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Abstract: In the realm of large language models (LLMs), extending the context window for long text
processing is crucial for enhancing performance. This paper introduces SBA-RoPE (Segmented Base
Adjustment for Rotary Position Embeddings), a novel approach designed to efficiently extend the
context window by segmentally adjusting the base of rotary position embeddings (RoPE). Unlike
existing methods, such as Position Interpolation (PI), NTK, and YaRN, SBA-RoPE modifies the base
of RoPE across different dimensions, optimizing the encoding of positional information for extended
sequences. Through experiments on the Pythia model, we demonstrate the effectiveness of SBA-
RoPE in extending context windows, particularly for texts exceeding the original training lengths.
We fine-tuned the Pythia-2.8B model on the PG-19 dataset and conducted passkey retrieval and
perplexity (PPL) experiments on the Proof-pile dataset to evaluate model performance. Results show
that SBA-RoPE maintains or improves model performance when extending the context window,
especially on longer text sequences. Compared to other methods, SBA-RoPE exhibits superior or
comparable performance across various lengths and tasks, highlighting its potential as an effective
technique for context window extension in LLMs.

Keywords: large language models (LLMs); rotary position embeddings (RoPE); long text processing;
context window extension; segmented base adjustment

1. Introduction

The Transformer model, since its inception by [1], has revolutionized the field of
natural language processing (NLP) with its unparalleled ability to capture the intricacies
of language through self-attention mechanisms. A pivotal feature of Transformer-based
large language models (LLMs) is their capability for in-context learning (ICL) [2], enabling
them to adapt to new tasks without explicit retraining, merely by conditioning on few-
shot examples provided within their input context. This ability not only showcases the
flexibility of Transformer-based models, but also underscores the importance of the context
window—the span of tokens a model can consider at any given time. The size of this context
window directly influences the number of examples that can be included for in-context
learning, thereby impacting the model’s performance on tasks requiring understanding
and synthesis of information spread across longer texts.

The concept of the context window is foundational to understanding how Trans-
formers operate. In essence, it determines the maximum scope of direct relationships
and dependencies that the model can learn and leverage for prediction. A larger context
window allows the inclusion of more examples for in-context learning, facilitating a richer
understanding of context and enabling the model to make more informed predictions.
Conversely, a smaller context window restricts the model’s ability to capture long-range
dependencies, potentially limiting its effectiveness in tasks that necessitate a comprehensive
grasp of extended narratives or arguments.
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Position encoding plays a crucial role in enabling Transformers to process sequential
data. Unlike traditional sequential models such as RNN [3] and LSTM [4], Transformers
do not inherently process data in sequence. Instead, they treat input as a set of tokens
without any inherent order. Position encoding injects this missing sequence information,
allowing the model to differentiate between the same word appearing in different positions
within the text. The evolution from absolute to relative position encoding [5] has been a
significant milestone in the development of Transformers, allowing models to better gener-
alize to different sequence lengths and more effectively capture the relational dynamics
within sequences.

While techniques such as ALiBi [6] and LeX [7] enable length extrapolation, they risk
insufficient long-range dependencies due to their explicit long-range decay. Many LLMs,
including LLaMA [8], GPT-NeoX [9], and PaLM [10], utilize RoPE [11] for their positional
encoding. RoPE, without explicit long-range decay, is crucial for models targeting long
contexts. It distinguishes between long and short ranges through varying frequencies
of trigonometric functions, akin to hierarchical positional encoding, which is vital for
long context processing. RoPE’s direct application to Q and K, compatibility with Flash
Attention, and scalability underscore the importance of finding an effective method to
extend its context window.

Despite the advances in position encoding techniques, extending the effective context
window of Transformers, especially for large language models (LLMs) such as GPT-NeoX,
LLaMA, and PaLM, remains a significant challenge. These models, employing RoPE for
their position encoding, must balance the need for long-context understanding with the
computational and memory constraints inherent in processing large sequences.

