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Abstract: Running posture estimation is a specialized task in human pose estimation that has received
relatively little research attention due to the lack of appropriate datasets. To address this issue, this
paper presents the construction of a new benchmark dataset called “Running Human”, which
was specifically designed for running sports. This dataset contains over 1000 images along with
comprehensive annotations for 1288 instances of running humans, including bounding boxes and
keypoint annotations on the human body. Additionally, a Receptive Field Spatial Pooling (RFSP)
module was developed to tackle the challenge of joint occlusion, which is common in running sports
images. This module was incorporated into the High-Resolution Network (HRNet) model, resulting
in a novel network model named the Running Human Posture Network (RHPNet). By expanding the
receptive field and effectively utilizing multi-scale features extracted from the multi-branch network,
the RHPNet model significantly enhances the accuracy of running posture estimation. On the
Running Human dataset, the proposed method achieved state-of-the-art performance. Furthermore,
experiments were conducted on two benchmark datasets. Compared to the state-of-the-art ViTPose-L
method, when applied to the COCO dataset, RHPNet demonstrated comparable prediction accuracy
while utilizing only one tenth of the parameters and one eighth of the floating-point operations
(FLOPs). On the MPII dataset, RHPNet achieves a PCKh@0.5 score of 92.0, which is only 0.5 points
lower than the state-of-the-art method, PCT. These experimental results provide strong validation for
the effectiveness and excellent generalization ability of the proposed method.

Keywords: human pose estimation; joint occlusion; multi-branch network; multi-scale features;
running posture estimation

1. Introduction

Running is one of the most fundamental forms of exercise. It not only enhances
immunity and improves physical resilience but also exercises various parts of the body.
Although running may seem simple, incorrect posture can significantly stress muscles,
bones, tendons, and ligaments. Prolonged use of improper running posture can greatly
increase the risk of sports-related injuries. Previously, correcting running movements
relied solely on professional coaches. However, with the development of computer vision
technology, it has become possible to correct running movements using computers. Human
pose estimation, as one of the important research directions in computer vision, aims to
detect the key points of the human body in digital images or video data. It serves as the
foundation for computer-based correction of running movement.

Human pose estimation algorithms have encountered challenges in attaining practical
applicability in long-term development. However, the advent of deep learning and deep
neural networks has significantly enhanced the performance of human pose estimation
algorithms in real-world scenarios. In 2014, pioneering network models like DeepPose [1]
emerged. Although these models employed deep learning techniques for human pose
estimation, the accuracy of their output was relatively low due to insufficient network
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depth and limitations in training data. In 2016, researchers proposed the Stacked Hour-
glass [2] network model, which introduced stacked convolutional layers to capture feature
information at different scales through multi-stage convolutional operations and used skip
connections to preserve spatial information at different scales. This novel network model
greatly improved the accuracy of predictions. In 2018, Bin Xiao et al. proposed a simple
network architecture called Simple Baseline [3]. This architecture replaced the up-sampling
component in Stacked Hourglass with inverse convolutions and included no cross-layer
connections between different feature layers in the network. As the name suggests, this
work presented a straightforward and effective baseline method for human pose estima-
tion. In 2019, Ke Sun et al. introduced the High-Resolution Network (HRNet) [4] to learn
reliable high-resolution representations by connecting the multi-resolution subnetworks in
parallel and performing repetitive multi-scale fusion. This multi-branch high-resolution
network has achieved remarkable success, surpassing all previous works in three tasks:
keypoint detection, pose estimation, and multi-person pose estimation on the Common
Objects in Context (COCO) dataset [5]. Inspired by the success of transformer architecture
in visual tasks, in 2022, JD Explore Academy partnered with the University of Sydney
to employ a straightforward and nonhierarchical vision transformer, named ViTPose [6],
for the task of human pose estimation. ViTPose achieved state-of-the-art accuracy on the
COCO dataset, underscoring the effectiveness of transformer architecture in the field of
human pose estimation. However, the practical application of this approach is limited
by the model’s parameter size and associated training costs, encompassing training time
and hardware requirements. In 2023, Pose as Compositional Tokens (PCT) [7] introduced
structured representation into human pose estimation, modeling the dependencies between
body joints and automatically learning the sub-structures of human poses. PCT achieved
state-of-the-art accuracy on the MPII [8] dataset.

Although there have been significant advancements in the research on human pose es-
timation in recent years, there are still some challenges and limitations, including occlusion,
viewpoint variations, and difficulties in handling complex scenarios with multiple individ-
uals. Concurrently, we observed that there is a relatively scant amount of research on pose
estimation for running movements, mainly due to the lack of corresponding datasets. In
response to this problem, the authors of this study have constructed a benchmark dataset
specifically designed for running movements called “Running Human”. This dataset
provides comprehensive annotations encompassing bounding boxes and human body
keypoints. It comprises over 1K original images and 1288 instances of running individuals.
Additionally, in response to the common issue of joint occlusion in running sports images,
we have devised a Receptive Field Spatial Pooling (RFSP) module and used it to reconstruct
the HRNet model. The precision of running posture estimation is improved by expanding
the model’s receptive field and leveraging the multi-branch network’s capacity to extract
features at different scales. Our method attains performance equivalent to the current state
of the art on the Running Human dataset. Additionally, we conducted experiments on
two widely applicable benchmark datasets (COCO and MPII), the results of which affirm
the effectiveness and exceptional generalization ability of our approach. Specifically, in
Section 2, we provide an overview of the related work in this article. In Section 3, we delve
into the methodology employed in detail and then introduce the “Running Human” dataset
that was developed in this study, along with two additional publicly available datasets. In
Section 4, we conduct comprehensive experiments on the proposed model across the three
datasets. Finally, Section 5 concludes with a summary and prospects for future work on
the subject.

