place-
ment in modal analysis. Machine learning techniques are able to determine a non-deterministic
relationship between an output quantity and a large number of input quantities—called
“features”—on which the output depends, through an initial process called “training”. A
large number of features are usually defined in a machine learning database, resulting in high
computational costs. In an effort to reduce the computational costs of the training procedures
and identify the most important factors that contribute to the desired output, several approaches
have been defined to identify the most important features of the database. Examples of such
approaches are the SelectKBest algorithm [27,28], the random forest feature importance ap-
proach [29,30], and Principal Component Analysis [31,32]. This paper focuses on the use of the
random forest feature importance approach, as discussed in the following section.

The random forest (RF) feature selection approach was selected for sensor placement
based on its promising performance in existing sensor selection applications [33]. The RF is
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a learning method for classification and regression that belongs to the CART family (CART:
Classification and Regression Trees). It is considered an averaging ensemble method be-
cause it combines the results from multiple estimators and averages the predicted results to
reduce variance.

During the training process, the random forest algorithm constructs a multitude of
decision trees with a predicted estimation of the output variables; then, the outputs of all
trees are aggregated, and the algorithm returns the average prediction of the individual
decision trees. This aggregation process is called a bagging method, and it highly reduces
the variance and the prediction bias—either underestimation or overestimation—of the
output target, thereby reducing overfitting [29]. In addition to the randomness introduced
by varying the input data for each DT, random perturbations in the DTs are also introduced.
Each decision tree constructed by the algorithm is composed of internal nodes and leaves;
in each internal node, all features are used to make decisions on how to binary split the
dataset further based on a defined criterion, such as the Gini impurity or variance reduction
parameters. This criterion measures how each feature decreases the impurity of the split at
each node. For each feature, it is then possible to determine how, on average, it decreases the
impurity of all trees in the forest, which becomes a measure of the feature importance [30].
In this paper, the Gini index will be used to determine the feature importance. Once the
algorithm calculates the feature importance for each input variable, a bar graph can be
obtained to determine the most important features. Additionally, the R squared value (R2)
and mean squared error (MSE) can be used to evaluate the performance of the approach.

Initially, a random forest model is constructed using all the features available in the
dataset. The random forest algorithm computes the feature importance of each input
variable as it maps to the output variable. The regressor attributes a feature importance
value that ranges between 0 and 1 to each input variable in the model. This value represents
how much variance in the output is represented by each input variable. The sum of all
feature importance of the model is 1. By selecting the inputs with the largest values of
feature importance, we can determine which inputs are most valuable in representing the
output. A number of inputs should be selected, such that a sufficient percentage of the
variance of the data is represented.

Conceptually, if a model has four input variables called a, b, c, and d, the RF regressor
attributes a feature importance value to each input. In Figure 1, input b has a feature
importance of 0.6, input d has a feature importance of 0.2, input a has a feature importance
of 0.15, and input c has a feature importance of 0.05. Therefore, input b is the most important
feature and represents 60% of the variance in the data. Input d is the second most important
feature and represents 20% of the variance in the data. Inputs b and d combined represent
80% of the variance in the data and could be used as a reduced model of the system.
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This concept can be applied to sensor placement and selection by defining all the
possible locations and types of sensors in the system as input variables [34]. The optimal
number, location, and type of sensors are determined based on the most important features
selected by the random forest regressor.

A flow-chart of the approach is shown in Figure 2.
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First, a finite element (FE) model of the system is created, and a broadband time-
domain simulation in the frequency domain of interest is performed. The results of the
simulation are exported for each node and/or potential sensor locations. These locations
must correspond to all the possible/viable locations for the sensors in the modal tests.
All quantities corresponding to the desired sensors should be considered, such as strains,
accelerations, etc. For each of these n locations and quantities, the frequency response
function (FRF) is evaluated. FRF is defined as the ratio of the response (i.e., acceleration,
velocity, or displacement) with respect to the excitation force, which is the reference. These
quantities will be the inputs of the machine learning model.

Then, a scalar parameter that represents the global behavior of the system should be
identified for each frequency at which the input FRFs are evaluated. This parameter will be
used as output for the random forest feature importance approach.

