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Abstract: The classification of encrypted traffic plays a crucial role in network management and
security. As encrypted network traffic becomes increasingly complicated and challenging to analyze,
there is a growing need for more efficient and comprehensive analytical approaches. Our proposed
method introduces a novel approach to network traffic classification, utilizing multi-task learning
to simultaneously train multiple tasks within a single model. To validate the proposed method,
we conducted experiments using the ISCX 2016 VPN/Non-VPN dataset, consisting of three tasks.
The proposed method outperformed the majority of existing methods in classification with 99.29%,
97.38%, and 96.89% accuracy in three tasks (i.e., encapsulation, category, and application classification,
respectively). The efficiency of the proposed method also demonstrated outstanding performance
when compared to methods excluding lightweight models. The proposed approach demonstrates
accurate and efficient multi-task classification on encrypted traffic.
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1. Introduction

The advancement of science and technology and ultra-high-speed networks is ac-
companied by the rise of various applications. With the advancement of modern network
technologies such as cloud computing and edge computing, research on efficient network
management has been actively conducted. Among them, network traffic classification
research is one of the key factors for efficient network management [1–5].

Traffic classification methods encompass traditional, signature-based, learning-based,
and transformer-based approaches [3–8]. Traditional methods rely on port-based and
payload-based techniques. Port-based classification uses origin and destination ports,
offering simplicity and low computational cost, but it faces limitations with dynamic
ports. Payload-based classification utilizes fixed payload content, providing simplicity
and high performance, but it is susceptible to encrypted traffic and struggles to adapt to
new protocols [9]. Signature-based methods classify traffic based on specific patterns or
signatures, demonstrating high performance for defined signatures. However, they face
challenges in adapting to changing patterns and encrypted traffic. Overall, network traffic
classification research plays a key role in enhancing efficient network management amid
evolving technological landscapes.

With recent advances in AI and technologies, most studies are using learning-based
methods [10–32]. Learning-based methods utilize machine learning (ML) and deep learning
(DL) algorithms to learn and classify traffic. Models are trained on large amounts of traffic
data to identify specific patterns or trends, which are then used to predict or classify new
traffic. Due to these advantages, many studies have utilized learning-based methods, and
they have improved performance in many areas.
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Transformer-based methods are one of the more recent deep learning techniques to
emerge, applying structures that have performed particularly well in natural language
processing (NLP) for traffic classification [33–36]. The self-attention mechanism of the
transformer effectively learns the global dependencies of sequence data, which has shown
promising performance in a variety of applications. For instance, the field of NLP has
witnessed a notable advancement with the introduction of bidirectional encoder represen-
tation from transformers (BERT) pre-training models [35,36]. BERT has demonstrated high
performance in many fields and can be effectively applied to downstream tasks by learning
relationships and structures for unbiased data from unlabeled data. In line with this trend,
many studies have been conducted in the field of network traffic classification by applying
transform-based methods. These methods have shown higher performance than traditional
learning-based methods.

With the growing concerns regarding personal privacy and security, most applications
now utilize encrypted traffic [37–39]. As encrypted communications protect payload
content, traditional traffic classification methods have become inapplicable. Researchers
use publicly available encrypted traffic datasets such as ISCX 2016 VPN/Non-VPN [40].
for encrypted traffic classification studies. In these encrypted traffic classification studies,
public datasets are mainly divided into intrusion detection systems (IDS) and application
classification, each of which is in turn divided into specific tasks. For example, the ISCX
2016 VPN/Non-VPN, which is often used for application classification studies, consists of
three tasks: encapsulation, category, and application.

Traffic classification methods are categorized into single-task learning (STL) and
multi-task learning (MTL) based on the target data task. STL focuses on training a model
for a specific task in machine learning, enhancing performance by learning task-specific
features and patterns. However, this optimized model may have limited applicability to
other tasks. On the other hand, MTL involves training a model on multiple related tasks,
utilizing shared representations to improve overall performance. MTL shares common
low-level features across tasks while incorporating task-specific high-level features. This
approach is valuable for diverse yet interrelated tasks, leading to more efficient and effective
learning [41–43].

Most network traffic classification research has traditionally used STL, and while
classification performance has improved, there are some limitations to applying traditional
STL. First, the evolving complexity of networks, including intricate network traffic patterns,
new network environments, applications, and encryption technologies, has challenged the
applicability of traditional STL. Second, STL requires training a separate model for each task,
which is time and resource intensive. Third, malicious activity on the network is becoming
increasingly sophisticated. Attackers are adept at evading or defeating traditional security
methods, requiring more detailed analysis that is more diverse and broader than traditional
research. Therefore, it is essential to study traffic classification with MTL, which can address
the limitations of traditional research by analyzing network traffic more comprehensively
and in-depth compared to STL.

In this paper, we propose a multi-task classification method utilizing DistilBERT [36],
a variant of the BERT model within a transformer architecture, for classifying encrypted
traffic. This approach enables the performance of traffic classification for various tasks with
a single training, using BERT. Our contributions can be summarized as follows:

• We adopt a multi-task learning (MTL) approach for encrypted traffic classification,
leveraging the DistilBERT model. The proposed method is based on a model that
can handle multiple classification tasks simultaneously. The proposed method allows
for a thorough and detailed analysis of encrypted network traffic, addressing the
complexity of various tasks within a unified training framework.

• To validate our proposed method, we conducted verification experiments, focusing
on three specific tasks using the ISCX 2016 VPN/Non-VPN dataset. We compared
our approach with other methods, assessing classification accuracy and efficiency. In
terms of classification accuracy, we demonstrated average accuracies ranging from
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96.89~99.29% across all tasks, outperforming the majority of existing methods. In
terms of model efficiency, our approach showed favorable per sample processing time
compared to existing models. Through our experiment results, we validate that our
proposed method, employing multi-task classification for encrypted traffic, is effective
in terms of both classification performance and efficiency.

• We applied weight adjustments (class weight, task weight) within the model to solve
the problems related to data imbalance and varying task difficulty. Through additional
experiments, we validated the impact of both weights on performance improvement.
This underscores the effectiveness of our approach in diverse scenarios, enhancing its
applicability across various situations.