2. Related Work
2.1. Multi-Branch High-Resolution Human Pose Estimation Networks

Multi-branch high-resolution networks typically consist of multiple parallel branches,
with each branch being responsible for extracting features at different levels in order to
achieve more precise pose estimation results. The objective of this network architecture is
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to address the limitations of traditional methods when dealing with complex backgrounds,
occlusion issues, and pose variations. Among the most representative works in this regard
is HRNet [4], which was proposed by Ke Sun et al. in 2019. Its structure is shown in
Figure 1. HRNet starts from a high-resolution subnetwork in the first stage, and a parallel
low-resolution subnetwork is added in each subsequent stage. Within each stage, the
information from different resolution subnetworks is repeatedly fused. This strategy
for preserving high-resolution features significantly enhances the accuracy of human
pose estimation.
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HigherHRNet [9] is an improved version of HRNet that introduces a hierarchical
multi-resolution pyramid structure. HigherHRNet, compared to HRNet, expands the
pyramid structure further by incorporating additional branches with varying resolutions.
This strategy aims to enhance the model’s ability to handle a larger range of scale variations
and improve the model’s detection capabilities for small objects and distant objects. The
Cascade Prediction Fusion (CPF) [10] achieves the fusion of prediction results by organizing
multiple prediction models into a cascaded structure. The cascading process is employed
in CPF to progressively refine prediction results. Firstly, the base predictor generates
initial prediction results. Subsequently, the cascading fusion module combines these
results to produce a more accurate prediction. This output can then serve as input for
a new round of cascading fusion, enabling further enhancement of prediction accuracy.
Similarly, Cascaded Feature Aggregation (CFA) [11] employs iterative feature aggregation
at multiple levels to capture both local and global information in images while preserving
contextual details at different scales. It is based on deep convolutional neural networks
and constructs a cascaded structure by stacking multiple subnetworks. This study adopts
the HRNet model architecture as the foundation for a proposed novel RFSP module
designed to expand the receptive field of the model and enhance its prediction capability
for occluded joints. Additionally, a substantial augmentation of the network’s multi-
scale representation renders the model capable of extracting a greater amount of contextual
information, thereby allowing it to better attend to edge details and improve the localization
accuracy of keypoints.

2.2. Gaussian Heatmap

Gaussian Heatmap Representation is a commonly used technique in computer vision
and image processing for detecting and locating keypoints or objects in images. It represents
the position and strength of the target by generating a heatmap of Gaussian distributions
at specific locations on the image. Gaussian Heatmap Representation [12–16] has been
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dominant due to its strong localization and generalization capabilities. Subsequent works
have focused on continuously improving these capabilities, with examples including
proposals to use powerful networks [2,4,9,11–13] for more accurate heatmap estimation and
works that propose the introduction of attention mechanisms into models [17–22]. Gaussian
heatmaps have been widely applied for encoding and decoding keypoint coordinates.

In the human-pose-estimation task, the Gaussian heatmap Hi of the joint ni can be
represented as follows:

Hi (x, y) = exp

[
−
(
(x − ai)

2

2λ2 +
(y − bi)

2

2λ2

)]
. (1)

where ai , bi are the horizontal and vertical coordinates of the joint ni, respectively, and λ is
a constant that controls the magnitude of the Gaussian thermal value.

Heatmap estimation exhibits superior spatial normalization capability compared
to coordinate regression, as heatmaps can model the probability of keypoint presence
rather than solely predict coordinates. This ability implies that heatmaps can provide
reliable keypoint localization despite variations in scale or rotation within the image.
Furthermore, heatmaps also possess the capacity to capture the interrelatedness among
keypoints. Because the network requires predictions for the entire heatmap rather than just
individual keypoint coordinates during the training process, it can leverage the interactions
and constraints among keypoints to enhance the accuracy of predictions. For example,
in human pose estimation, there usually exists a strong correlation between the arm and
wrist. Through back propagation during training, the network can learn these relevant
relationships and utilize them during the projection process to enhance the accuracy of
keypoint localization.

