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Abstract: Ensuring the sustainability of transportation infrastructure for electric vehicles (e-trans) is
increasingly imperative in the pursuit of decarbonization goals and addressing the pressing energy
shortage. By prioritizing the development and maintenance of resilient e-trans platforms through
the optimization of the public charging network, electric vehicle businesses can effectively meet the
needs of users, thereby contributing to efforts aimed at improving environmental quality. To achieve
this goal, researching the dynamics of vehicle user behaviors plays a crucial role. In this paper, we
propose cross-structure multi-behavior contrastive learning for recommendation (C-MBR), which
takes into account the dynamic preferences of users, and develops model profiles from the global
structure module, local structure module, cross-behavior contrastive learning module, cross-structure
contrastive learning module, and model prediction and optimization. C-MBR is mainly designed to
learn user preferences from the diversity of users’ behaviors in the process of interacting with the
project, so as to grasp the different behavioral intentions of users. The experimental and analytical
research is further conducted and validated for dealing with cold start problems. The results indicate
that C-MBR has a strong ability to deal with the problem of sparse data. Compared with the ablation
experiment, the model performance of C-MBR is significantly enhanced, showing that the C-MBR
model can fully apply the information of a global structure and local structure in cross-structure
comparative learning and multi-behavioral comparative learning to further alleviate the problem of
data sparsity. As a result, the e-trans infrastructure will be significantly enhanced by addressing the
issue of data-driven disruption.

Keywords: dynamic charging preferences; cross-structural; multi-behavioral comparisons; e-trans;
sustainable infrastructure; resilience

1. Introduction

As the fuel crisis escalates and environmental worries mount, governmental bodies
and automobile manufacturers have unveiled diverse strategic initiatives aimed at ad-
vancing the adoption of fuel-efficient vehicles with reduced carbon emissions [1]. The
resilience and remaining e-trans infrastructure stand as pillars of paramount importance,
commanding attention from both academia and the transportation infrastructure con-
structing corporation. Hence, bolstering the fast-charging infrastructure to facilitate more
frequent vehicle recharging represents a viable strategy for upholding the sustainability of
e-trans infrastructure [2]. An investigation was implemented of the scenario where the com-
pany opts to invest in the necessary charging infrastructure to facilitate a cost-minimizing
strategic transition, either due to the current inadequacy of public charging infrastructure
or for strategic purposes [3].

To model and optimize the public charging network and thus, sustain the e-trans
infrastructure, data on vehicle user behaviors play a crucial role in establishing the charging
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station network [4]. Furthermore, the resilience of e-trans infrastructure is closely inter-
twined with the broader concept of digital transformation. As businesses increasingly rely
on digital channels to conduct transactions and engage with customers, the importance
of maintaining robust and resilient e-trans platforms cannot be overstated. Whether it
is ensuring the availability of charging sites, streamlining payment processing systems,
or safeguarding customer data, the resilience of the e-trans infrastructure is essential for
fostering trust, reliability, and continuity in the digital platform.

The internet holds an immense amount of information, continuously expanding to a
degree where humans are unable to manage the overwhelming volume of data manually
or through conventional tools [5]. Numerous studies indicate that data sparsity poses a
significant barrier to deploying public charging site networks. The data sparsity and the
cold start problem present a significant hurdle in datasets where each user provides ratings
for only a limited number of sites [6]. In addition, electric vehicle trajectory data are sparse,
resulting in a sparse tensor [7].

The implications of the shortage of data go far beyond the field of infrastructure
development, especially when it comes to the construction of networks for electric vehicle
(EV) charging. There are several issues associated with inadequate data availability, from
imprecise demand forecasts to inefficient resource distribution and infrastructure design.

Fundamentally, insufficient data makes it difficult to determine where charging sta-
tions would be most appropriate, which causes uneven coverage and accessibility problems
for electric vehicle customers. This may lead to overworked facilities in some locations
and underutilized infrastructure in others, which would ultimately impair the convenience
and dependability of EV charging networks. A log10 transform on the DBS (distance
between sessions) was deployed to avoid broad difficulty due to the sparsity of data at
high distances [8].