The remainder of this paper is organized as follows. In Section 2, we will describe
the related work, and in Section 3, we will provide a detailed explanation of the proposed
method. In Section 4, we conduct an experiment by using the ISCX 2016 VPN/Non-VPN
dataset, including a multi-task classification experiment, and we will discuss several issues
in Section 5. Finally, we conclude the paper and outline future research directions in
Section 6.

2. Related Works
2.1. Overview of the Network Traffic Classification

Network traffic classification research is the study of analyzing the traffic generated
by computer communications, which is essential for the effective management, monitoring,
and security of computer networks. As shown in Figure 1, network traffic classification
research is broadly classified according to the field of research, methodology, classification
level, and data units processed.
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First, in terms of research areas, it consists of various subfields, including application
classification [10–26], malicious traffic detection [29–32], user behavior profiling [27–30],
and web fingerprinting [44–46], of which application classification and malicious traffic
detection are the most widely studied. Second, in terms of methodologies, methods such
as port-based and payload-based methods have traditionally been widely used. Port-
based classification categorizes traffic based on known port numbers, which is inapplicable
because many applications use dynamic ports. Payload-based methods classify applica-
tions based on fixed payload content. Signature-based methods extend the mechanisms
of payload-based methods to various traffic characteristics, defining common statistical,
header, and behavioral characteristics of traffic as signatures and classifying based on
them. Both payload-based and signature-based methods perform poorly on encrypted
traffic. To solve these limitations, learning-based methods using machine learning and deep
learning are the most active, and recently, methods using transformer models have also
been performed. Third, in terms of classification level, it consists of the following levels:
application classification, which distinguishes each application; service classification, which
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categorizes the detailed features, services, and behaviors of the application; application
type classification, which categorizes the characteristics of the application such as Chat
or File Transfer; and encryption classification, which categorizes the presence or absence
of encryption. Fourth, in terms of data units, it is categorized into unidirectional and
bidirectional flows, packets, and bursts. A flow is a set of packets with the same 5-tuples
of information in the packet header, and a burst is a set of time-adjacent network packets
originating from either the request or the response in a single-session flow [34].

As mentioned before, we propose a multi-task classification method for encrypted
traffic using DistilBERT to perform encapsulation, application type, and application classi-
fication on ISCX 2016 VPN/Non-VPN data. In Figure 1, the green-colored parts represent
the four aspects of our proposed method.

2.2. Encrypted Traffic Classification

Network traffic classification has been around for a long time and has primarily uti-
lized traditional methods based on port and payload, as well as signature-based methods.
However, traditional traffic analysis methods are ineffective because many modern applica-
tions, including mobile, cloud, and IoT, rely primarily on encrypted traffic. To address the
limitations of traditional methods, recent research has turned to learning-based approaches
involving ML and DL [10–25].

In [10], Lotfollahi et al. introduced Deep Packet, a system that utilizes a stacked
autoencoder and CNN. They achieved an impressive F1 score of 98% for application
identification on the ISCX 2016 VPN/Non-VPN dataset. Wang et al. [11] introduced a
novel method to convert packets into images and process them using 1D-CNN, which
showed promising results on ISCX 2016 VPN/Non-VPN. In [12], Zou et al. pre-sent an
encrypted network traffic classification approach using CNNs and LSTM networks; in [13],
they proposed an innovative fusion of CNNs and designed RNNs for service recognition
in IoT traffic; in [14], they used naïve Bayes, C4. 5 decision trees, Bayesian networks, and
naive Bayes trees. They performed a comprehensive analysis comparing the performance
of these algorithms using 22 features extracted from network flows. In [15], they introduced
flow sequence network (FS-NET) for encrypted traffic classification. FS-NET utilizes
both RNNs and a multi-layer encoder–decoder structure. In [16], the authors proposed
FlowPic, a classification method that converts consecutive packet sizes in a flow into a
two-dimensional gray image and uses CNNs for classification. While FlowPic is simple
and performs well, it is not suitable for real-time traffic classification because it requires the
capture of traffic over a long period of time. The authors also note that it is not applicable
to classifying some encrypted traffic. In [17], the authors proposed TSCRNN, which
automatically extracts features for efficient traffic classification based on spatiotemporal
features. To validate the proposed method, the authors conducted experiments on ISCX
Tor 2016 data and obtained high accuracy. In [18], the authors proposed MIMETIC, which
exploits traffic data heterogeneity by learning both intra- and inter-modality dependencies
to overcome performance limitations. MIMETIC outperforms single-modality DL-based,
state-of-the-art ML-based mobile traffic classifiers. In [19], the authors propose an improved
DAGSVM classification method by focusing on the error accumulation of the traditional
DAGSVM algorithm. Experimental results show that the proposed method has higher
classification accuracy than traditional DAGSVM while having an acceptable time cost. The
studies in [39] and [47] have conducted research with a focus on lightweight models rather
than classification performance. While most studies primarily emphasize performance, they
highlight the importance of lightweight approaches for handling large-scale traffic data.

In recent years, there has been a surge in research centered on transformer architectures
characterized by self-attention and multi-headed attention mechanisms. Transformer-
structured models mainly utilize the BERT model, which has proven to show strong
performance in the NLP field, but recently, research has also been conducted using the
masked autoencoder (MAE), which is used in the CV field [33–35].
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In [34], the authors proposed ET-BERT, a novel approach inspired by transformer archi-
tectures. It presents a new pre-training method designed for encrypted traffic classification
and fine-tuned for optimal performance achieving an accuracy of over 97%. In [21], the
authors propose a method called PERT (payload encoding representation from transformer)
utilizing dynamic word embedding. PERT outperforms other methodologies on publicly
available encrypted traffic datasets and captures Android HTTPS traffic. In [22], the authors
propose the BFCN model, which combines BERT and CNN models to derive global traffic
features with a pre-trained BERT model and byte-level local traffic features with a CNN
model. The experimental results show F1 scores of 99.11% and 99.41% in the traffic service
and application identification tasks operating on the ISCX 2016 VPN/Non-VPN dataset,
respectively. In [23], similar to [22], a pre-trained BERT model and a bidirectional LSTM
are applied together, with an accuracy of about 99%. In [33], the authors utilize DistilBERT
to perform encrypted traffic classification research. They introduce comparative learning
to enhance classification speed without degrading performance. Although our study is
similar to [33], which focuses on STL, our study specifically targets MTL. We apply MTL to
simultaneously learn three tasks on a single model, resulting in superior performance.