2.3. Multi-Scale Feature Fusion

Multi-scale feature fusion plays a pivotal role in deep neural networks. It can pro-
vide more comprehensive and rich feature representation, helping the network better
understand the semantic information within images and thus improving performance on
computer vision tasks. There are many different structures for multi-scale feature fusion,
with the parallel multi-branch network structure and residual connection structure being
relatively common. In reference [14], researchers proposed a parallel multi-branch heatmap
regression network that inputs multiple images with different resolutions into multiple
sub-networks separately and finally integrates the outputs of these sub-networks to obtain
the final result. The hourglass network [2] and its extensions [12,15] employ residual
connections to progressively extract features at different scales during the downsampling
process and gradually fuse the features during the upsampling process. RefineNet [16]
combines the aforementioned structures and aims to improve the results of semantic seg-
mentation through cascaded refinement. The approach first employs a base convolutional
neural network to extract the feature representation of the input image. Subsequently,
multiple parallel convolutional branches are utilized to process these features in order
to capture semantic information at different scales. Each branch incorporates a series of
residual connections to facilitate gradient propagation and retain detailed information. Our
approach repeats multi-scale fusion, drawing partial design inspiration from RefineNet.

3. Method

In this section, we first provide an overview of the proposed model approach and
elaborate on the composition and functionality of the RFSP module. Subsequently, we
introduce the Running Human dataset tailored for analysis of running motion, along with
two other publicly available datasets used in the field of human pose estimation.
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3.1. RHPNet Architecture

HRNet [4] is a highly representative high-resolution multi-scale feature fusion network,
as shown in Figure 1. The network consists of four stages, each of which incorporates
output features from different scales. The output of the final stage is directly fused through
an information interaction unit, resulting in the generation of the final heatmap of keypoint
locations on the human body. The output features from different stages represent semantic
information at different levels. Shallow-level features contain information on crucial details,
as is essential for the task of human pose estimation. However, the method for directly
aggregating features of the final stage does not incorporate the fusion of shallow-level
features. Instead, in order to fully leverage the detailed information contained in shallow-
level features, this study proposes an RFSP module and integrates it with HRNet. This
approach leads to an improved high-resolution multi-scale feature fusion network called
Running Human Posture Network (RHPNet) that effectively enhances the localization
accuracy of occluded joints and edge joints in the model.

RHPNet is a pose estimation network for multi-person instances, and its architecture
and processing flow are illustrated in Figure 2. Firstly, the input image is fed into a backbone
network consisting of an improved HRNet (a residual connection was added to HRNet).
Subsequently, refined hybrid features are generated by fusing the shallow features with the
deep features generated by the backbone network. Finally, the hybrid features and shallow
features are passed through the RFSP module for processing, resulting in K heatmaps, with
each heatmap corresponding to a keypoint.
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backbone and an RFSP module to process input color images.

RHPNet integrates multi-scale methods [4,16] and leverages spatial pyramid pool-
ing [17] to enhance the model’s performance in multi-scale feature extraction and fusion.
Furthermore, its modularized design makes it easy to implement and train.

3.2. RFSP Module

The design of RFSP is inspired by Receptive Field Block (RFB) [18], Spatial Pyramid
Pooling (SPP) [19], and residual connections. The processing flow and internal structure
are illustrated in Figure 3. RFSP leverages the RFB module to simulate the receptive
fields of human vision and enhance the capability of the network for feature extraction.
Subsequently, it employs the spatial pyramid pooling method to fuse multi-scale features,
thus improving the model’s predictive ability for occluded joints. During this process,
integrating shallow features can enhance the network’s accuracy in localizing edge joints
while mitigating the issue of gradient vanishing.
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The Population Receptive Field (pRF) represents the receptive range of specific neu-
rons in the visual cortex for visual stimuli. Some evidence from neuroscience studies
suggests that the size of the pRF increases with increasing retinal eccentricity [20]. In-
spired by the structure of the human visual system, RFBNet [18] introduced the Receptive
Field Block (RFB) module. It utilizes multiple branches of pooling with different kernels
corresponding to varying receptive field sizes and employs dilated convolutional layers
to control the eccentricity of the receptive fields. Finally, these features are reassembled
to generate the ultimate feature representation. The RFB-S module is a variation of the
RFB module that simulates the smaller pRF found in the shallow layers of the human
visual system. It incorporates additional branches and smaller convolutional kernels. The
deployment of RFB-S followed by RFB in the RFSP module has been identified as the
optimal combination through ablation experiments, which will be further described in the
subsequent experimental Section 4.6.2.

Spatial Pyramid Pooling (SPP) converts feature maps of varying scales into a unified
scale, allowing for the fusion of multi-scale features. Building upon SPP, the authors of
YOLOv5 introduced the Spatial Pyramid Pooling–Fast (SPPF) module, which features faster
computation speed while maintaining the same output. After refinement, the feature maps
are processed by the RFB-S and RFB modules. Subsequently, we merge them with shallow-
level feature maps. This fusion serves the purpose of preserving contextual information
and mitigating the issue of gradient vanishing. The fused feature maps then are processed
by the spatial pyramid pooling module to produce the final joint heatmaps. In order to
reduce the parameter count and enhance computational speed, we adopt the Simplified
SPPF (SimSPPF) [21] module in this work.