Three different options for output parameters are evaluated in this paper: the raw
Operational Deflection Shape (ODS), the normalized ODS, and the average FRF.

1. Global parameter (a): raw ODS.

The sum of the squares of the ODS at each possible sensor location is evaluated
according to

Output a = ODST
ωODSω (19)

where ODSω contains the operational deformed shape at each frequency ω. This expression
results in a distinct scalar value for each ODS at each frequency.

Output a, however, depends on the load condition of the beam and will change
depending on the magnitude of the load applied to the beam.

2. Global parameter (b): normalized ODS.

To decrease the sensitivity of the output to the load conditions, a normalized form of
output a is calculated as follows:
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Output b =
ODST

ωODSω

|ODSω |2
(20)

Dividing the ODS product by the magnitude of the ODS at that frequency reduces
the effect of the external load on the output used by the random forest feature importance
approach and, therefore, on the sensor placement.

3. Global parameter (c): average FRF.

The last output chosen was the average FRF at a given frequency, where n is the
number of nodes, and the sum of the FRF at a given frequency is taken across all nodes n.

Output c =
∑ FRF( f )

n
(21)

After all local and global quantities are evaluated, the database can be created according
to Table 1. The first column contains the frequency, columns 2 to (n + 1) contain the FRF at
each desired location and represent the input variable, and the last column (n + 2) contains the
global parameter and will be the output quantity for the random forest regressor. The random
forest method can be run to obtain the ranking of the most important features, which can then
be selected as the location and type of sensor needed for modal testing.

Table 1. Structure of th random forest feature importance dataset.

Freq (Hz) Node 1 Node 2 . . . Node n Output

f Node 1 FRF (f ) Node 2 FRF (f) Node n FRF (f ) Output (f)

Dataset Creation

The dataset for the random forest regression model is extracted from a finite element
model of the desired system and reformatted as specified in Table 1. Each row in the dataset
corresponds to a frequency for which the FRF of each node is calculated. Each row in this
case represents the operational deflection shape (ODS) for a given frequency for every node
in the numerical modal model. The frequency is used primarily for tracking and is not
input into the RF. The output column in this table represents the value the model should
attempt to represent.

The model will output a table of all the input features (nodes) and their corresponding
importance for predicting the output value. Therefore, choosing a parameter for the output
is crucial to producing results that reflect an optimal sensor placement. All three global
parameters will be considered as possible output parameters, and the resulting sensor
placement will be presented in the next section.

4. Application of the Random Forest Sensor Selection Approach to a
One-Dimensional Structure

The proposed method is applied to the analysis of a cantilever aluminum beam, the
properties of which are listed in Table 2.

Table 2. Cantilever beam properties.

Property Value

Length 0.242 m

Width 0.032 m

Thickness 0.00305 m

E (Young’s modulus) 70 GPa

υ (Poisson’s ratio) 0.33

ρ (density) 2700 kg/m3
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The transverse behavior of the beam is modeled using 1D Euler–Bernoulli beam
elements. The beam is clamped on one side, corresponding to Node 1; a transverse time-
varying load is applied at the free end of the beam, corresponding to Node n of the beam
(Figure 3). The mesh of the beam is shown in Figure 4.
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The first seven natural frequencies of the beam are listed in Table 3.

Table 3. Natural frequencies of the cantilever beam.

Mode Number FEA Natural Frequency (Hz)

1 42.83

2 268.26

3 750.45

4 1468.6

5 2423.4

6 3612.5

7 5033.1

In the first case, a fine mesh is considered (100 elements) for the RF analysis. A second
case is presented, in which the number of elements composing the mesh of the beam is
reduced to 20 elements. Comparison of these two cases will determine whether the method
is sensitive to the mesh of the model. In the third case, the time history of the applied load
is changed to determine the sensitivity of the approach to the loading condition.

4.1. Densely Meshed Cantilever Beam (Case 1)

For this first case, a finite element model of the cantilever beam was created using
100 linear beam elements, corresponding to an element size and distance between nodes of
2.4 mm. The beam was subjected to a transverse broadband Gaussian white-noise excitation
from 0 Hz to 50 kHz, as shown in Figure 5, applied at the free end of the beam.