In [24,25], both studies utilize MAE for traffic classification research. The authors pro-
pose a pre-training model for MAE that introduces a mask patch model, a self-supervised
learning pre-training task, to capture unbiased representations from bursts of varying
lengths and patterns. Experiment results show that the proposed system achieves new high
levels of accuracy of 98%, classification speed, memory efficiency, and robustness across a
wide range of network traffic types.

2.3. Overview of the Multi-Task Learning

The advent of deep learning has led to significant performance improvements in CV
and NLP, as well as network traffic classification. The typical approach is to learn these
tasks in isolation, where a separate neural network is trained for each individual task [15–25].
Nevertheless, deep learning-based methods suffer from a number of limitations in terms
of time and memory. Recently, research has been conducted on MTL techniques, which
have shown promising results in terms of performance, computational, and/or memory
efficiency [41–43]. MTL is the joint handling of multiple tasks through a learned shared
representation. In [41], the author introduces hard parameter sharing and soft parameter
sharing and discusses techniques such as deep relationship networks and fully adaptive
feature sharing. In [42], the authors investigate various aspects of MTL. First, we provide a
definition of MTL, and then we categorize supervised MTL models into five main approaches
and discuss their characteristics The authors note that outlier tasks that are unrelated to other
tasks are known to degrade the performance of all tasks when learning collaboratively, and
they present this as a challenge. In [43], the authors present an overview of architectural
and optimization-based strategies for MTL within the scope of deep neural networks. They
also introduce how to set weights for each task in an MTL. In summary, MTL leverages
useful information from multiple related tasks with the goal of improving the generalization
performance of any task. MTL is efficient in terms of performance, time, and memory as
it can handle multiple tasks using a single model. However, it is important to consider the
correlation between tasks, the structure of the model, and optimization because certain tasks
can degrade the performance of others.

With the rising interest in MTL, there is a gradual increase in research applying MTL
to traffic classification studies [48–50]. In [48], the authors claim to be the first to apply MTL
in network traffic classification research and utilize CNNs to perform malware detection.
In [49], the authors employ three time-series features and utilize CNN for multi-task
classification on QUIC and ISCX 2016 VPN/Non-VPN datasets. However, the detection
performance appears relatively low with an accuracy range of 82–92%. The classification
task is configured slightly differently compared to previous studies. In [50], the authors
perform multi-task classification using transformer and 1D-CNN, achieving an accuracy
of 97–98% on the ISCX 2016 VPN/Non-VPN dataset. Our work is similar to their work.
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Their study is similar to ours, but we demonstrate accuracy exceeding 99% across all three
tasks. Additionally, we evaluate the efficiency of multi-task classification, an aspect not
addressed in their work.

3. Proposed Method
3.1. Model Architecture

The entire system structure consists of three sub-systems (i.e., data preprocessing, byte
tokenizing, and multi-task classification) and is shown in Figure 2. Data preprocessing
is the process of converting raw traffic data into an input format before applying it to
DistilBERT model, resulting in byte-separated data as the output. Byte tokenizing takes
the data from the previous module as the input and performs tokenization for each byte.
Multi-task classification takes the tokenized data as the input, performs embedding, runs it
through the DistilBERT model, and predicts a label for each task.
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3.1.1. Data Preprocessing

(1) Target Dataset: While there have been many publicly available network traffic datasets
for a long time, encrypted traffic datasets are the most common. There are sev-
eral encrypted traffic datasets available, but we use the ISCX 2016 VPN/Non-VPN
dataset [40], which is the most popular in this research area. This dataset is captured
from real traffic and is a publicly available dataset in raw pcap format consisting of
traffic from various applications. Since it is the most popular dataset used in several
previous studies, it allows for the comparison and interpretation of experimental
results from multiple studies. The dataset is broadly categorized into three classes
(i.e., encapsulation, category, and application), and separate classification studies are
typically performed for each label. Table 1 shows information about the classes for
each task. Encapsulation refers to the presence or absence of encryption on the target
traffic and consists of two classes: VPN and Non-VPN. Category refers to the nature
of the application and consists of six classes, excluding web browsing. Application
indicates the application used and consists of sixteen classes.
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Table 1. Class information for three tasks in ISCX 2016 VPN/Non-VPN dataset.

Task Classes

Encapsulation (2) VPN, Non-VPN

Category (6) Chat, Email, Streaming, File Transfer, P2P, VoIP

Application (16) Skype, ICQ, Hangout, Facebook, Email, Gmail, FTP, SFTP, SCP, Netflix,
Spotify, Vimeo, YouTube, AIM Chat, VOIPBuster, BitTorrent

(2) Preprocessing: We perform the following preprocessing. First, we convert the packet-
level pcap file to flow-level. We segment the capture files into bidirectional flows using
the SplitCap tool. Second, we remove irrelevant flows from the converted flow file.
The ISCX 2016 VPN/Non-VPN dataset contains approximately 309 K flows in total.
However, as noted in [51], the dataset contains a lot of irrelevant flows. For example,
it also includes traffic that is not application-specific, such as NBSS, LLMNR, DNS,
etc. and the disrupted three-way handshake flows. Through the preprocessing steps
outlined in [51], a total of 29,195 flows were identified. We performed further analysis
and found that there were specific flows within these flows, characterized by UDP, a
destination IP of 255.255.255.255, and a consistent inclusion of the string “Beacon~” in
the payload. These flows were considered non-essential for the research objectives;
therefore, we removed these unnecessary flows from the converted flow data. After
going through the first and second process, we finally obtained 8763 flows. Third,
we performed zero-padding and flow splicing from the converted data. Considering
the subsequent byte tokenization process, we extract 63 bytes from each of the eight
packets in the flow. In this process, if the number of bytes in a packet is less than 63,
we perform zero-padding. If the packet has more than 63 bytes, we perform splicing.
Based on other research [33,34] and experiments under various configurations, we
chose 63 as the optimal byte value. The 63 bytes are composed of (1) IP, (2) TCP or
UDP, and (3) Payload, depending on the network layer and data. In this case, the
IP has the same number of bytes at 20 bytes, but the lengths of the headers for TCP
and UDP are 20 and 8 bytes, respectively, so the length of the payload that comes
after it will be different. Therefore, the UDP header is extended to 20 bytes by using
zero-padding at the end. We also perform zero-padding for flows that are less than
63 bytes in length for the entire flow, and in the case of UDP, additional padding is
performed for the UDP header. Finally, we remove the Ethernet header and, masking
the IP, port to zero. These are masked as it can cause biased interpolation as it has
strong identifying information. Figure 3 shows the distribution of bidirectional flows
by class for pre-processed data. In Figure 3, we can see that the three tasks suffer from
data imbalance between each class, which we address in Section 3.2.1.
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3.1.2. Byte Tokenizing