3.3. Loss Function

The loss function employed during the network training is the mean squared error
loss function, which is as follows:

Loss =
1

KHw Hh
∑K

i

[
Hpred

i (x, y)− Hgt
i (x, y)

]2
. (2)



Appl. Sci. 2024, 14, 3065 7 of 17

Here, Hpred
i (x, y) corresponds to the predicted heatmaps; Hgt

i (x, y) corresponds to the
ground truth; and K , Hw, and Hh refer to the number of keypoints, the heatmap width,
and the heatmap height, respectively.

During network prediction, the Gaussian heatmaps are decoded into the coordinates
of keypoints using Equation (3), as follows:

N̂i = argmax
(

Hpred
i

)
. (3)

Here, N̂i represents the position of peak response in the predicted heatmap.

3.4. Dataset

In this section, we primarily introduce the three datasets employed for training:
Running Human, COCO [5], and MPII [8].

3.4.1. Running Human Dataset

The Running Human dataset consists of over 1000 original images and 1288 instances
of running individuals. All the images in the dataset are sourced from Google Images
and the Diamond League official website. We provide a comprehensive set of annotations,
including bounding boxes for human detection, position labels for keypoints, and occlusion
labels for joints and body parts. Figure 4 depicts some examples from this dataset.
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• Dataset Annotations

For each image, we initially annotated the bounding box of the human body, then
added sequential annotations of human keypoints according to the COCO [5] annota-
tion standard. These keypoints include the eyes, nose, ears, shoulders, elbows, wrists,
hips, knees, and ankles, for a total of 17 keypoints. Apart from the nose, all keypoints
exhibit clear left-right symmetry. Our images were all captured in running scenarios, en-
compassing various challenging running postures and covering individuals of different
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resolutions. We have annotated the main individuals in the collected images while disre-
garding dense crowds wherein a significant number of human bodies are almost entirely
occluded. The Running Human dataset provides a novel and challenging benchmark for
running posture estimation.

• Dataset Split

We partitioned the dataset into separate training and validation sets. The training set
consists of 839 images with 930 instances, while the validation set comprises 277 images
with 358 instances. Given that all instances in the dataset correspond to individuals engaged
in running activities and that some instances involve occlusions, we recommend initializing
the model with weights pre-trained on the COCO [5] dataset. Subsequently, we performed
fine-tuning training using the training set of the Running Human dataset to enhance the
model’s accuracy in the task of running posture estimation.

• Dataset Augmentation

Considering that this dataset has a smaller number of images compared to mainstream
2D human pose estimation datasets, it is advisable to employ data-augmentation techniques
to expand the training dataset. Data augmentation involves applying a series of random
modifications to training images to generate similar yet distinct training samples, thereby
increasing the size of the training dataset. Randomly altering training samples can reduce
the model’s reliance on specific attributes, thereby improving its generalization ability.

In this dataset, two methods, RandomErasing [22] and GridMask [23], were employed
for data augmentation on the training set, resulting in 2197 augmented training images
encompassing instances of 2590 runners. The data-augmentation effect is illustrated in
Figure 5. The processed images commonly include limb occlusions or extensive occlusions,
which facilitate training the network under occlusion conditions, thereby enhancing the
network’s prediction capability under such conditions.
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3.4.2. COCO Dataset

The COCO [5] dataset is currently the most widely used large-scale dataset for 2D
human pose estimation. It consists of over 200,000 images and 250,000 instances of persons,
with 17 keypoint annotations for each instance. We pretrained our model on the COCO
Train2017 dataset, which includes 57,000 images and 150,000 instances of persons. We
evaluated our method on the val2017 set, which contains 5000 images. The dataset contains
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a large number of images with different resolutions and occluded poses, making it a very
challenging benchmark.

3.4.3. MPII Dataset

The MPII [8] dataset is a collection of approximately 25,000 images containing over
40,000 people with annotated body joints. Among these, 12,000 instances were reserved
for testing, while the rest were used for training. These images have been systematically
classified according to human daily activity. The dataset covers 410 human activities, with
each image having an activity label. The images were extracted from YouTube videos.
Additionally, to facilitate comparison with other methods, the dataset resizes input images
to 256 × 256.

4. Experiments

In this section, we extensively evaluate the performance of RHPNet on three datasets
and compare it with existing state-of-the-art methods. All experiments were conducted
based on the evaluation criteria established for each dataset.

4.1. Experiment Methods

RHPNet adopts a top-down approach, with network training performed on an NVIDIA
RTX 1080Ti GPU (NVIDIA, Santa Clara, CA, USA). The operating system used was Ubuntu
18.04, and the deep learning framework utilized was Pytorch 1.9.1. The code framework is
based on HRNet [4], and the backbone network was initialized with pre-trained weights from
UDP-Pose [24]. Similar to HRNet, all input images were resized to 256 × 192. The data
preprocessing phase employed an unbiased data preprocessing (UDP) method to reduce errors
and quantization errors introduced by data augmentation. The batch size during training was
set to 32. Standard data augmentation techniques such as random scaling, horizontal flipping,
and random cropping were applied during training. Adam [25] was used as the network
optimizer. The initial learning rate was set to 1 × 10−3 and was decreased to 1× 10−4 at the
170th epoch and to 1 × 10−5 at the 200th epoch. We trained RHPNet for 210 epochs on the
Running Human, COCO [5] and MPII [8] datasets, respectively.