The database used by the RF feature importance approach was created from the
transverse acceleration at each node. Transverse acceleration was chosen as the input
parameter owing to the wide availability of linear accelerometers for modal testing.
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In this first example, all three definitions of the global parameter are explored. For
each output option, an RF model is trained using the available data. To understand the
capability of the RF to represent the output, the R2 and MSE are shown in Table 4. The MSE
and R2 values in Table 4 appear excellent, giving confidence that the RF model is a good
representation of the system and that the feature importance algorithm is reliable.

Table 4. R2 and MSE of RFR for case 1.

(a) ODS (b) Normalized ODS (c) Avg. FRF

R2 0.900 0.940 0.940

MSE 7.0 × 10−15 4.4 × 10−9 2.8 × 10−11

The ten most important features from each global parameter selection are listed in
Table 5. These features represent the first ten candidate sensor locations identified by the
RF algorithm. The nodal numbering starts with “node 1” at the root of the beam and ends
with node 101 at the tip of the beam.

Table 5. Most important sensor locations (nodes) for case 1 based on different selections of the global
parameter.

Feature Importance Rank (a) ODS (b) Normalized ODS (c) Avg. FRF

1 86 66 61

2 69 100 47

3 44 68 94

4 12 92 42

5 43 73 41

6 70 34 48

7 53 82 5

8 101 20 82

9 96 88 101

10 87 83 57

The contribution of each feature/sensor to the variance of the data is depicted in
Figure 6. The first ten features of the ODS RF account for 31% of the variance (global
parameter a), whereas the first ten features of the normalized ODS account for 34% of the
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variance (global parameter b) The first 10 features of the average FRF account for 29% of
the variance (global parameter c). The position of the first ten sensors identified by the RF
approach for the three outputs are depicted in Figure 7; some of the sensors are overlapping
or very close to each other (e.g., 2.4 mm between sensor locations 43 and 44 for output a),
which is not physically possible in a real testing environment.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 24 
 

overlapping or very close to each other (e.g., 2.4 mm between sensor locations 43 and 44 
for output a), which is not physically possible in a real testing environment. 

Table 5. Most important sensor locations (nodes) for case 1 based on different selections of the global 
parameter. 

Feature Importance 
Rank (a) ODS (b) Normalized ODS (c) Avg. FRF 

1 86 66 61 
2 69 100 47 
3 44 68 94 
4 12 92 42 
5 43 73 41 
6 70 34 48 
7 53 82 5 
8 101 20 82 
9 96 88 101 

10 87 83 57 

 
Figure 6. Variance as a function of the number of features for case 1. 

 
Figure 7. Sensor locations along the beam for case 1. 

Figure 6. Variance as a function of the number of features for case 1.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 24 
 

overlapping or very close to each other (e.g., 2.4 mm between sensor locations 43 and 44 
for output a), which is not physically possible in a real testing environment. 

Table 5. Most important sensor locations (nodes) for case 1 based on different selections of the global 
parameter. 

Feature Importance 
Rank (a) ODS (b) Normalized ODS (c) Avg. FRF 

1 86 66 61 
2 69 100 47 
3 44 68 94 
4 12 92 42 
5 43 73 41 
6 70 34 48 
7 53 82 5 
8 101 20 82 
9 96 88 101 

10 87 83 57 

 
Figure 6. Variance as a function of the number of features for case 1. 

 
Figure 7. Sensor locations along the beam for case 1. Figure 7. Sensor locations along the beam for case 1.

For all three choices of output, approximately 20 features are needed before at least
50% of the variance is accounted for; however, output (a) exhibits slightly higher individual
variance in the first three features.

To estimate the mode shapes that the selected sensors will predict, the value of the
actual (FEA) mode shape was taken at each candidate sensor location. To obtain the mode
shapes in the figures, the numerical mode shapes were evaluated at the selected sensors’
locations to verify that minimum aliasing is present with the proposed choice. The mode
shapes are depicted in Figure 8 (modes 1–4) and Figure 9 (modes 4–6). Each column in
the charts represents a mode, and the rows display the different global parameter choices
(a: raw ODS, b: normalized ODS, c: average FRF). Sensor locations do not vary between
modes but are plotted on top of the different mode shapes to visually evaluate the ability
of the sensors to measure a given mode shape.
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All three sensor sets obtained using the different choices of output parameters can
predict the first four modes with relative accuracy. Starting at mode 4, mode peak clipping
can be noted with all global parameter options.