Byte tokenizing is the process of separating preprocessed data into bytes and convert-
ing the separated bytes into tokens. There are two parts to this process: First, we split the
preprocessed data into bytes to use as the input. Second, the process of converting the
extracted bytes of data into tokens is performed. In this process, it is crucial to determine
the number of tokens to be used for organizing the data. If the number of tokens is too
high, it may increase the data processing load, while too few tokens can result in the loss of
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essential information for classification, leading to performance degradation. Additionally,
considering that BERT can handle a maximum of 512 tokens, selecting an appropriate num-
ber of tokens is essential. After experimenting with various combinations, we ultimately
chose 63 bytes for the first eight packets, which can accommodate a total of 506 tokens,
including two special tokens [CLS] and [SEP]. We present a performance comparison based
on input shape in Section 5.3.

3.1.3. Multi-Task Classification

BERT is an NLP model that utilizes a transformer-based architecture and excels
in bidirectionally understanding context within sentences. It encompasses two phases:
pre-training and fine-tuning. In the pre-training stage, BERT undergoes immersion in
extensive amounts of unlabeled data. This process involves two phases: next sentence
prediction (NSP) and masked language modeling (MLM). In the NSP phase, the model
learns to predict whether a sentence follows another sentence in the input text, enhancing
its grasp of discourse-level context. In the MLM phase, certain words in the input sentences
are randomly masked, and model is trained to predict these masked words, fostering a
bidirectional understanding of context at the word level. In the fine-tuning phase, the
pre-trained BERT model is further refined for specific tasks, such as text classification or
question answering, optimizing the process for each task. In network traffic classification
research, a large amount of unlabeled traffic is collected in a pre-training phase to learn the
structure and relationships within the traffic. Each downstream classification task is then
performed in a fine-tuning phase. In [33], pre-training was performed using about 30 GB of
unlabeled traffic data, and five tests were performed with fine-tuning.

Our proposed method does not utilize an additional pre-training model and directly
uses the fine-tuning model of DistilBERT. This is because in the field of network traffic
classification, the pre-training process has several limitations. First, the traffic structure
is very diverse and extensive, but the input dimensions of the BERT model are limited.
Second, the temporal and spatial features in the packet header are ignored, resulting in
performance degradation. These limitations make it difficult for the model to fully learn
the characteristics of different network traffic. Third, the pre-training process is computa-
tionally intensive, requiring substantial time, memory overhead, and high-performance
hardware due to the utilization of extensive traffic data. In addition, we perform byte-level
tokenizing as in [51]. As the authors of [51] note, the values derived from the previous
traffic preprocessing and byte tokenizing are represented as integers between 0 and 255,
allowing us to directly fine tune the DistilBERT [36] model, which is explicitly provided as
“distilbert-base-uncased”.

The output layer uses [CLS] as the final sequence representation for downstream
task classification. The [CLS] token output may be converted into a class probability
based on the task. MTL predicts multiple task labels from [CLS] tokens, with approaches
such as hard parameter sharing (tasks share all parameters) and soft parameter sharing
(tasks have their own parameters, sharing some). Hard parameter sharing is efficient with
shared parameters, suitable for related tasks, while soft parameter sharing allows task
specialization for tasks with diverse characteristics.

Therefore, it is important to consider the relevance and nature of the task within the
target dataset and choose the appropriate method. As mentioned before, we target three dif-
ferent tasks in the ISCX 2016 VPN/Non-VPN dataset, and all three tasks are related to each
other as they perform task-specific classification on the same data. Therefore, we utilized
the hard parameter sharing for MTL, and Figure 4 shows the proposed MTL structure.

Figure 4 is organized into shared layers and task specific layers, where the model and
different parameter sets are shared in the shared layer, and the task-specific layers are used
to classify and derive results for each task. The shared layers include the embedding layer
and the transformer encoding layer used by the DistilBERT model.
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3.2. Weight Adjustment
3.2.1. Class Weight for Imbalanced Data

As shown in Figure 3, the data are heavily imbalanced. Data imbalance stands as
a significant challenge constraining the performance of ML models, particularly when
the samples of the minority class are insufficient [52,53]. To address this issue, common
practices involve the utilization of undersampling and oversampling techniques. However,
these methods come with risks of underfitting and overfitting, respectively, potentially
limiting the generalization ability of the model.

Wkj = 1 −
Ckj

∑j Ckj
(1)

In recent research, weighted classes have been recognized as one approach to address-
ing data imbalance [33]. Weighted classes can significantly reduce the bias in the data; thus,
we utilize a method for calculating class weights. Equation (1) indicates the method for
calculating the normalized weights for each class. In Equation (1), Wki is the weight for
each class in task k, Cki is the number of samples for each class label within the k tasks, k
indicates target task, and j indicates class label. These weights are utilized to adjust the
training of the model, taking into consideration the imbalance within each class, thereby
aiding in enhancing the overall model performance.

3.2.2. Task Weight for Loss Calculation

In a typical DL, loss is a metric that represents the difference between the model’s
predictions and the actual target. Minimizing this difference allows the model to learn the
desired outcome more effectively. Loss is often calculated through an objective function
(loss function), most commonly the cross-entropy, mean squared error, etc. In multi-task
classification, the loss is different for each task, so it is necessary to calculate the loss for each
task step by step and combine them effectively to obtain the final loss. Equations (2) and (3)
indicate the method for accumulating losses in multi-task classification. In Equation (2),
y′i is the model’s predicted value, yi is the actual value, and fi is the objective function for
task i. After calculating the loss for each task, they are combined to obtain the final loss.
In Equation (3), Total Loss is the final loss, which is the aggregate of the losses from each
task, N is the number of tasks, and αi is a weight that represents the relative importance of
each task.