Current approaches for extending the context window, including Positional Interpola-
tion (PI) [12], Neural Tangent Kernel (NTK) [13], and YaRN [14], tackle various facets of
this issue, yet each has its own drawbacks. PI, for example, compresses the space between
tokens, potentially distorting the model’s understanding of local context—a critical aspect
for language models, given their reliance on local relationships for prediction accuracy.
NTK, while offering a mathematical framework for extending context windows, can suffer
from practical issues such as out-of-bounds rotation angles, leading to suboptimal extrapo-
lation performance. YaRN attempts to mitigate some of these issues by partitioning the
NTK approach, but it introduces additional complexity and necessitates fine-tuning of
hyperparameters for each specific model.

To address these limitations, we propose Segmental Base Adjustment for RoPE (SBA-
RoPE), a novel technique aimed at expanding the context window of pre-trained LLMs
by strategically adjusting the base values used in RoPE. By selectively extrapolating high-
frequency dimensions and interpolating those with maximum angles less than 2π, we
treat length extrapolation as a prediction-stage Out-Of-Distribution (OOD) problem. RoPE
allocates different angles to different dimensions, with some high-frequency dimensions
having fully learned all angles within 0 to 2π. Extrapolating these dimensions does not
degrade performance, as these angles have been thoroughly trained during pre-training.
However, some low-frequency dimensions have only learned partial angles within 0 to 2π,
making them unable to extrapolate on longer texts and only able to interpolate. Thus, due
to the periodic nature of trigonometric functions, even with high-frequency dimensions
extrapolated, the thoroughly trained angles within 0 to 2π during pre-training do not cause
a perplexity explosion problem. Meanwhile, by selecting interpolation for low-frequency
dimensions, OOD is avoided for these dimensions. This process is illustrated in Figure 1.
SBA-RoPE facilitates an efficient extension of the context window with minimal fine-tuning.
This method not only preserves the model’s performance for tasks within the original
context window, but also enhances its adaptability to tasks that demand longer contexts.
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Low-frequency: This subplot represents 
dimensions with low frequency.

Moderate-frequency: This subplot depicts 
dimensions with moderate frequency.

High-frequency: This subplot illustrates 
dimensions with high frequency.

This arrow indicates the direction of increasing frequency.

Figure 1. Schematic representation of the angles learned by high-frequency and low-frequency
dimensions during pre-training in SBA-RoPE. The subplots on the (left) and (middle) depict low-
frequency and moderate-frequency dimensions, respectively, which did not cover the entire range of
0 to 2π during pre-training, thus necessitating interpolation rather than extrapolation. The subplot
on the (right) represents high-frequency dimensions, which thoroughly learned the entire range of 0
to 2π during pre-training, enabling extrapolation.

Our contributions are as follows:

• We introduce SBA-RoPE, a novel method for extending the context window of LLMs
by segmentally adjusting the base of Rotary Position Embeddings, requiring only
minimal fine-tuning steps.

• For tasks within the original context window, our method minimally impacts model
performance, showing minimal degradation compared to the original Pythia-2.8B
model based on the GPT-NeoX architecture.

• For tasks in the extended context window, our method achieves comparable or supe-
rior performance on passkey and perplexity tasks, indicating our model’s ability to
generalize to longer lengths without sacrificing performance.

2. Backgrounds and Methods
2.1. Background: Rotary Position Embedding

In transformer models, positional information needs to be provided in some way,
which is typically achieved through positional encoding. The positional encoding used in
models such as GPT-NeoX and LLaMA is the Rotary Position Embedding (RoPE). Given a
position index m ∈ [0, c) and an embedding vector x := [x0, x1, . . . , xd−1]

T , where d is the
dimension of the attention heads, RoPE defines the complex function as Equation (1):

f(x, m) = [(x0 + ix1)eimθ0 , (x2 + ix3)eimθ1 , . . . , (xd−2 + ixd−1)eimθd/2−1 ]T (1)

where i :=
√
−1 denotes the imaginary unit and θj = base−2j/d, where in RoPE, base is

typically set to 10,000. With RoPE, the calculation of self-attention scores is performed as
Equation (2):

a(m, n) = Re⟨f(q, m), f(k, n)⟩

= Re

[
d/2−1

∑
j=0

(q2j + q2j+1)(k2j − k2j+1)e
(m−n)θj

]