Moreover, the lack of data makes it more difficult to create demand forecasting predic-
tion models, which are necessary to figure out the right size and capacity of infrastructure
for charging EVs in the future. Infrastructure planners may find it difficult to deploy
resources effectively in the absence of precise forecasts, which could lead to either an
overinvestment or an underinvestment in charging infrastructure. Data gaps also make it
more difficult to apply load management techniques and dynamic pricing schemes, both
of which are essential for maximizing the efficiency of charging networks and reducing
the burden on the electrical grid. It is difficult to put into practice efficient demand-side
management techniques and incentives to promote off-peak charges without detailed data
on consumption trends, periods of peak demand, and user behavior.

To address the lack of data in infrastructure planning, coordinated efforts must be
made to improve data collection techniques, strengthen stakeholder data-sharing processes,
and use advanced analytics and machine learning techniques to glean useful insights
from small datasets. Governmental organizations, utility corporations, IT firms, and
transportation stakeholders must work together to tackle data difficulties and guarantee
the effective development of the EV charging infrastructure.

To fill these research gaps, this study aims to address the issues of data sparsity and
the cold start problem, thereby ensuring resilience and remaining e-trans infrastructure.

The C-MBR (cross-structural multi-behavioral model) serves to predict and optimize
electric vehicle charging behavior within the charging network. Based on these predictions,
the charging network can be optimized to meet charging needs efficiently, minimize wait
times, and optimize charging infrastructure resources. This helps enhance the charging
experience for users and supports the development of the electric vehicle charging infras-
tructure. The evaluation metrics including normalized discounted cumulative gain (NDCG)
@N and hits ratio (HR) @N are used to compare the differences between the recommended
list and the user’s real interaction list. A cold start solution is further examined to conclude
that C-MBR has a strong ability to deal with the problem of data sparsity.

The rest of the paper is organized as follows. Section 2 reviews relevant studies
of sustainable e-trans infrastructure and data sparsity problems. Section 3 presents the
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mathematical foundation and parameter settings of the algorithm. Section 4 discusses the
data and experimental results. Section 5 provides a discussion, and Section 6 concludes
the paper.

2. Literature Review
2.1. Sustainable e-Trans Infrastructure

Maintaining sustainable transportation infrastructure, especially e-trans, is a critically
important task for nations as it ensures smoothness for supply chains and other economic
sectors. For countries with vast territories and developing countries, optimizing the net-
work poses even greater challenges. Metais et al. [9] review studies focusing on three
types of charging infrastructure users: buses, taxis, or private vehicles. They indicate that
the majority concentrates on private vehicles, which constitute the largest portion of the
vehicle fleet, or at least assumes that infrastructure can be designed to accommodate all
light vehicles. Private vehicle owners utilize their vehicles for diverse purposes depend-
ing on their surroundings (urban, rural), travel patterns (proximity to key destinations,
frequency of trips), and numerous other variables. Ashfaq et al. [10] provide an exten-
sive review of recent advancements, as well as the difficulties encountered in establishing
electric vehicle (EV) infrastructure, considering different charging power capacities and
methods. It also evaluates the effects of EVs on the electricity grid. An investigation of
variations in charging habits is implemented among various categories of plug-in electric
vehicle (PEV) owners, examining their preferences for charging locations and levels [11].
Subsequently, they identify factors influencing PEV owners’ decisions regarding charging
location and level. The analysis highlights socio-demographic factors (such as gender and
age), vehicle attributes, commuting patterns, and the availability of workplace charging as
key determinants affecting the choice of charging location.