As the mode number increases (Figure 9) the predictions made using the machine
learning modeling fail to capture the behavior of the first third of the beam, as all methods
weight the free end of the beam more heavily. The method is able to capture the number
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of nodes for each mode and does not exhibit large aliasing errors in the representation
of mode shapes. At mode 7 and above, the aliasing of the modes along the length of the
beam starts to become apparent, which is expected with only ten sensor placements on
the structure.

4.2. Effect of Mesh Density on Sensor Selection Using a Random Forest Regressor (Case 2)

The previous subsection defined optimal sensor locations for modal analysis with a
mesh of 100 elements. This mesh results in an element size of 2.42 mm. Since the method
allows for the placement of a sensor at any given node, it can select adjacent nodes for
sensor placement (Figure 7 and Table 5). This distance between nodes (element size) is
impractical for physical sensors. This subsection discusses the sensitivity of the approach
to the mesh size.

For the second case, the mesh is reduced to 20 elements, resulting in minimum sensor
distances of 12.1 mm, which is more reasonable, as shown in Figure 10. The rest of the
parameters for the finite element and random forest analyses are the same as in case 1,
including the applied excitation and the physical properties of the beam.
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Table 6 lists the first eight positions selected as the best sensor locations by the RF
feature importance applied to a coarser mesh. A nodal location of 1 corresponds to the root
of the cantilever beam, and 21 corresponds to the tip of the beam.

Table 6. Most important sensor locations for case 2, ranked by feature importance.

Feature Importance Rank (a) ODS (b) Normalized ODS (c) Avg. FRF

1 12 20 14

2 11 21 13

3 20 14 19

4 8 19 7

5 19 12 12

6 21 7 17

7 14 6 18

8 6 10 3

The first eight features of the ODS RF (global parameter a) account for 55% of the
variance, which represents a considerable improvement compared with case 1. Similar
changes pertain to the other two choices of global parameter: the first ten features of the
normalized ODS RF (global parameter b) account for 56% of the variance, and the first
eight features of the Avg. FRF RF (global parameter c) account for 52% of the variance. This
improvement is expected, as the eight most important features in case 2 account for 40% of
the total nodes, whereas in case 1 the 10 most important features account for only 10% of
the total nodes.

The positions of the first eight sensors identified by the RF approach for the three outputs
are depicted in Figure 11. It is clear that the overlapping problems identified in case 1 have
been eliminated.
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Visualizations of the ability of the sensors to identify the modes of the beam are
depicted in Figures 12 and 13. The plots were created using the same methodology as
Figures 8 and 9. Examining the plots, the ODS sensor selector (global parameter a) ap-
pears to perform worse, with almost all the sensors placed at inflection points for the
7th natural frequency.
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ODS, (c): average FRF.

Upon comparison of the figures of the modes of case 1 (Figure 7) and 2 (Figure 11),
it can be seen that the selected sensor locations are similar for both cases, suggesting
the robustness of the method according to mesh size. Comparing Figures 8 and 9 with
Figures 12 and 13 shows that reducing the number of elements of the beam does not affect
the accuracy of the proposed methods in representing the modal characteristics of the
beam. The accuracy of the method is not reduced because 20 elements are sufficient to
represent the modal content of the beam up to the considered natural frequency (the first
seven bending modes).
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The ability of the method to properly select sensor locations for modal testing is further
verified by extracting natural frequencies from the selected FRF using a modal analysis
procedure. The natural frequencies extracted by these signals using the Gaussian white-
noise excitation are presented in Table 7. All choices for global output yield results that
closely match the natural frequencies derived by the modal analysis of the finite element
model; however, all sensor configurations are poor predictors of the first natural frequency,
with the normalized ODS parameter performing better with an error of 27% (Table 7). In
the mid-range frequencies, all three methods perform quite well, with errors below 6%
from the numerical frequency.

Table 7. Extracted natural frequencies, case 2.