=
d/2−1

∑
j=0

(q2jk2j + q2j+1k2j+1) cos((m − n)θj) + (q2jk2j+1 − q2j+1k2j) sin((m − n)θj)

=: a(m − n) (2)
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The value of a(m, n) depends only on the relative position m − n, where q and k are
query and key vectors. In Cartesian coordinates, RoPE can be written as Equation (3):

f(xm, m, θj) =



cosmθ1 −sinmθ1 0 0 · · · 0 0
sinmθ1 cosmθ1 0 0 · · · 0 0

0 0 cosmθ2 −sinmθ2 · · · 0 0
0 0 sinmθ2 cosmθ2 · · · 0 0
0 0 0 0 · · · cosmθd/2−1 −sinmθd/2−1
0 0 0 0 · · · sinmθd/2−1 cosmθd/2−1

xm (3)

It should be noted that this transformation of RoPE is equivalent to rotating [x2i, x2(i+1)]
(where i ∈ [0, d/2 − 1]) in complex space. This is why this type of positional encoding is
named Rotary Position Encoding, with the corresponding rotation angles being the focus
of extrapolation research on out-of-distribution in longer texts.

2.2. Positional Interpolation

Since Large Language Models (LLMs) are typically pre-trained with fixed context
lengths, such as 2048 for LLaMA, 4096 for LLaMA-2, and 2048 for Pythia models (based
on GPT-NeoX), it is a natural idea to extend the context length by fine-tuning with a
small amount of data. The first method to extend the existing LLMs using fine-tuning
was Position Interpolation (PI) [12], where it was found that directly extrapolating the
angles of RoPE through fine-tuning did not yield satisfactory results. However, the effect of
fine-tuning with Position Interpolation showed promising results in extending the context
window. They modified the RoPE method as Equation (4):

f̃(x, m, θj) = f(x,
mL
L′ , θj) (4)

where L represents the maximum context length during pre-training and L′ is the larger
context length used during fine-tuning. They empirically demonstrated that decent results
could be achieved on the new context length with just 1000 steps of fine-tuning.

2.3. NTK Interpolation

Although Position Interpolation has shown some effectiveness in extending the context
window, models fine-tuned using this method suffer performance degradation within the
original context window [14]. The reason for this performance degradation is apparent:
while position interpolation avoids the issue of RoPE rotation angle out-of-bounds at large
indices, it compresses the distance between tokens, severely disrupting the model’s local
resolution. Given that language modeling heavily relies on local relationships, disrupting
local relationships inevitably leads to inaccurate predictions.

NTK [13] addresses the “local distortion” problem caused by stretching all dimensions
equally in PI. They derive NTK Interpolation using Neural Tangent Kernel (NTK) theory
as Equations (5) and (6):

base′
d−2

d =s · base
d−2

d (5)

base′ =base · s
d

d−2 (6)

where s = L′
L represents the scaling factor, base is the value used in RoPE during pre-

training, base′ is the new corresponding value used during fine-tuning, and d denotes the
embedding dimension of the attention head. This adjustment avoids uniformly stretching
all dimensions, instead dispersing interpolation pressure across multiple dimensions. After
this adjustment, the lowest-frequency dimensions are scaled similarly to PI, while the
highest-frequency dimensions remain unchanged (i.e., unscaled). It is noteworthy that this
adjustment offers an ability to extend the context window without the need for fine-tuning.
However, when used for fine-tuning, this method may lead to out-of-bounds values in
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some dimensions compared to the maximum rotation angles during pre-training, resulting
in performance degradation.