Li = Wkj × f i(y′i, yi) (2)
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Total Loss = ∑N
i=1 αi× Li (3)

In MTL, performance and learning time can vary due to differences in the difficulty
of each task. Typically, easier tasks converge quickly to achieve high accuracy, while
more difficult tasks face complications in convergence and require more extensive training.
Allocating equal weights to all tasks in MTL may not be appropriate, as it could lead to
higher weights for easier tasks, diminishing the model’s learning capacity for difficult
tasks. Therefore, in MTL, it is essential to consider the difficulty of each task and assign
appropriate weights. Equation (4) illustrates a method for determining the weights for each
task in light of their respective difficulties.

αi =
Ei

∑N
i=1 Ei

(4)

In Equation (4), Ei represents the minimum number of epochs required to converge to
performance β. β is measured by accuracy and can be dynamically adjusted. However,
continuous weight adjustments may decrease the model’s stability and increase the risk of
overfitting to specific tasks. Therefore, we set β to 90% through various experiments. For
example, assuming that there are four tasks and it takes 5 epochs in task #1, 10 epochs in
task #2, 15 epochs in task #3, and 20 epochs in task #4 to achieve 90% accuracy each, the
weights are set to 0.1 (5/50), 0.2 (10/50), 0.3 (15/50), and 0.4 (20/50), respectively.

4. Evaluation, Result and Analysis
4.1. Evaluation Environment Setup

The proposed method was implemented using Python 3.10.9 and PyTorch 2.0.1 with
CUDA 11.8. All experiments were performed on a Linux Ubuntu 20.04.6 LTS server with a
24-core Intel(R) Core(TM) i9-10920X CPU (3.50 GHz) and NVIDIA GeForce RTX 4090 GPU
(24 GB memory). We set the optimal parameters for the model through various experiments.
We set the learning rate to 2 × 10−5, the batch size to 16, and the dropout ratio to 0.1 and
used AdamW as the optimization tool. Each dataset is divided into the training set and
the testing set according to the ratio of 7:3. We randomly selected 500 samples from each
task (6 categories, 16 applications in total) and entered them into the dataset; however,
if the number of samples for some applications (e.g., Gmail, SFTP within an application
classification) was less than 500, we selected all samples for that application.

4.2. Evaluation Metrics

When evaluating the performance of a model, the evaluation metrics are important.
We utilized four evaluation metrics that have been used in several studies: accuracy, recall,
precision, and F1 score. Equations (5)–(8) show the method for calculating these metrics

Accuracy =
TP + TN

(TP + FN + FP + TN)
(5)

Recall =
TP

(TP + FN)
(6)

Precision =
TP

(TP + FP)
(7)

F1 Score =
2 × Recall × Precision
(Recall + Precision)

(8)

True positive (TP) is when the model correctly classifies something as positive, and
true negative (TN) is when the model correctly classifies something as negative. False
positive (FP) is when the model incorrectly classifies something as positive when it was
negative, and false negative (FN) is when the model incorrectly classifies something as
negative when it was positive.
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As previously mentioned, the ISCX 2016 VPN/Non-VPN data are highly imbalanced
between classes. To account for the potential bias in the results due to the imbalance
between the different categories of data, we used macro average [36]. Macro average
calculates the average value of precision, recall, accuracy, and F1 scores for each category
to provide a more comprehensive and unbiased assessment across all categories.

4.3. Evaluation Result

In this section, we describe our experiments and results to validate the proposed
method. We present the classification performance of our proposed model in Section 4.3.1
and conduct a performance comparison with other models in Section 4.3.2. We validate
the efficiency of our proposed method in Section 4.3.3 and describe several discussions in
Section 5.

4.3.1. Performance of the Proposed Method

To validate our proposed method, we performed experiments on three tasks. In task
#1, classifying the encryption, the highest accuracy, precision, recall, and F1 score were
99.29%, 98.61%, 99.47%, and 99.03%, respectively. In task #2, classifying the category, the
highest accuracy, precision, recall, and F1 score were 97.38%, 97.31%, 95.93%, and 96.61%,
respectively. In task #3, classifying the application, the highest accuracy, precision, recall,
and F1 score were 96.89%, 96.91%, 95.13%, and 96.01%, respectively.

Figure 5 illustrates the confusion matrix detailing accuracy for each task. In subfigures
(a), (b), and (c), the confusion matrix is presented for each task. In Figure 5, while the
majority of classes within each task demonstrate a high accuracy exceeding 95%, AimChat
and ICQChat in Figure 5c exhibit relatively lower accuracy. These applications, designed
for online chatting and offering various services like voice and video calls, share common
traits. However, the similarities between these applications make it difficult to distinguish
traffic patterns accurately, leading to decreased classification accuracy. The intricacies of
these chat applications contribute to the difficulty in achieving higher performance.

Table 2 shows the best class segmentation results for evaluation performance by class
within each task, and 50 epochs in total were performed for the experiment. Task #1
involves classifying two classes (i.e., VPN and Non-VPN), resulting in 98~99% accuracy,
precision, recall, and F1 score. Task #2 involves categorizing traffic into six classes (i.e., Chat,
Email, File Transfer, P2P, Streaming, VoIP). In task #2, the classes Email, P2P, Streaming,
and VoIP are classified with 98~100% accuracy, while File Transfer and Chat are classified
with relatively low accuracy of 95.44% and 94.86%. Task #3 involves categorizing traffic
into sixteen classes (i.e., AimChat, Facebook, Hangout, ICQChat, Skype, Email, Gmail,
FTP, SCP, SFTP, BitTorrent, Netflix, Spotify, Vimeo YouTube, VoIPBuster). In Task #3, most
classes were classified with 96–100% accuracy, with some relatively low accuracy results
for certain classes such as Aim Chat, ICQ Chat, FTP, and SFTP.

Table 2. Performance for three tasks of ISCX 2016 VPN/Non-VPN Classification.