4.2. Evaluation Metric

For the Running Human and COCO [5] datasets, the evaluation metric was measured
based on Object Keypoint Similarity (OKS).

OKS =

(
∑i e−d2

i /2s2k2
i

)
δ(vi > 0)

∑i δ(vi > 0)
. (4)

Here, di represents the Euclidean distance between the estimated keypoints and their
ground truth coordinates and vi indicates the visibility of keypoints where vi > 0 denotes
visibility. The parameter s denotes the scale of the object, and ki is a constant defined based
on different categories of keypoints to accommodate scale variations. We report AP (in the
COCO dataset, AP refers to mAP which is the average of AP for all categories), AP50 (AP
at OKS = 0.50), and AP75 (AP at OKS = 0.75), as well as APM for medium-scale objects
and APL for large-scale objects. Additionally, we report the AR (average recall).

For the MPII [8] dataset, the metric employed is the head normalized probability of
correct keypoints (PCKh).

PCKh =
1
N ∑N

i=1 δ
(

di ≤ α · Lhead
)

. (5)

In this context, where N represents the number of samples, δ refers to the exponential
function (taking a value of 1 when the condition within parentheses is true and 0 otherwise);
i denotes the Euclidean distance between the predicted keypoints and their corresponding
ground truth keypoints; Lhead represents the length of the diagonal of the head bounding
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box; and α is the normalization threshold. If a keypoint falls within the α · Lhead pixel
range of its corresponding ground truth position, it is considered correct. We report the
commonly used PCKh@0.5 score (α = 0.5) and the stricter PCKh@0.1 score (α = 0.1).

4.3. Results from the Running Human Dataset

We selected several state-of-the-art approaches and conducted experiments under
the same conditions with an input image size of 256 × 192 (256 × 256 for the PCT [7]
method). All experiments utilized weights pre-trained on the COCO [5] training dataset
and underwent 210 rounds of fine-tuning training on the Running Human dataset. The
experimental results are presented in Table 1. The experimental results indicate that our
proposed method significantly outperforms other state-of-the-art approaches, including
OmniPose [26], the leading method on the LSP [27] dataset; PCT, the leading method on
the MPII [8] dataset; and ViTPose [6], the leading method on the COCO dataset.

Table 1. Results of the comparison between RHPNet and SOTA methods on the Running Human
dataset (params refers to the magnitude of parameters; GFLOPs represents giga floating-point
operations per second).

Method Backbone Input Size Params GFLOPs AP AP50 AP75 APM APL AR

HRNet-W32 [4] HRNet-W32 256 × 192 28.5 M 7.10 93.3 96.9 95.9 81.1 94.0 94.2
Simple Baseline [3] ResNet-50 256 × 192 34.0 M 8.90 91.5 95.9 93.9 79.2 92.2 92.2
Simple Baseline [3] ResNet-152 256 × 192 68.6 M 15.7 92.6 96.0 96.0 86.5 93.1 93.3
OmniPose [26] HRNet-W48 256 × 192 68.2 M 17.1 83.8 94.7 87.5 63.0 85.2 84.9
PCT [7] Swin-Base 256 × 256 - 15.2 78.7 89.6 83.5 66.1 79.6 83.0
PCT [7] Swin-Large 256 × 256 - 34.1 78.8 89.1 82.5 70.3 79.6 83.2
ViTPose-B [6] ViT-Base 256 × 192 86 M 17.9 84.2 90.7 87.4 55.1 86.1 85.3
UDP-Pose-PSA [28] HRNet-W32 256 × 192 34.0 M 9.60 94.1 96.0 96.0 86.2 94.3 94.4

RHPNet HRNet-W32 256 × 192 30.5 M 7.51 95.7 98.0 97.0 92.5 95.9 96.3

Bold represents the optimal result.

It is undeniable that large-scale networks like ViTPose may not excel in handling
small datasets. Furthermore, due to the nature of the Running Human dataset, which
primarily focuses on running individuals, its images exhibit a high degree of similarity
and frequently include occluded joints (occlusion being a common occurrence in running
activities). Consequently, the network requires additional contextual information to aid
in predicting the positions of occluded joints. Our proposed method primarily focuses
on expanding the receptive field and integrating multi-scale features to fully leverage
contextual information for prediction of joint position, particularly for edge joints, thereby
achieving superior results. Moreover, our method maintains a low parameter count and
a low number of FLOPs, ensuring the model does not incur an excessive computational
or storage burden. Figure 6 illustrates the superior detection performance of our network,
RHPNet, compared to OmniPose and ViTPose, for the detection of occluded joints and
edge joints on the Running Human validation set.



Appl. Sci. 2024, 14, 3065 11 of 17
Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 17 
 

 
Figure 6. Qualitative evaluation of RHPNet vs. OmniPose and ViTpose-B on the Running Human 
dataset. 