The lack of transportation infrastructure poses a significant challenge to the imple-
mentation of transportation, logistics, and other related activities. Numerous studies have
been conducted to address this issue at various levels and scales. Wang et al. [12] propose a
novel hybrid multiple-attribute decision-making (MADM) model that combines the ordinal
priority approach (OPA) and fuzzy measurement of alternatives and ranking according
to the compromise solution (fuzzy MARCOS) for improving last-mile logistics, specifi-
cally for developing economies, due to poor infrastructures’ challenges. In the context
of lacking infrastructure, to provide a guideline for the last-mile logistics managers and
decision makers to take in-depth consideration, the research proposes a fuzzy multi-criteria
decision-making (F-MCDM)-based framework combining the fuzzy analytic hierarchy
process (FAHP) and the fuzzy weighted aggregated sum product assessment (FWASPAS),
and triangular fuzzy numbers are applied to express the linguistic evaluation statements
of experts [13]. A revealed preference survey is conducted to evaluate e-scooter usage in
one of the highest-demand areas in the city of Austin, corresponding to a university cam-
pus [14]. The study explores population characteristics, mode shift, and mode interaction
to provide a causal analysis to evaluate the nature of the relationship between e-scooters
and transit trips in the whole city. A synthesis and critical discussion of the most up-to-date
evidence on public charging choices is provided [15]. The findings indicate that useful
criteria for charging behavior include home charging dominance, perceived insufficiency of
public infrastructure, charging prices, comfort and waiting time, location matters, charging
power, and frequency of use.

2.2. Data Sparsity Problem in e-Trans Charging Network

As mentioned earlier, enhancing the infrastructure for e-trans is a critical task in the
decarbonization process. Deploying charging networks can be costly if completed under
conditions of sparse data availability. Therefore, recent research has shown considerable
interest in addressing this issue when establishing charging networks for e-trans infrastruc-
ture. To optimize the existing charging station network by eliminating redundant charging
stations, for times and stations with sparse data, Yang et al. [7] utilize a method of context-
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aware tensor collaborative decomposition to infer the circumstances. In another study, an
XGBoost regression model is utilized, which is a tree-based boosting model tailored to
address sparse data when diagnosing battery charging capacity using extensive real-world
EV operational data [16]. A classification system of charging patterns and user profiles for
electric vehicles is derived from an analysis of 4.9 million charging transactions spanning
from January 2017 to March 2019, involving 27,000 users across 7079 charging points in
the public level two charging network across the four largest cities and metropolitan areas
of the Netherlands [8]. Trinko et al. [17] examine and assess the pricing data related to
charging stations sourced from PlugShare, an EV charging data platform that relies on
crowd-sourced information. A typical study investigates the charging behavior of electric
vehicles (EVs) and seeks to identify the most effective method for predicting it to optimize
EV charging schedules [18]. The study observes that prediction errors increase with higher
data entropy or lower data sparsity. Hence, it introduces the entropy/sparsity ratio (R) to
account for both indicators. When R is low, support vector regression (SVR) and random
forest (RF) regression demonstrate higher accuracy in predicting stay duration and energy
consumption, respectively. Conversely, when R is high, a diffusion-based kernel density
estimator (DKDE) performs better for both predictions. These three methods are combined
into the proposed ensemble predicting algorithm (EPA) to enhance prediction performance
by reducing prediction errors by 11% for the duration and 22% for the energy consumption.
The prediction results are then utilized in an optimal EV charging scheduling algorithm to
minimize load variance and reduce EV charging costs. Shoman et al. [19] employ a trip
chain model to evaluate the charging demands for battery electric trucks (BETs) during
long-distance operations in Europe by the year 2030. The proposed model considers truck
driving regulations as well as various types of stops. The results indicate that the quan-
tity of overnight chargers (50–100 kW) necessary is 4–5 times greater than the number of
megawatt chargers (0.7–1.2 MW) required to accommodate a 15% adoption rate of BETs in
long-haul operations.

To the best of our knowledge, previous models have not focused extensively on
highlighting cross-behavioral comparative and sequence-based cross-behavioral aspects,
as well as the issue of data sparsity in selecting charging sites. To fill this research gap,
this paper provides the following contributions. Firstly, a thorough investigation into
user behavior and embedding it into the training model can help the system separate
behaviors more accurately. This is a significant contribution of the model. Secondly,
through integrating a range of techniques for behavior separation into the local and global
structural layer-based model during training, along with optimizing the distance from the
user to the target site, user choice prediction becomes more accurate and optimal. Finally,
based on the training and prediction results, the issue of sparse data is also addressed and
reinforced. Consequently, this can assist in establishing additional charging stations.