Proposed Method

Task Class Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Task #1:
Encapsulation

VPN 99.45 98.72 99.87 99.29
Non-VPN 98.69 99.72 97.23 98.46

Task #2:
Category

Chat 94.86 97.65 94.86 96.21
Email 98.21 96.90 98.21 97.55

File Transfer 95.44 97.58 95.44 96.50
P2P 100.00 100.00 100.00 100.00

Streaming 99.41 99.71 99.41 99.56
VoIP 97.99 96.06 97.99 97.02
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Table 2. Cont.

Proposed Method

Task Class Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Task #3:
Application

AimChat 93.75 78.95 93.75 85.71
Facebook 97.62 98.97 97.62 98.29
Hangout 98.91 98.19 98.91 98.55
ICQChat 72.73 88.89 72.73 80.00

Skype 99.61 99.12 99.61 99.36
Email 97.96 98.97 97.96 98.46
Gmail 96.30 89.66 96.30 92.86
FTP 87.78 91.30 87.78 89.51
SCP 99.76 100.00 99.76 99.88
SFTP 92.31 100.00 92.31 96.00

BitTorrent 100.00 100.00 100.00 100.00
Netflix 97.67 100.00 97.68 98.82
Spotify 95.16 95.16 95.16 95.16
Vimeo 99.06 98.13 99.06 98.59

YouTube 96.15 96.90 96.15 96.53
VoIPBuster 94.01 96.90 96.15 92.88
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Figure 6 shows the learning curve for the three tasks in training and testing. In Figure 6,
the losses represent the total losses for the three tasks, with the learning and testing losses
gradually decreasing.
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4.3.2. Comparison with Other Model

To validate the performance of our proposed method, we compare its performance
with various state-of-the-art methods in network-encrypted traffic classification. For ac-
curate performance validation, it is essential to compare methodologies using the same
dataset with identical preprocessing methods in a consistent environment. However, direct
comparisons of different methodologies are often impractical due to various constraints.
Therefore, we took the performance presented by each methodology and used them for
the comparison. The methods are categorized into the following: (1) statistical feature-
based, (2) ML- and DL-based, and (3) pretraining-based, and a total of 17 methodologies
are compared.

(1) Statistical feature-based methodologies: AppScanner [54], CUMUL [44], BIND [45]
(2) ML- and DL-based methodologies: Deep Fingerprinting (DF) [46], FS-Net [15], Graph-

DApp [38], TSCRNN [17], DeepPacket [10], 1D-CNN [26], FastTraffic [39], MATEC [47]
(3) Pretraining-based methodologies: PERT [21], ET-BERT (flow) [34], ET-BERT (packet) [34],

XENTC [33], BFCN [22], Flow-MAE [25], YaTC [24]

Most studies do not perform task #1 (Encapsulation) on the ISCX 2016 VPN/Non-VPN
data; rather, they perform tasks #2 (Category) and #3 (Application) to classify categories
and applications. Therefore, we compare these methods and approaches that target task #2
and #3, as these tasks are more commonly addressed. The results of our experiments are
shown in Tables 3 and 4. As each method varies in terms of metrics, number of classes, and
targeted tasks, we only summarize the information presented by each study.

Table 3. Comparison results for task #2 in ISCX 2016 VPN/Non-VPN.

Comparison Results for Task #2: Category

Method Accuracy (%) Precision (%) Recall (%) F1 Score (%)

AppScanner [54] 71.82 73.39 72.25 71.97
CUMUL [44] 56.10 58.83 56.76 56.68

BIND [45] 75.34 75.83 74.88 74.20
DF [46] 71.54 71.92 71.04 71.02

FS-Net [15] 72.05 75.02 72.38 71.31
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Table 3. Cont.

Comparison Results for Task #2: Category

Method Accuracy (%) Precision (%) Recall (%) F1 Score (%)

GraphDApp [38] 59.77 60.45 62.20 60.36
TSCRNN [17] - 92.70 92.60 92.60

Deep Packet [10] 93.29 93.77 93.06 93.21
1D-CNN [26] 98.30 - - 98.60

FastTraffic [39] 94.50 94.77 94.26 94.40
MATEC [47] 73.20 84.43 82.40 82.87

PERT [21] 93.52 94.00 93.49 93.68
ET-BERT (flow) [34] 97.29 97.56 97.31 97.33

ET-BERT (packet) [34] 98.90 98.91 98.90 98.90
XENTC [33] 97.03 - - 97.06
BFCN [22] 99.12 99.13 99.11 99.11
YaTC [24] 98.07 - - 98.04

Flow-MAE [25] 99.15 99.24 99.15 99.17

Proposed 97.38 97.31 95.93 96.61

Table 4. Comparison results for task #3 in ISCX 2016 VPN/Non-VPN.

Comparison Results for Task #3: Application

Method Accuracy (%) Precision (%) Recall (%) F1 Score (%)

AppScanner [54] 62.66 48.64 51.98 49.35
CUMUL [44] 53.65 41.29 45.35 42.36

BIND [45] 67.67 51.52 51.53 49.65
DF [46] 61.16 66.97 66.51 65.31

FS-Net [15] 66.47 48.19 48.48 47.37
GraphDApp [38] 62.28 59.00 54.72 55.58

TSCRNN [17] - - - -
Deep Packet [10] 97.58 97.85 97.45 97.65

1D-CNN [26] 86.60 - - 86.50
FastTraffic [39] 92.24 93.58 92.84 93.12

MATEC [47] 69.21 73.32 65.40 68.24
PERT [21] 82.29 70.92 71.73 69.92

ET-BERT (flow) [34] 85.19 75.08 72.94 73.06
ET-BERT (packet) [34] 99.62 99.36 99.38 99.37

XENTC [33] 96.37 - - 94.63
BFCN [22] 99.65 99.36 99.47 99.41
YaTC [24] - - - -

Flow-MAE [25] 99.87 99.91 99.89 99.90

Proposed 96.89 96.91 95.13 96.01

The proposed method achieves about 96~98% accuracy on tasks #2 and #3, outperform-
ing most of the existing research methods. Although several methodologies exhibit slightly
better performance (i.e., accuracy 0.69–1.67% in task #2 and accuracy 1.31–2.98% in task
#3), it is noteworthy that the existing approaches are designed for STL-based single task
classification, while the proposed method is capable of classifying three tasks simultane-
ously. This capability to address multiple tasks simultaneously is remarkable. Through this
multi-task classification, the proposed method not only maintains high performance but
also proves to be more efficient than conventional approaches in handling the classification
of multiple tasks concurrently.