YaRN [14] proposes segment-wise adjustment of θ values in RoPE based on the period
of different dimensions for interpolation. This method addresses the issue of out-of-bounds
values in some dimensions in NTK and achieves better results in extending the context
window compared to NTK. However, this method introduces additional hyperparameters
that need to be adjusted for different models to achieve particularly good results. Addi-
tionally, we argue that interpolation for certain high-frequency dimensions may lead to
performance degradation in these dimensions, as we believe these dimensions have fully
learned the [0, 2π] angle during pre-training and do not require interpolation.

2.4. Our Proposal: SBA-RoPE

By observing the out-of-bounds values in certain dimensions of the NTK Interpola-
tion, it becomes evident that for low-frequency dimensions, the maximum rotation angles
learned during the pre-training process do not exceed 2π. These dimensions carry absolute
position information, as the rotation angle corresponding to each position is unique. Extrap-
olating these angles would lead to significantly increased model perplexity, since the model
has not been trained on these extrapolated angles. On the other hand, high-frequency
dimensions have been thoroughly trained within the [0, 2π] range, and the sine and cosine
values of these angles reoccur in RoPE due to the periodicity of trigonometric functions.
Thus, we can simply extrapolate these angles, as they carry relative position information.

To delineate the dimensions requiring interpolation from those needing extrapolation,
we define the following notation as Equation (7) for the rotation angle at position pos and
dimension dim:

θpos,dim,base = pos · base
−2·dim

d (7)

where pos ∈ [0, L − 1] represents the position index corresponding to the current rotation
angle, dim = 0, 1, . . . , d/2 − 1 represents the dimension corresponding to the current
rotation angle, and d represents the embedding dimension of the attention head. Based
on our discussion, we need to identify the smallest dimension dim′ such that it is just
less than 2π; this dimension marks the boundary as Equation (8) between extrapolation
and interpolation:

dim′ = min
{

dim ∈ [0, 1, . . . , d/2 − 1], θL−1,dim,base < 2π
}

(8)

where base and L are, respectively, the base and the maximum context window used in RoPE
during LLM pre-training. For dim > dim′, we employ an interpolation method similar to
NTK, ensuring the scaling at dimension dim′ matches that of the Positional Interpolation
(PI) method. The base′ for these low-frequency dimensions dim can be calculated under the
new fine-tuning length L′ as Equations (9)–(11):

θL′−1,dim′ ,base′ =θL−1,dim′ ,base (9)

(L′ − 1) · base′
−2·dim′

d =(L − 1) · base
−2·dim′

d (10)

base′ =base · ( L′ − 1
L − 1

)
d

2·dim′ (11)

This calculation determines the base used for interpolating low-frequency dimensions.
Consequently, we can express the rotation angles in Segmental Base Adjustment for RoPE
(SBA-RoPE) as Equation (12):

θ =

{
θpos,dim,base, if dim < dim′

θpos,dim,base′ , if dim ≥ dim′.
(12)

Through our derivation, we have demonstrated that this approach yields rotation
angles that, under the new fine-tuning length L′, do not produce out-of-bounds values
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for high-frequency dimensions dim < dim′ nor low-frequency dimensions dim > dim′,
maintaining consistency with the PI method. For high-frequency dimensions, we directly
perform extrapolation to avoid the loss of high-frequency information, as seen with PI. For
low-frequency dimensions, we adopt a method similar to NTK, distributing the interpola-
tion load across all low-frequency dimensions.

3. Experiments and Results

We demonstrate that SBA-RoPE effectively extends the context window of Large
Language Models (LLMs) with just 10,000 fine-tuning data points, a quantity negligible
compared to the data volume used in model pre-training stages. We evaluated the model’s
perplexity on long texts and conducted passkey retrieval experiments, proving that SBA-
RoPE surpasses all previous methods for extending the context window.

3.1. Setup

Baselines. We compared SBA-RoPE against three methods: Positional Interpolation
(PI), Neural Tangent Kernel (NTK), and YaRN. Additionally, to assess performance within
the original context window of LLMs, we included baselines of LLMs without fine-tuning.