3. Materials and Methods

To deploy a model predicting the user choice of a charging station based on behavior
and that optimizes the charging station network, we incorporate techniques such as Global
Architecture, Local Structure, Cross-behavioral Comparative Learning, and Comparative
Learning Modules across Structures into our deep learning model. The Global Architecture
technique enables the model to learn general and complex relationships between input vari-
ables and target variables across the entire dataset. The Local Structure technique focuses
on modeling the local structure of the data, allowing the model to capture specific and
complex relationships at each data point. Subsequently, the Cross-behavioral Comparative
Learning and Comparative Learning Modules across Structures techniques are integrated
to allow the model to compare and learn different behavioral patterns among users and
across different types of behaviors, while combining learning and comparing behavioral
patterns at both global and local structures, thereby providing a comprehensive approach
to predicting electric vehicle charging behavior. This improves prediction accuracy by
leveraging the advantages of both types of structures.
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3.1. Global Architecture Module

For the global structure G = {U, V, E}, where U is the set of users, V is the set of sites,
and E is the set of edges.

Here, u denotes a user, v denotes a site, and Yγk denotes the user–site interaction matrix
under the k behavior type (e.g., home-only, work-only, public-only, home-work, home-public,
work-public, all). Thus, the multi-behavior interaction data are denoted as

{
Y1, Y2, . . . , YT},

where T denotes the user–site interaction behavior type. When Yγk = 1, it means that u
interacts with v on k behaviors, and vice versa when Yγk = 0. It is a behavioral class.

3.1.1. User Project Messaging

Taking different interaction behaviors between users and projects as subgraphs, we
build project-embedded propagation layers based on the information of subgraphs that
can reflect the perception of customers’ behaviors, to capture the information of interaction
structure graphs between customers and projects as well as the higher-order synergy signals
under multi-behaviors [20,21].

Employing the user embedding propagation layer, eγk ,(l)
u,g denotes the k-behavior of

user u after convolutional propagation in the lth layer, which is expressed as Equation (1):

eγk ,(l)
u,g = δ

∑(v)∈N(u,γk)

1√∣∣Nu,γk

∣∣∣∣Nv,γk

∣∣W(l)α
γk
u

(
eγk ,(l−1)

v,g ⊙ e(l−1)
γk

) (1)

where k denotes the relationship between user u and its neighbor project node v. By
combining them, k is embedded into Equation (1) and Hadamard is applied as an operation
method for product combination; γk denotes the target behavior on relationship k; u denotes
the customer; δ denotes the activation function; v denotes the project node; and N(u, γk)
and N(v, γk) denote the behavior of user u and project v on relationship k, respectively. For
the set of direct neighbor nodes in the group graph, 1√

|Nu,γk ||Nv,γk |
denotes the symmetric

normalized form to prevent the embedding size from increasing following the increase in
the graph convolution operation; W(l) denotes the weight parameter matrix of a particular
graph convolution from layer l to layer l + 1; α

γk
u denotes the propagation weight assigned

to the user, which mainly incorporates the intensity of the user’s behavior, and the number
of behaviors on relation k; eγk ,(l−1)

v,g denotes the behavior of site v after the convolution

propagation at layer l − 1 for site v; e(l−1)
γk denotes the behavior of site v on relation k at

target behavior on relation k after the l − 1 layer of convolutional propagation.
Similarly, the site is embedded in the propagation layer as Equation (2):

eγk ,(l)
v,g = δ

∑(u)∈N(v,γk)

1√∣∣Nu,γk

∣∣∣∣Nv,γk

∣∣W(l)
(

eγk ,(l−1)
u,g ⊙ e(l−1)

γk

) (2)

3.1.2. Project Relevance Extraction

Capturing the similarity and relevance of sites presented by users on different behav-
iors can realize the enhancement of the site-embedded learning capability, especially in the
case of sparse data volume [22,23].