4.3.3. Performance of the Efficiency

The proposed method utilizes MTL to perform multi-task classification on the ISCX
VPN/Non-VPN 2016 dataset. The goal is to achieve high performance by simultaneously
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handling various classification tasks. The efficiency of the model refers to its ability to
quickly adapt to downstream tasks. To evaluate this efficiency, we compared the proposed
method with other approaches and measured the processing speed. However, the inter-
pretation of the model’s efficiency may vary depending on hardware performance and
data. Therefore, maintaining the same experimental environment and dataset is crucial for
a fair comparison. Since it is difficult to reproduce these conditions exactly, we compare
our results to those presented in other studies [8,33,34,39]. Table 5 shows the results on
fine-tune efficiency evaluation.

Table 5. Results on efficiency evaluation.

Method Task ST (ms) PT (ms)

ET-BERT (Fine-Tune) [34] STL (1 task) 8.30~9.61 155.7
XENTC [33] STL (1 task) - 15.1

MATEC [39] STL (1 task) 2.10 1.3
FastTraffic [8] STL (1 task) 0.25 0.59

Proposed MTL (3 tasks) 1.27 30.7

In Table 5, ST represents the processing time for one sample and PT represents the
processing time for one packet. Among the four models, ET-BERT and XENTC are general
classification models, while MATEC and FastTraffic are models designed for lightweight
purposes. All of them perform single-task classification.

From an ST perspective, ET-BERT yields a range of 8.30~9.61 ms. The lightweight models,
MATEC and FastTraffic, yield 2.10 and 0.25 ms, respectively. The proposed method achieves
higher efficiency than ET-BERT with an execution time of 1.27 ms, but it is less efficient than
MATEC and FastTraffic. Nevertheless, considering the results in Tables 3 and 4, the proposed
method demonstrates 4.65~27.68% higher accuracy compared to MATEC and FastTraffic.
Furthermore, the proposed method is more efficient than MATEC as it can learn the three
tasks simultaneously.

From a PT perspective, ET-BERT yields 155.7 ms, XENTC produces 15.1 ms, MATEC
results in 1.3 ms, and FastTraffic yields 0.59 ms. The proposed method achieves an efficiency
of 30.7, which is higher than ET-BERT but lower than XENTC and FastTraffic. The proposed
method seems to exhibit relatively high PT since it processes eight packets within the flow.
However, similar to the ST perspective, the proposed method demonstrates high efficiency
considering both accuracy and multi-task classification.

The efficiency of a model is highly influenced by hardware performance and data
structure, and there is typically a trade-off between model performance and efficiency. Con-
sidering this trade-off, evaluating the balance between model performance and efficiency
becomes crucial. Further discussion is needed based on additional experimental results to
better understand this trade-off and assess the overall performance and efficiency of the
model. Therefore, in the future, we plan to enhance the model to achieve higher efficiency
while maintaining its classification performance.

5. Discussions

In this paper, we demonstrate high performance and efficiency by performing multi-
task classification on encrypted traffic. In this section, we provide some detailed discussion
of the proposed method.

5.1. Effect of Class Wight in Data Imbalance

We applied class weights to address the class imbalance in ISCX 2016 VPN/Non-VPN
data in Section 3.2.1. Class weight represents a weight that reflects the proportion of classes
in the data and can reduce the imbalance between classes. Figure 7 shows the distribution
of data for each class before and after applying class weight.
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In Figure 7, the x-axis represents the classes per task and is organized the same as in
Figure 3. For example, in Figure 7a, “1” and “2” represent {VPN, NonVPN}, respectively,
and in Figure 7b, “1~6” represent {Chat, Email, File Transfer, P2P, Streaming, VoIP}. Com-
paring the ‘Before’ and ‘After’ in Figure 7, we can see that the imbalance between each
class is significantly reduced. However, in Figure 7c, we can see that there is still some
imbalance as there are too few minority classes. These limitations will be tackled in the
future with additional weighting and sampling techniques.

5.2. Performance Based on Weight Adjustment

In order to address both data imbalance issues and variations in difficulty across
tasks, we applied weight adjustments during the experiments. The weight adjustment is
implemented in two aspects: class weights and task weights. Class weights were introduced
to mitigate data imbalance problems, while task weights were designed to prevent biased
learning, particularly when there were significant differences in difficulty among tasks.
The proper utilization of these two weights is crucial, especially in scenarios where specific
tasks converge rapidly; failure to handle this appropriately may lead to biased learning.
Figure 8 shows the test accuracy curve for the weight adjustment.
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Figure 8a shows the results with weight adjustments, applying only class weight,
yielding an accuracy of 99% across task #1, 90~91% across task #2, and 89~90% across the
task #3. Figure 8b shows the results with weight adjustments, applying only class weight,
yielding an accuracy of 98% across task #1 and 93–94% across tasks #2 and #3. Figure 8c
shows the results with weight adjustments, applying only task weight, yielding an accuracy
of 93% across task #1 and 94~95% across tasks #2 and #3. In Figure 8a,b, rapid convergence
is observed in task #1, while Figure 8c tends to exhibit initially similar convergence speeds
across each task, later showing higher performance in task #2 and #3 compared to task #1.
Figure 8d shows the results with weight adjustments, applying class and task weights, also
yielding an accuracy of 98~99% across task #1 and 96–97% across tasks #2 and #3. Through
the above experiments, it is evident that adjusting weights for both categories leads to
higher performance. Therefore, it can be concluded that weight adjustment plays a crucial
role in enhancing performance.

5.3. Performance Based on Input Shape

In Section 3.1.1, we described that we conducted several experiments with various
input shapes based on the number of packets and bytes in the flow. Through these experi-
ments, we set the optimal shape as 8 packets and 63 bytes. In this section, we compare the
performance based on different input shapes. The input shape can be variably defined, and
we set the range of packet counts to 4~8 and byte counts to 60~70, taking into account the
handshake process and header (IP, TCP/UDP) byte sizes within encrypted communication.
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As mentioned earlier, considering BERT’s maximum input token limit of 512, we excluded
cases where the total token count (packet count × byte count) exceeds 512.