FEA (a) ODS (b) norm ODS (c) Avg. FRF

Mode # f (Hz) f (Hz) % Err f (Hz) % Err f (Hz) % Err

1 42.8 – 100% 54.3 27% – 100%

2 268.3 277.5 3% 281.6 5% 278.0 4%

3 750.5 755.7 1% 757.5 1% 751.7 0%

4 1468.7 1471.0 0% 1462.8 0% 1462.6 0%

5 2424.1 2397.1 1% 2395.1 1% 2398.2 1%

6 3614.8 3526.0 2% 3531.6 2% 3499.3 3%

7 5039.1 4834.3 4% 4747.1 6% – –

4.3. Effect of Excitation Signals on Sensor Selection Using a Random Forest Regressor (Case 3)

To study the effect that the choice of excitation signal has on sensor selection using
the proposed methodology, two different excitation signals were chosen for comparison.
Although traditional methods should select sensors for modal testing independently of the
excitation signal, the random forest method is sensitive to the chosen excitation frequency
due to how the input database is constructed. The first excitation consists of the Gaussian



Appl. Sci. 2024, 14, 3040 17 of 23

white-noise input signal used in the previous sections (cases 1 and 2), and the second
excitation signal is a linear chirp, as described below (case 3). The comparison will be based
on a mesh size of 20 elements identical to case 2.

The beam was excited using a linear chirp signal, whose single-sided amplitude is
depicted in Figure 14 as a function of frequency.
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The same three global parameters were considered for this case. The sensors selected
by the approach for this different excitation signal are listed in Table 8.

Table 8. Most important sensor locations for case 3, ranked by feature importance.

Feature Importance Rank (a) ODS (b) Normalized ODS (c) Avg. FRF

1 10 19 20

2 19 13 9

3 4 8 19

4 14 16 21

5 8 12 14

6 3 10 13

7 16 11 5

8 18 17 8

The positions of the first eight sensors identified by the RF approach for the three outputs
are depicted in Figure 15.

To better visualize the locations of the sensors and the potential for the sensors to
capture the desired mode shapes, each selected sensor location is also plotted on the finite
element-derived mode shape for the first seven modes (Figures 16 and 17).

All global parameter options appear to track the first two mode shapes adequately;
however, the normalized ODS- (global parameter b) and FRF-based (global parameter c)
methodologies miss more peaks than the ODS (global parameter a) method, especially at
higher frequencies. Both the normalized ODS- and FRF-based methods exhibit peak clipping
starting at mode 4 and place sensors at inflection points; therefore, they will not be able to
capture those frequencies.

As a validation of the approach, the first seven natural frequencies are extracted using
modal analysis of the first eight selected locations. The calculated natural frequencies are
listed in Table 9. All three approaches are able to identify the first three natural frequencies,
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as the chirp excitation is better able to excite this frequency and mode. However, the error
on the first natural frequency is still large, ranging from 16% to 21% with respect to the first
natural frequency calculated from the eigenvalues of the numerical system. The errors on
the 2nd to 7th natural frequencies are in line with case 2, suggesting that the method is
reliable independent of the choice of excitation signal.
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Table 9. Cont.

FEA (a) ODS (b) Norm ODS (c) Avg FRF

f (Hz) f (Hz) % Err f (Hz) % Err f (Hz) % Err

2424.1 2401.0 1% 2400.7 1% 2399.8 1%

3614.8 3539.1 2% 3537.1 2% 3525.5 2%

5039.1 4832.8 4% – – – –
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5. Comparison of Proposed Methodology with Traditional Approaches and Discussion

This section compares the proposed methodology with results from a traditional
sensor placement methodology for modal analysis, specifically the Effective Independence
Method (EIM) [23,35]. In the case of the EIM, the sensors are chosen based on the numerical
modes of the beam; therefore, they do not depend on the applied excitation. EIM is applied
to a mesh with 100 elements, similar to case 1.

The first ten nodes identified by the EIM as the best sensor locations for analysis of the
beam are listed in Table 10, and the locations are plotted in Figure 18.
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A comparison between the natural frequencies identified using the optimal sensors’
locations selected by the EIM and the random forest feature selection approach is provided
in Tables 11 and 12.