4.4. Results on the COCO Dataset 
The experimental results from the COCO val2017 dataset are shown in Table 2. Our 

proposed method achieves better or comparable prediction accuracy compared to state-
of-the-art methods. In the case of an input image size of 256 × 192, our method achieves 
an AP score of 78.3. Compared to the state-of-the-art ViTPose-L [6] method, our method 
achieves similar prediction accuracy with only one tenth of the parameters and one eighth 
of the FLOPs. Similarly, compared to the PCT [7] (Base) method, which utilizes structured 
representations, RHPNet demonstrates a growth of 0.6 AP. Compared to PCT (Large), 
RHPNet achieves comparable accuracy and outperforms it in terms of the AP50 metric. 
Figure 7 showcases the detection results for RHPNet on the COCO val2017 dataset. 

Table 2. Results on the COCO val2017 sets. The best results from the cited papers are reported. 

Method Backbone Input Size Params GFLOPs AP AP50 AP75 APM APL AR 
Simple Baseline [3] ResNet-152 256 × 192 68.6 M 15.7 72.0 89.3 79.8 68.7 78.9 77.8 
Simple Baseline [3] ResNet-152 384 × 288 68.6 M 35.6 74.3 89.6 81.1 70.5 79.7 79.7 
HRNet-W32 [4] HRNet-W32 256 × 192 28.5 M 7.10 74.4 90.5 81.9 70.8 81.0 79.8 
HRNet-W32 [4] HRNet-W32 384 × 288 28.5 M 16.0 75.8 90.6 82.7 71.9 82.8 81.0 
HRNet-W48 [4] HRNet-W48 256 × 192 63.6 M 14.6 75.1 90.6 82.2 71.5 81.8 80.4 
HRNet-W48 [4] HRNet-W48 384 × 288 63.6 M 32.9 76.3 90.8 82.9 72.3 83.4 81.2 
UDP-Pose [24] HRNet-W48 384 × 288 63.6 M 32.9 77.8 92.0 84.3 74.2 84.5 82.5 
DarkPose [29] HRNet-W48 384 × 288 63.6 M 33.0 76.8 90.6 83.2 72.8 84.0 81.7 
TransPose [30] HRNet-W48 256 × 192 18 M 21.8 75.8 90.1 82.1 - - 80.8 
TokenPose [31] HRNet-W48 256 × 192 28 M 22.1 75.8 90.3 82.5 - - 80.9 
HRFormer-B [32] HRFormer-B 256 × 192 43 M - 75.6 - - - - 80.8 
HRFormer-B [32] HRFormer-B 384 × 288 43 M 29.1 77.2 91.0 83.6 - - 82.0 
ViTPose-B [6] ViT-Base 256 × 192 86 M 17.9 75.8 90.7 83.2 - - 81.1 
ViTPose-L [6] ViT-Large 256 × 192 307 M 59.8 78.3 91.4 85.2 - - 83.5 
PCT [7] Swin-Base 256 × 256 - 15.2 77.7 91.2 84.7 - - - 
PCT [7] Swin-Large 256 × 256 - 34.1 78.3 91.4 85.3 - - - 

Figure 6. Qualitative evaluation of RHPNet vs. OmniPose and ViTpose-B on the Running Hu-
man dataset.

4.4. Results on the COCO Dataset

The experimental results from the COCO val2017 dataset are shown in Table 2. Our
proposed method achieves better or comparable prediction accuracy compared to state-
of-the-art methods. In the case of an input image size of 256 × 192, our method achieves
an AP score of 78.3. Compared to the state-of-the-art ViTPose-L [6] method, our method
achieves similar prediction accuracy with only one tenth of the parameters and one eighth
of the FLOPs. Similarly, compared to the PCT [7] (Base) method, which utilizes structured
representations, RHPNet demonstrates a growth of 0.6 AP. Compared to PCT (Large),
RHPNet achieves comparable accuracy and outperforms it in terms of the AP50 metric.
Figure 7 showcases the detection results for RHPNet on the COCO val2017 dataset.

Table 2. Results on the COCO val2017 sets. The best results from the cited papers are reported.

Method Backbone Input Size Params GFLOPs AP AP50 AP75 APM APL AR

Simple Baseline [3] ResNet-152 256 × 192 68.6 M 15.7 72.0 89.3 79.8 68.7 78.9 77.8
Simple Baseline [3] ResNet-152 384 × 288 68.6 M 35.6 74.3 89.6 81.1 70.5 79.7 79.7
HRNet-W32 [4] HRNet-W32 256 × 192 28.5 M 7.10 74.4 90.5 81.9 70.8 81.0 79.8
HRNet-W32 [4] HRNet-W32 384 × 288 28.5 M 16.0 75.8 90.6 82.7 71.9 82.8 81.0
HRNet-W48 [4] HRNet-W48 256 × 192 63.6 M 14.6 75.1 90.6 82.2 71.5 81.8 80.4
HRNet-W48 [4] HRNet-W48 384 × 288 63.6 M 32.9 76.3 90.8 82.9 72.3 83.4 81.2
UDP-Pose [24] HRNet-W48 384 × 288 63.6 M 32.9 77.8 92.0 84.3 74.2 84.5 82.5
DarkPose [29] HRNet-W48 384 × 288 63.6 M 33.0 76.8 90.6 83.2 72.8 84.0 81.7
TransPose [30] HRNet-W48 256 × 192 18 M 21.8 75.8 90.1 82.1 - - 80.8
TokenPose [31] HRNet-W48 256 × 192 28 M 22.1 75.8 90.3 82.5 - - 80.9
HRFormer-B [32] HRFormer-B 256 × 192 43 M - 75.6 - - - - 80.8
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Table 2. Cont.