Considering computational costs, we selected Pythia-2.8b as our fine-tuning starting
point. This model size is sufficient to highlight the performance differences between
methods. Pythia [15] includes LLMs ranging from 14M to 12B parameters, utilizing the
same architecture as GPT-NeoX [9]. It was pre-trained on the Pile [16] dataset by EleutherAI
(https://www.eleuther.ai, accessed on 1 March 2024) for research into the interpretability
analysis and scaling laws of LLMs, aiming to understand how knowledge develops and
evolves during autoregressive transformer training. The model checkpoint used in our
experiments is available on Hugging Face (https://huggingface.co/EleutherAI/pythia-
2.8b accessed on 1 March 2024). Other than adjusting the implementation of position
embeddings using various methods, we also employed Memory-Efficient Attention from
xFormers [17], provided by PyTorch [18], to replace the native attention mechanism of
GPT-NeoX, thereby accelerating the training and inference processes on NVIDIA V100
GPU. Apart from these modifications, we did not modify the GPT-NeoX model architecture
in any way.

Training. We fine-tuned all model variants using the next-token prediction objective
and cross-entropy [19] loss function, combined with various methods. We employed the
AdamW [20] optimizer, with β1 and β2 set to 0.9 and 0.95, respectively. For the scheduler,
we used a linear warmup of 60 steps. The maximum learning rate was set to 2 × 10−5, with
weight decay set to zero. Utilizing eight NVIDIA V100 GPUs, we set the global batch size
to 8 and fine-tuned each model variant for 1250 steps. FP16 mixed precision training [21]
was enabled. All models were trained using PyTorch and DeepSpeed Zero-3 [22]. For
the training dataset, we fine-tuned models using data from PG-19 [23], truncating texts
to lengths of 4 k tokens and appending BOS and EOS tokens at the beginning and end,
respectively. We fine-tuned two variants of each method for scaling factors s = 2 and s = 4.
Given that the original context window of the Pythia model is 2048, the fine-tuned models
have expanded context windows of 4096 and 8192, respectively.

3.2. Long Sequence Language Modeling

To evaluate performance in long sequence language modeling, we utilized the Proof-
pile [24] dataset, which comprises numerous long sequence texts, specifically employing its
test split for our analysis. We adopted the sliding window technique [6] to assess perplexity
across various context window sizes, setting the stride S to 256.

Initially, we assessed how model variants, fine-tuned using different methods, per-
formed as the context window size increased. Following the approach used by YaRN, we
selected 10 random samples from the Proof-pile dataset, each containing at least 10 k tokens.
For the scaling factor s = 2, we evaluated the perplexity for sequence lengths from 1 k to
5 k tokens, in 1 k token steps.

https://www.eleuther.ai
https://huggingface.co/EleutherAI/pythia-2.8b
https://huggingface.co/EleutherAI/pythia-2.8b
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Table 1 presents a comparison of perplexity for the Pythia model, expanded from an
original context window of 2048 to 4096, utilizing the original model, PI, NTK, YaRN, and
SBA-RoPE. From the experimental results, it is evident that, initially, within the original
context lengths (1 k and 2 k), all models fine-tuned with various context window extension
methods experienced an increase in perplexity to varying degrees. The PI method saw
the most significant increase within this range, likely due to the equal stretching of all
dimensions, resulting in the loss of high-frequency information.

In contrast, the model variants fine-tuned with our method exhibited the smallest
increase in perplexity, indicating minimal performance degradation. This minimal increase
is attributed to our method’s direct extrapolation of high-frequency dimensions, preventing
the loss of this part of the pre-trained information. In the extended context window (3 k
to 4 k), the original model’s perplexity significantly increased, indicating that the original
model became impractical for extended windows. Our method achieved lower perplexity
in the extended window compared to all other methods. Furthermore, at the 5 k window,
which exceeds the extended context window (4 k), our method still maintained the lowest
value, signifying superior extrapolation performance.

Table 1. Perplexity comparison across expanded context window sizes, contrasting the original
Pythia-2.8b model with variants fine-tuned via different methods. The scaling factor for all variants
is s = 2, doubling the original context window size from 2 k to 4 k tokens. Evaluations of perplexity
range from 1 k to 5 k tokens, with increments of 1 k. The lowest and second-lowest perplexity (PPL)
values at each length are highlighted in bold for the lowest and underlined for the second-lowest.