Table 11. Comparison between natural frequencies identified using the optimal sensors’ locations
selected by the EIM and the random forest feature selection approach for case 2.

FEA EIM (a) ODS (b) Norm ODS (c) Avg FRF

f (Hz) f (Hz) % Err f (Hz) % Err f (Hz) % Err f (Hz) % Err

42.8 – 100% – 100% 54.3 27% – 100%

268.3 278.9 4% 277.5 3% 281.6 5% 278.0 4%

750.5 755.6 1% 755.7 1% 757.5 1% 751.7 0%

1468.7 1482.5 1% 1471.0 0% 1462.8 0% 1462.6 0%

2424.1 2396.0 1% 2397.1 1% 2395.1 1% 2398.2 1%

3614.8 3523.6 3% 3526.0 2% 3531.6 2% 3499.3 3%

5039.1 4837.4 4% 4834.3 4% 4747.1 6% – –

Table 12. Comparison between natural frequencies identified using the optimal sensors’ locations
selected by the EIM and the random forest feature selection approach for case 3.

FEA EIM (a) ODS (b) Norm ODS (c) Avg FRF

f (Hz) f (Hz) % Err f (Hz) % Err f (Hz) % Err f (Hz) % Err

42.8 49.4 15% 49.5 16% 52.0 21% 51.1 19%

268.3 279.7 4% 279.7 4% 291.8 9% 280.1 4%

750.5 767.3 2% 767.4 2% 765.8 2% 767.3 2%

1468.7 1463.0 0% 1463.0 0% 1463.3 0% 1463.5 0%

2424.1 2401.0 1% 2401.0 1% 2400.7 1% 2399.8 1%

3614.8 3539.1 2% 3539.1 2% 3537.1 2% 3525.5 2%

5039.1 4833.1 4% 4832.8 4% – – – –

6696.0 6317.7 6% 6317.1 6% 6306.8 6% 6459.3 4%

Both the proposed method and the traditional EIM method appear to perform similarly
in the beam problem, yielding similar natural frequencies to each other in both loading
conditions (Tables 11 and 12). The natural frequencies resulting from the choice of output
a (ODS) are generally characterized by a lower error than those obtained for the use of
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outputs b (normalized ODS) and c (average FRF). Therefore, the proposed method is
considered a feasible approach with traditional methodologies.

The choice of global output a seems to be more reliable than global outputs b and
c in its ability to identify a set of sensors that maximizes the larger number of natural
frequencies that can be extracted through modal analysis. The approach is also robust with
respect to the applied excitation; although the optimal sensor location changes slightly
when different excitations are used to generate the database for input to the RF method, the
identified natural frequencies do not differ markedly. Additionally, an excitation needs to
be applied to perform modal testing; therefore, we could argue that the use of the expected
excitation during testing to create the database will result in optimal sensor positioning for
a given excitation.

The application of the proposed method also has the advantage of not requiring
an iterative approach, and it can be quickly applied to preexisting finite element results.
The computational times for the EIM approach versus the random forest approaches are
compared in Table 13. The EIM approach requires about 174 × 10−3 s to identify the 10 most
important sensor positions. The use of a random forest approach for sensor selection
reduces the computational time to a range between 5.653 × 10−3 s and 7.619 × 10−3 s,
representing a reduction of 95–97%. Due to the nature of the approach, the random forest
computational time is not sensitive to the number of sensors that need to be selected.
It does, however, require the solution of transient vibration simulations, which can be
time-consuming.

Table 13. Comparison of computational time between EIM and the random forest feature selection
approach for case 2 (Simulations run on 13th Gen Intel(R) Core(TM) i7-1365U 1.80 GHz).

EIM (a) ODS (b) Norm ODS (c) Avg FRF

Computational time
[
10−3 · s] 173.671 5.653 7.619 7.146

The proposed methodology has several potential applications in the field, such as the
local mechanical characterization by harmonic oscillators [36,37] or temperature sensing in
specific sample regions [37].