Method Backbone Input Size Params GFLOPs AP AP50 AP75 APM APL AR

HRFormer-B [32] HRFormer-B 384 × 288 43 M 29.1 77.2 91.0 83.6 - - 82.0
ViTPose-B [6] ViT-Base 256 × 192 86 M 17.9 75.8 90.7 83.2 - - 81.1
ViTPose-L [6] ViT-Large 256 × 192 307 M 59.8 78.3 91.4 85.2 - - 83.5
PCT [7] Swin-Base 256 × 256 - 15.2 77.7 91.2 84.7 - - -
PCT [7] Swin-Large 256 × 256 - 34.1 78.3 91.4 85.3 - - -

RHPNet HRNet-W32 256 × 192 30.5 M 7.51 78.3 93.5 84.7 75.6 83.0 81.0

Bold represents the optimal result.
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4.5. Results on the MPII Dataset

The experimental results on the MPII validation set are presented in Table 3. For
all methods, the image size was set to 256 × 256. Our RHPNet achieves a score of
92.0PCKh@0.5, which is significantly better than most methods, falling only 0.5PCKh@0.5
behind the state-of-the-art method, PCT [7].

RHPNet outperforms previous state-of-the-art methods (except for PCT)in estimating
poses for most individual joint groups, showcasing the effectiveness and robustness of our
framework. Particularly noteworthy is the superior performance of RHPNet compared to
the cutting-edge PCT method for the detection of difficult-to-detect joints, such as wrist
joints. Additionally, RHPNet achieves the best results compared to methods tfor which the
PCKh@0.1 metric has previously been reported. Figure 8 showcases the detection results
of RHPNet on a subset of images from the MPII validation set. From the figure, it can be
observed that RHPNet effectively handles the detection of occluded joint points.
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Table 3. Performance comparisons on the MPII validation set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1

Simple Baseline [3] 97.0 95.9 90.0 85.0 89.2 85.3 81.3 89.6 35.0
HRNet-W32 [4] 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3 37.7
DarkPose [29] 97.2 95.9 91.2 86.7 89.7 86.7 84.0 90.6 42.0
UDP-Pose [24] 97.4 96.0 91.0 86.5 89.1 86.6 83.3 90.4 42.1
SimCC [33] 97.2 96.0 90.4 85.6 89.5 85.8 81.8 90.0 -
TokenPose [31] 97.1 95.9 90.4 86.0 89.3 87.1 82.5 90.2 -
4 × RSN-50 [12] 96.7 96.7 92.3 88.2 90.3 89.0 85.3 91.6 -
ASDA [34] 97.3 96.5 91.7 87.9 90.8 88.2 84.2 91.4 -
PCT [7] 97.5 97.2 92.8 88.4 92.4 89.6 87.1 92.5 -

RHPNet 97.5 96.8 92.2 88.9 90.7 89.4 86.1 92.0 44.3

Bold represents the optimal result, while underline represents the suboptimal result.
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4.6. Ablation Study

In order to validate the performance of RHPNet, extensive ablation experiments were
conducted on the three datasets mentioned above.

4.6.1. The Main Modules of RHPNet

In order to gain a better understanding of the benefits of the proposed modules,
we conducted detailed ablation studies on each module. The experimental results are
presented in Table 4.

Table 4. Ablation study of three main components: SimSPPF−R, RFB, and RFB− S. We report the
AP, APM, and APL for predicted poses from the Running Human validation set. All results were
obtained with the backbone HRNet−W32 and input images of size 256 × 192.

Method SimSPPF-R RFB RFB-S AP APM APL

HRNet-w32 93.3 81.1 94.0
RHPNet ✓ 95.2 89.5 95.6
RHPNet ✓ ✓ 95.4 90.5 95.7
RHPNet ✓ ✓ 94.9 87.6 95.2
RHPNet ✓ ✓ ✓ 95.7 92.5 95.9
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4.6.2. The RFB Module

In order to achieve optimal performance, we conducted detailed ablation experiments
on the interconnection order of the RFB and RFB-S modules across three datasets. The
experimental results, as shown in Table 5, clearly demonstrate that the module connection
order RFB-S + RFB results in performance improvements compared to RFB + RFB-S on all
three datasets.

Table 5. Ablation study of the sequence of RFB modules in RHPNet applied to the Running Human
val dataset, the COCO val2017 dataset and the MPII val dataset.