Method 1024 2048 3072 4096 5120

Original 5.617 4.785 25.844 79.499 146.776
PI 6.185 5.227 4.756 4.622 10.543
NTK 6.064 5.134 4.678 4.595 11.173
YaRN 6.061 5.134 4.678 4.552 11.016
SBA-RoPE 6.036 5.016 4.596 4.363 10.233

We further increased the scaling factor s to 4, applying fine-tuning to the original
model through various methods. The outcomes are presented in Table 2. Despite the
maximum length of the fine-tuning data being 4 k, adjusting the scaling factor s to 4 allows
us to infer that the model’s maximum context length has now been extended to 8 k. This
extension is noteworthy because, although the model has never been exposed to context
lengths between 4 k and 8 k, it still demonstrates a degree of transfer learning capability.

Table 2. Perplexity comparison for the Pythia-2.8b model and its variants fine-tuned with a scaling
factor of s = 4, extending the context window to 8 k and beyond. The evaluated perplexities range
from 1 k to 10 k tokens, in increments of 1 k. Values are adjusted to highlight the lowest (in bold) and
second-lowest (in underlined) perplexity at each token length.

Model 1024 2048 3072 4096 5120 6144 7168 8192 9216 10,240

Original 5.617 4.785 25.844 79.499 146.776 247.862 397.569 582.819 767.523 952.580
PI 6.731 5.682 5.155 5.007 5.081 4.944 4.719 4.647 5.761 10.304
NTK 6.070 5.148 4.691 4.554 4.629 4.687 9.119 18.220 30.109 44.844
YaRN 6.103 5.166 4.709 4.572 4.652 4.532 4.353 4.577 5.333 8.801
SBA-RoPE 6.047 5.148 4.493 4.455 4.538 4.418 4.424 4.506 5.381 8.037

Data presented in Table 2 show performance within the 1 k to 4 k context window
that is similar to the behavior observed with a scaling factor s = 2. Notably, even within
the 7 k to 8 k length, which fal ls within the extended context window of NTK, this method
exhibits significantly higher perplexity compared to others. This higher perplexity can be
attributed to the NTK method’s adjusted rotation angles producing out-of-bounds values.
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Conversely, our method maintains superior performance in the previously unseen 5 k to
10 k window range, consistently demonstrating the most favorable outcomes.

3.3. Passkey Retrieval

To investigate the effective context window size of models after extension—that is,
the maximum distance of tokens that can be effectively attended to during the inference
process—we adhered to the passkey retrieval task as defined by [25]. In this task, the model
is required to recover a hidden five-digit passkey embedded within a context of largely
nonsensical text. The specific format of the prompt used for this task is detailed in Figure 2.

There is an important info hidden inside a lot of irrelevant text. Find it and
memorize them. I will quiz you about the important information there.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and
back again. (repeat X times)
The pass key is 12345. Remember it. 12345 is the pass key.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and
back again. (repeat Y times)
What is the pass key? The pass key is

Figure 2. We adopt the identical prompt structure for passkey recovery as suggested by [25]. In this
setup, the specific passkey 12345 is substituted with randomly generated five-digit numerals for the
evaluation phase.

To evaluate the models, we conducted the passkey retrieval task 20 times for each
model variant, positioning the key as close to the beginning of the context as possible
to more accurately reflect the model’s capability to attend to the longest distance. The
accuracy of models fine-tuned with a scaling factor s = 2 on the passkey retrieval task is
shown in Table 3. It is observed that all fine-tuned model variants exhibit high accuracy in
the extended window. Notably, PI outperforms NTK and YaRN across all context window
sizes on this task, suggesting that evenly stretching all embedding dimensions, despite
causing “local distortion” do not significantly impact the dependency relationships between
local tokens in the context of passkey retrieval. Our SBA-RoPE achieves the best results
in all context windows except for the 3 k window, by combining the advantages of PI’s
non-exceeding bounds and NTK’s distribution of interpolation stress across all dimensions.