The layer l embedding the Equation for the same site v in k behavior h(l)vγk is:

h(l)vγk = W(l)
γk · aggreate

(
h(l−1)

jγk

∣∣j ∈ Nγk (v)
)

(3)

where W(l)
γk denotes the parameter matrix of behavior k, aggregated for layer l − 1 infor-

mation; j denotes the interaction site; h(l−1)
jγk

denotes the embedding of interaction site j in
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layer l − 1 when site v performs behavior k; and Nγk (v) denotes the set of sites that the user
interacts with in the same site v.

3.1.3. Multi-Behavioral Fusion Module

As there may be data sparsity during the execution of a user’s behavior, and different
types of behaviors indicate the variability in the user’s intentional interest, the user’s
behavioral preference for the target site can be judged by the auxiliary behavior, which is
conducive to the learning of the user’s behavioral preference [24–26].

Encoding subgraph interaction patterns for users over different behaviors k enables fusion
concerning the global structure of the user’s project, which is represented by (4) and (5):

eu,g = MLPg

(
e(0)u

∥∥∥e1
u,g

∥∥∥ . . .
∥∥∥eT

u,g

)
(4)

ev,g = MLPg

(
e(0)v

∥∥∥e1
v,g

∥∥∥ . . .
∥∥∥eT

v,g

)
(5)

where e(0)u and e(0)v denote the initial features of nodes u, v; MLPg denotes the two-layer MLPs
(multi-layer perceptrons) with the ReLU (rectified linear unit) activation function applied.

3.2. Local Structure Module

For the interaction of users and projects on different behaviors as subgraphs, a se-
quence local structure encoder is applied to each subgraph, and based on the learning of a
single behavior k of the user and the project, the modules are integrated to form the final
local structure representation of the user and the project. The historical behavior of user u is
represented in sequence form as

{
s1

u, s2
u, . . . , sT

u
}

, where T denotes the type of user interac-
tion with the project, sγk

u is the sequence of user interactions with the project in chronological
order under behavior k, sγk

u = {v1, v2, . . . , vt, . . . , vsum}, and applying the BERT4Rec local
structure encoder [27], we obtain the k-behavior representation implemented by user u
under the local mechanism module eγk

u,s as Equation (6):

eγk
u,s = Bert4rec

(
Sγk

u
)

(6)

After that, the final local structure concerning the user is represented in Equation (7):

eu,s = MLPs

(
e1

u,s

∥∥∥e2
u,s

∥∥∥ . . .
∥∥∥eT

u,s

)
(7)

where MLPs denotes the two-layer MLPs applying the ReLU (rectified linear unit) activation
function.

3.3. Cross-Behavioral Comparative Learning Module

Comparative learning is carried out on the user’s auxiliary behavior, target behavior
embedded representation, and the minimization of the difference between the same user
embedding and the maximization of the difference between different user embeddings,
based on the pairwise unlearned loss function to control this task [28,29].

3.3.1. Sequence-Based Cross-Behavioral Comparison Learning Tasks

The user set U includes a total of N customers. In this paper, positive sample pairs
refer to the embedded representations of the same user under different behaviors, and
negative sample pairs refer to the embedded representations under different behaviors
of the same user. Based on the given user ui-embedding of target behavior a denoted as
eγa

ui ,s, the given user ui-embedding of target behavior b denoted as eγb
ui ,s, and the given user

uj-embedding of target behavior b denoted as eγb
uj ,s, the positive sample pairs are chosen as

(eγa
ui ,s, eγb

ui ,s) and the negative sample pairs are chosen as (eγa
ui ,s, eγb

uj ,s) when the comparison
learning is launched on them; a, b ∈ Nγ, and Nγ denote the set of the interaction behaviors
between the users and the projects.
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The input embedding representation in the MLP (multi-layer perceptron) allows
negative sample pairs to be mapped in the same space, denoted by Equations (8) and (9):

eγa
ui ,s,p1 = MLPp1

(
eγa

ui ,s
)

(8)

eγb
uj ,s,p1 = MLPp1

(
eγb

uj ,s

)
(9)

where LS
B,(a,b) is applied to express the comparative loss of each pair of behaviors of the

user and the project, which is given in the Equation (10):

LS
B,(a,b) = ∑

ui∈U
− log

exp
(

φ
(
eγa

ui ,s, eγb
ui ,s

)
/τ

)
∑ui∈U exp

(
φ
(

eγa
ui ,s,p1, eγb

ui ,s,p1

)
/τ

) (10)

where φ(.) denotes the cosine similarity function between two behavioral embeddings;
and τ denotes the temperature coefficient of the softmax function. Equation (10) represents
a loss function commonly used in the context of machine learning, particularly for tasks
that involve learning representations, such as contrastive learning or in the training of
embedding models.