6. Conclusions

Machine learning represents an appealing solution to the issue of sensor selection for
modal testing. Current algorithms used for sensor selection are iterative when implemented
and, for large geometries and complex models, the computational time can be substantial.
The method presented here exploits the ability of the random forest approach to select the
most important feature of a database for modal analysis sensor selection based on finite
element models of the system. A database is created in the frequency domain; the responses
of interest at every nodal location of the model are considered possible sensor locations.
The output of the random forest feature selection approach is defined based on a global
output that characterizes the system. Three options are evaluated in the paper: the ODS of
the system, a normalized ODS, and the average FRF at the specific frequency. The approach
is applied to a one-dimensional model of a vibrating cantilever beam. The optimal sensor
locations identified by the proposed approach are compared with the sensors selected by
the Effective Independence Method and appear to yield similar results to the proposed
approach. Within the proposed approach, the choice of the operational deformed shape
(ODS) as a global parameter appears to be more robust than the other proposed options.
The approach is evaluated for sensitivity with respect to mesh size and type of excitation
signal and is robust to any changes in these parameters.

The work presented in the paper offers several insights into the use of machine learning
approaches for sensor selection. As the research progresses, an experimental application
of the approach will be conducted, as well as the application of the methodology to more
complex components.
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30. Płoński, P. Random Forest Feature Importance Computed in 3 Ways with Python|MLJAR Automated Machine Learning.
Available online: https://mljar.com/blog/feature-importance-in-random-forest/ (accessed on 27 May 2021).

31. Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods
Prim. 2022, 2, 100. [CrossRef]

32. Song, F.; Guo, Z.; Mei, D. Feature selection using principal component analysis. In Proceedings of the 2010 International
Conference on System Science, Engineering Design and Manufacturing Informatization, ICSEM 2010, Yichang, China,
12–14 November 2010; pp. 27–30. [CrossRef]

33. Choppala, S.; Kelmar, T.W.; Chierichetti, M.; Davoudi, F.; Huang, D. Optimal sensor location and stress prediction on a plate
using machine learning. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023;
pp. 1–12. [CrossRef]

34. Chierichetti, M.; Davoudi, F. Optimal sensor location along a beam using machine learning. In Proceedings of the AIAA SCITECH
2022 Forum, San Diego, CA, USA, 3–7 January 2022. [CrossRef]

35. Kammer, D.C. Optimal sensor placement for modal identification using system-realization methods. J. Guid. Control. Dyn. 1996,
19, 729–731. [CrossRef]

36. Magazzù, A.; Marcuello, C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A
Comprehensive Review. Nanomaterials 2023, 13, 963. [CrossRef] [PubMed]

37. Abdelwahed, M.; Zerioul, L.; Pitti, A.; Romain, O. Using Novel Multi-Frequency Analysis Methods to Retrieve Material and
Temperature Information in Tactile Sensing Areas. Sensors 2022, 22, 8876. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-3-031-79729-3_3
https://doi.org/10.1007/978-1-4939-6503-8_30-1
https://machinelearningmastery.com/feature-selection-with-numerical-input-data/
https://machinelearningmastery.com/feature-selection-with-numerical-input-data/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest
https://mljar.com/blog/feature-importance-in-random-forest/
https://doi.org/10.1038/s43586-022-00184-w
https://doi.org/10.1109/ICSEM.2010.14
https://doi.org/10.2514/6.2023-0370
https://doi.org/10.2514/6.2022-1465
https://doi.org/10.2514/3.21688
https://doi.org/10.3390/nano13060963
https://www.ncbi.nlm.nih.gov/pubmed/36985857
https://doi.org/10.3390/s22228876
https://www.ncbi.nlm.nih.gov/pubmed/36433473

	Introduction 
	A Review of Traditional Sensor Placement Techniques for Modal Testing 
	Effective Independence Method (EIM) 
	Mass-Weighted Effective Independence (MEIM) 
	Residual Kinetic Energy Method (RKE) 

	Machine Learning Approach for Sensor Selection 
	Application of the Random Forest Sensor Selection Approach to a One-Dimensional Structure 
	Densely Meshed Cantilever Beam (Case 1) 
	Effect of Mesh Density on Sensor Selection Using a Random Forest Regressor (Case 2) 
	Effect of Excitation Signals on Sensor Selection Using a Random Forest Regressor (Case 3) 

	Comparison of Proposed Methodology with Traditional Approaches and Discussion 
	Conclusions 
	References