Dataset Sequence AP APM APL

Running Human
RFB + RFB-S 95.5 91.7 95.6

RFB-S + RFB 95.7 92.5 95.9

COCO 2017
RFB + RFB-S 78.1 74.9 82.8

RFB-S + RFB 78.3 75.6 83.0

Dataset Sequence Mean Mean@0.1

MPII
RFB + RFB-S 91.9 43.8

RFB-S + RFB 92.0 44.3

Furthermore, we conducted ablation experiments on different combinations of RFB
modules on the Running Human dataset. The experimental results are presented in Table 6.

Table 6. Ablation study with different combination of RFB modules applied to the Running Human
val dataset.

Dataset Combination AP APM APL

Running Human

RFB + RFB 94.6 88.7 94.9

RFB-S + RFB-S 94.3 90.2 94.5

RFB-S + RFB 95.7 92.5 95.9

4.6.3. Augmentation of the Running Human Dataset

By comparing the fine-tuning training results of HRNet and RHPNet before and after
dataset augmentation, we validated the effectiveness of dataset augmentation on network
training in our study, as shown in Table 7. After dataset augmentation, all metrics except
for the APM measure of HRNet showed improvement.

Table 7. Ablation study of HRNet and RHPNet showing results from before and after augmentation
of the Running Human dataset.

Method Data Augmentation AP APM APL

HRNet
93.0 87.7 93.3

✓ 93.3 81.1 94.0

RHPNet
94.5 90.1 94.7

✓ 95.7 92.5 95.9

4.6.4. Attention Modules in RHPNet

The attention mechanism in deep learning is a methodology inspired by the human vi-
sual and cognitive systems. It allows neural networks to focus on relevant parts of the input
data during processing. Via the attention mechanism, neural networks can autonomously
learn and selectively attend to important information in the input, which improves model
performance and generalization capabilities. After considering the advantages of the atten-
tion mechanism, we tried to add several excellent attention modules to different places in
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the network, as illustrated in Figure 9. Additionally, we conducted ablation experiments on
two datasets. However, the experimental results were unsatisfactory, as shown in Table 8.
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Table 8. Ablation study incorporating different attention modules at different locations in the
RHPNet.

Method Dataset Location AP APM APL

RHPNet Running Human 95.7 92.5 95.9

+PSA [28] Running Human Basic Block (A) 95.3(−0.4) 90.3 95.6
+PSA [28] Running Human Skip Connect (B) 95.1(−0.6) 91.5 95.2
+PSA [28] Running Human RFSP (C) 95.5(−0.2) 91.2 95.7
+CA [35] Running Human RFSP (C) 95.0(−0.7) 90.9 95.3

+CBAM [36] Running Human RFSP (C) 94.9(−0.8) 89.4 95.1

Method Dataset Location Mean Mean@0.1

RHPNet MPII 92.0 44.3

+PSA [28] MPII Basic Block (A) 91.7(−0.3) 43.8
+PSA [28] MPII Skip Connect (B) 91.6(−0.4) 43.2

Our ablation experiments indicate that the attention mechanism may not effectively
capture edge information when the edge is indistinct or when there is more noise in the
input image. For instance, in the running posture images, many edge details are not clearly
visible, and these details are also often occluded. This issue can lead to the attention
module failing to properly attend to and emphasize these edge features, thus impacting
overall performance.

4.6.5. Choice of Optimizer

In addition, the optimizer is one of the crucial components in deep learning. Using
different optimizers to execute deep learning tasks can lead to vastly different outcomes. In
order to explore ways to improve model performance, we chose four classic optimizers
and conducted ablation experiments on RHPNet. The experimental results are shown in
Table 9.

Table 9. Ablation study with different optimizers applied to the Running Human val dataset.

Optimizer AP APM APL

SGD 84.4 73.9 85.2
Adadelta 82.2 76.9 82.7
AdamW 95.5 91.3 95.9

Adam 95.7 92.5 95.9
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5. Conclusions and Future Works

This paper proposes a human pose estimation network called RHPNet to tackle the
challenges in running posture estimation. RHPNet leverages our proposed RFSP module,
which can expand the receptive field and enhance multi-scale feature fusion capability.
Across three datasets, RHPNet demonstrates advanced performance, and the results show-
case its remarkable generalization ability. Additionally, we have constructed a novel dataset
called Running Human that is focused exclusively on human running activities and that
serves as a challenging benchmark for the single-motion pose estimation problem.

Artificial intelligence can play a crucial role in sports medicine, for instance, by en-
abling more precise detection of various key points of the human body in images or videos
and applying them to research in sports medicine. Future work will primarily involve
integrating the predicted key points of running posture obtained from RHPNet with pro-
fessional studies on running posture. Comparative analyses between professional running
postures and those identified in images or videos will make it possible to provide tar-
geted suggestions for correcting running postures. Additionally, the newly proposed RFSP
module in this paper is a lightweight and easily scalable module. This module aids in
expanding the model’s receptive field and capturing detailed information. Therefore, future
considerations involve applying this module to other networks or to intensive prediction
tasks such as semantic segmentation and object detection.
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