Table A1 in Appendix A indicates the performance of the proposed method based on
input shapes. The experiments were conducted for 20 epochs with the same experimental
setup, as multiple experiments were required depending on the input shape. We selected
the target task as the most challenging task #3 among the three tasks. In Table A1, the
highest performance is observed with (8, 63). Therefore, we selected the optimal input
shape as 8 packets and 63 bytes.

6. Conclusions

Network traffic classification has been studied for a long time, and recently, a lot
of research has been conducted on encrypted traffic. Most studies perform single-task
classification, with DL- and transformer-based methods performing well. However, there
are limitations in their efficiency and effectiveness given the increasingly diverse and
complicated nature of traffic.

In this paper, we proposed multitask classification by using DistilBERT. The proposed
method can learn multiple tasks in one model with one training. We applied a weight
adjustment to improve the performance of our proposed method. The weight adjustment
consists of class weights and task weights. Class weights mitigate the problem of data
imbalance, and task weights prevent biased learning due to the difference in difficulty
between tasks in multi-task classification.

To evaluate the proposed method, we conducted experiments in terms of accuracy and
efficiency. Measured in terms of accuracy, the proposed approach achieves 96.89–99.29%
accuracy on three tasks, showing higher performance compared to most existing methods.
Furthermore, in terms of efficiency, it outperforms ET-BERT. While the proposed method
exhibits lower efficiency compared to FastTraffic and MATEC, which focus on lightweight
design, it achieves a significantly higher accuracy, ranging from 4.65 to 27.68% higher than
the two mentioned methods. We discussed the performance impact of class weight and
weight adjustment in Section 5. In addition, we validated the decision to select 8 packets
and 63 bytes based on performance experiments with input data shapes (in Appendix A,
Table A1). This input shape consists of packets generated during the handshake process
within TLS, which is the most widely utilized today and typically remains unencrypted.
Therefore, we believe it performs well despite being encrypted traffic.

However, the proposed method has some limitations. First, although the proposed
method demonstrated high performance on the ISCX 2016 VPN/Non-VPN dataset, valida-
tion was only conducted on specific datasets. As the ISCX 2016 VPN/Non-VPN dataset
comprises a small amount of data, leveraging AI models may yield high performance.
Therefore, additional validation experiments on other datasets such as ISCX Tor are nec-
essary to verify the performance of the proposed method. Second, as mentioned earlier,
efficiency can vary depending on hardware performance and the dataset. In this paper,
we evaluated the method using results presented in other studies; however, for a precise
assessment, consistent experimental conditions and preprocessed datasets are necessary.
Third, as previously mentioned, the proposed method utilizes eight packets in the flow,
which results in a relatively high time to process a single packet. Fourth, the proposed
method applies class weights to address the problem of imbalanced data. Although the
class weights alleviate the problem of imbalanced data to some extent, they are still un-
evenly distributed. Nevertheless, the proposed method can perform three tests with one
training and shows high performance and efficiency.

In future research, we plan to perform multi-task classification using diverse datasets.
We will assess the effectiveness of our proposed method using identical experimental
setups and preprocessed datasets for evaluation. Additionally, we plan to improve the
model architecture and preprocessing methods to further enhance the performance and
efficiency of the proposed method, including PT.
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Appendix A

Table A1. Performance based on different input shapes.

Performance Based on Input Shape (for Task #3: Application Classification)

Input Shape
(Packet, Byte) Accuracy (%) Precision (%) Recall (%) F1-Score (%)

(4, 60) 78.13 90.58 74.64 81.84
(4, 61) 85.36 97.14 83.59 89.85
(4, 62) 84.78 94.19 82.51 87.96
(4, 63) 85.10 91.14 78.57 84.39
(4, 64) 84.97 97.54 80.63 88.28
(4, 65) 85.62 96.52 81.99 88.66
(4, 66) 83.89 97.58 79.65 87.71
(4, 67) 85.32 93.80 80.48 86.63
(4, 68) 86.46 97.41 80.93 86.41
(4, 69) 86.27 95.07 81.21 87.60
(4, 70) 86.40 96.52 81.99 88.66

(5, 60) 84.24 96.10 80.34 87.51
(5, 61) 85.23 97.58 80.13 87.99
(5, 62) 83.46 97.57 80.61 88.28
(5, 63) 86.46 96.77 82.63 89.14
(5, 64) 84.93 97.49 81.82 88.97
(5, 65) 84.63 92.94 79.14 85.49
(5, 66) 84.27 97.50 79.32 87.48
(5, 67) 82.81 88.00 74.26 83.55
(5, 68) 82.24 90.15 74.78 81.75
(5, 69) 83.35 91.15 76.79 83.36
(5, 70) 84.51 96.37 81.98 88.59

(6, 60) 81.86 93.14 78.51 85.20
(6, 61) 85.89 94.59 82.44 88.10
(6, 62) 84.49 97.44 80.13 87.94
(6, 63) 88.07 97.76 83.22 89.91
(6, 64) 85.90 97.51 81.77 88.95
(6, 65) 85.78 97.55 81.52 88.82
(6, 66) 86.46 97.62 82.37 89.59
(6, 67) 86.08 97.51 83.16 89.77
(6, 68) 86.42 97.59 81.37 88.74
(6, 69) 85.93 97.59 81.50 86.58
(6, 70) 86.46 96.44 83.25 89.36

(7, 60) 81.45 90.61 80.11 85.03
(7, 61) 84.18 92.27 81.77 86.70
(7, 62) 87.74 97.43 83.99 90.21
(7, 63) 87.42 97.60 82.26 89.27
(7, 64) 82.62 89.23 78.18 83.34
(7, 65) 86.43 96.59 82.87 89.20
(7, 66) 86.73 97.49 82.60 89.43
(7, 67) 86.35 97.34 82.87 89.52
(7, 68) 84.37 91.88 78.47 84.65
(7, 69) 85.46 96.86 84.35 90.17
(7, 70) 84.79 94.01 79.11 85.92

(8, 60) 86.86 96.56 79.62 87.28
(8, 61) 86.58 97.59 81.14 88.61
(8, 62) 88.16 95.39 82.19 88.30
(8, 63) 90.28 98.17 86.28 91.84
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