Table 3. Accuracy of passkey retrieval across different context window sizes for the original Pythia-
2.8b model and its variants fine-tuned with a scaling factor of s = 2. Accuracy is measured by
the model’s ability to correctly retrieve the hidden passkey within various context lengths. The
highest and second-highest accuracy values at each length are highlighted in bold for the highest
and underlined for the second-highest.

Method 1024 2048 3072 4096 5120

Original 1.0 1.0 0.00 0.00 0.00
PI 0.95 0.85 0.65 0.85 0.00
NTK 0.90 0.75 0.40 0.60 0.00
YaRN 0.70 0.80 0.50 0.55 0.00
SBA-RoPE 0.95 0.90 0.60 0.85 0.00

To assess the extended capabilities of the models, we further tested them under the
passkey retrieval task with the scaling factor increased to s = 4, representing an expanded
context window up to 8 k tokens. The outcomes, as documented in Table 4, reveal that the
models fine-tuned with this larger scaling factor continue to perform with notable accuracy
across extended context lengths. Particularly, the PI method and our SBA-RoPE exhibit
remarkably consistent performance, even at the higher context ranges of 5 k to 8 k tokens,
underscoring the effectiveness of our approach in managing extended contexts. SBA-RoPE,
especially, demonstrates superior adaptability and accuracy, effectively leveraging its
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hybrid strategy to maintain high retrieval accuracy, a testament to its robust extrapolation
capabilities in previously unseen context lengths.

Table 4. Accuracy of passkey retrieval across different context window sizes for the original Pythia-
2.8b model and its variants fine-tuned with a scaling factor of s = 4. The highest and second-
highest accuracy values at each length are highlighted in bold for the highest and underlined for the
second-highest.

Method 1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

Original 1.0 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PI 0.95 1.0 0.90 0.95 0.95 0.95 0.95 1.0 0.00 0.00
NTK 0.85 0.85 0.70 0.60 0.90 0.00 0.00 0.00 0.00 0.00
YaRN 0.80 0.65 0.85 0.80 0.75 0.55 0.60 0.00 0.00 0.00
SBA-RoPE 0.95 0.95 0.90 0.95 0.95 0.95 1.0 1.0 0.05 0.00

4. Discussions of the Results

The experiments conducted for SBA-RoPE have demonstrated its effectiveness in
extending the context window of LLMs with a relatively small fine-tuning dataset. The
comparison of SBA-RoPE with other methods, such as PI, NTK, and YaRN, across differ-
ent metrics and tasks has provided a comprehensive understanding of its performance
and advantages.

4.1. Perplexity Analysis

The perplexity measurements, as presented in Tables 1 and 2, illustrate the capability
of SBA-RoPE to maintain lower perplexity across extended context windows, surpassing
the baseline methods. This is particularly significant in the context of long sequence
language modeling, where maintaining coherence over longer spans of text is crucial. The
minimal increase in perplexity within the original context lengths for models fine-tuned
with SBA-RoPE suggests that our method successfully preserves the model’s original
performance while effectively extending its context window. This indicates a balanced
approach to extrapolating high-frequency dimensions, which is critical for minimizing the
loss of pre-trained information.

Furthermore, the extended context window experiments, especially with the scaling
factor s = 4, highlight SBA-RoPE’s superior extrapolation performance. Despite the
models never being exposed to context lengths between 4 k and 8 k during training, SBA-
RoPE demonstrates a robust transfer learning capability, effectively leveraging learned
representations to adapt to and perform within these expanded context windows. This
underscores the potential of SBA-RoPE in enhancing model flexibility and generalization
across various context lengths, a key advantage for applications requiring comprehension
of long documents or conversations.

4.2. Passkey Retrieval Performance

The passkey retrieval task results, as shown in Tables 3 and 4, further validate the
effectiveness of SBA-RoPE in managing extended context windows. The high accuracy of
SBA-RoPE in this task across all evaluated context windows, especially with the scaling
factor s = 4, demonstrates its capability to attend to tokens over long distances without
significant loss of performance. This is indicative of SBA-RoPE’s efficient handling of the
extended context, combining the advantages of PI’s non-exceeding bounds and NTK’s
distribution of interpolation stress across dimensions.

Notably, the performance of SBA-RoPE in the previously unseen 5 k to 10 k window
range with high retrieval accuracy is a testament to its robust extrapolation capabilities. This
suggests that SBA-RoPE not only effectively extends the context window, but also ensures
that the model can maintain functional coherence and understanding over these longer
spans, a critical requirement for tasks involving detailed comprehension and retention of
information across large text bodies.
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4.3. Applications and Implementation

Extending the context window of large language models offers multiple benefits for
document summarization or long-document question-answering tasks. These benefits
primarily stem from the ability to process longer texts, thereby enhancing the model’s
understanding and generation quality. Here are some specific benefits:

• Improved Document Understanding: By expanding the context window, models can
process and understand longer texts at once. This means that when summarizing
documents or answering questions related to long documents, the model can capture
the content and structure of the document more comprehensively, thus improving the
accuracy of understanding.

• Reduced Information Loss: With long documents, smaller context windows may lead
to the loss of important information since the model cannot view the entire document
at once. Expanding the context window can reduce this information loss, allowing
the model to consider more relevant information when generating summaries or
answering questions.

• Enhanced Accuracy and Relevance of Answers: For long-document question-answering
tasks, being able to consider more information within the document can help the model
generate more accurate and relevant answers. This is because the model has a greater
chance of finding the exact answer to a question within the entire document, rather
than relying on partial information for inference.

• Improved Handling of Long-Distance Dependencies: In long documents, there may
be long-distance dependencies between certain points of information. Expanding
the context window allows the model to better capture these dependencies, thus
providing more coherent and accurate information when generating summaries or
answering questions.

• Enhanced Comprehensive Understanding: In complex document summarization
tasks, the model needs to understand not just individual sentences or paragraphs
but the main theme and structure of the entire document. A larger context window
enables the model to perform this comprehensive understanding over a broader range,
thereby generating higher quality summaries.

• Optimized Information Integration for Long Documents: In long-document question-
answering or summarization, it is necessary to effectively integrate information scat-
tered across different parts. A larger context window allows the model to identify and
integrate this information over a wider range, making the final output more accurate
and comprehensive.

Furthermore, adding the SBA-RoPE method to existing models based on rotational
position embedding, such as Llama, Llama-2, and GPT-NeoX, is very easy, requiring only
a few lines of code. This ease of modification is because the SBA-RoPE method does not
require changes to the calculation of attention scores but only modifications to the model’s
embedding-related code. We will release the source code after the paper is accepted.

5. Conclusions

In this study, we introduced SBA-RoPE, a novel technique designed to extend the
context window of pre-trained LLMs by strategically adjusting the base values used in
RoPE. Our approach, which selectively extrapolates high-frequency dimensions and inter-
polates those with maximum angles less than 2π, conceptualizes length extrapolation as
a prediction-stage Out-Of-Distribution (OOD) problem. This method leverage the inher-
ent properties of RoPE to maintain performance integrity across extended contexts while
efficiently addressing the challenges posed by OOD in low-frequency dimensions.

The empirical results presented in this paper validate the effectiveness of SBA-RoPE,
demonstrating its superiority over existing methods, such as PI, NTK, and YaRN, across var-
ious context window sizes. Notably, SBA-RoPE’s ability to maintain high accuracy and low
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perplexity in extended contexts—even those previously unseen during training—highlights
its robustness and adaptability.

Looking forward, the promising results achieved by SBA-RoPE open up new avenues
for research into extending the capabilities of LLMs. Future studies could explore the
integration of SBA-RoPE with other model architectures, delve into the potential of larger
context windows, and investigate its applicability to few-shot learning scenarios. Such
research could further unravel the complexities of model performance across varying
context lengths and contribute to the development of more sophisticated and versatile
language models.
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