The cross-behavioral comparison learning loss based on sequences is expressed
as Equation (11):

LS
B = LS

B,(a,1) + LS
B,(a,2) + . . . + LS

B,(a,T) (11)

3.3.2. Graph-Based Cross-Behavioral Comparison Learning Tasks

Constructing a graph-based cross-behavior contrastive learning task involves users ui
with given target behavior a, embedding representations eγa

ui ,s, users ui with given target
behavior b, embedding representations eγb

ui ,s, and users uj with given target behavior b
and embedding representations eγb

uj ,s. When conducting contrastive learning, the selected
positive sample pairs are denoted as (eγa

ui ,s, eγb
ui ,s), and negative sample pairs as (eγa

ui ,s, eγb
uj ,s).

Here, a, b ∈ Nγ, where Nγ represents the set of interactions between users and sites.
The input embedding representation at the MLP allows negative sample pairs to be

mapped in the same space, denoted by Equations (12) and (13):

eγb
ui ,s,p2 = MLPp2

(
eγb

ui ,s
)

(12)

eγb
uj ,s,p2 = MLPp2

(
eγb

uj ,s

)
(13)

LG
B,(a,b) is applied to express the comparative loss of each pair of behaviors of the user and

the project, which is given by Equation (14):

LG
B,(a,b) = ∑

ui∈U
− log

exp
(

φ
(
eγa

ui ,g, eγb
ui ,g

)
/τ

)
∑ui∈U exp

(
φ
(

eγa
ui ,g,p2, eγb

ui ,g,p2

)
/τ

) (14)

Equation (14) is the loss function used in a cross-behavior contrastive learning module,
often employed in machine learning models related to contrastive learning. Specifically,
this is a sequence-based cross-behavior contrastive learning loss function used in recom-
mendation systems, designed to better enable the model to learn representations of users
across different behaviors.

The cross-behavioral comparison learning loss is expressed as Equation (15):

LG
B = LG

B,(a,1) + LG
B,(a,2) + . . . + LG

B,(a,T) (15)
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3.4. Comparative Learning Modules across Structures

The cross-structure comparison learning task is to present the commonalities of the
different structures, in other words, to minimize the differences between local and full
structure embeddings of the same user, and to maximize the differences between embed-
dings of different users, based on the control of the pairwise unlearning loss function for
this task.

The positive sample pairs are chosen as (eui ,s, eui ,g) and the negative sample pairs are
(eui ,s, euj ,g), (eui ,g, euj ,s); a, b ∈ Nγ, Nγ denote the set of interaction behaviors between users
and projects.

The input embedding representation at the MLP allows negative sample pairs to be
mapped in the same space, denoted by Equations (16) and (17):

eui ,s,p3 = MLPp3(eui ,s) (16)

euj ,g,p3 = MLPp3

(
eug ,g

)
(17)

The defining Equation for the cross-structure comparison learning loss LV is denoted
as Equation (18):

LV = ∑
ui∈U

− log
exp

(
φ
(
eui ,s, eui ,g

)
/τ

)
∑ui∈U exp

(
φ
(

eγa
ui ,s,p3, euj ,g,p3

)
/τ

) (18)

3.5. Model Prediction and Optimization

The behavioral embedding representation of the user and the project is obtained
through the local structure and global structure respectively, and fused so that the user’s
individual information and the global structure information can be included at the same
time, which is expressed by the Equations (19) and (20):

eu = MLPU
(
eu,g∥eu,s

)
(19)

ev = MLPV

(
e(0)v

∥∥ev,g

)
(20)

The correlation score is calculated between the target site v and the target customer u
interaction sites under the specified k behaviors as Equations (21) and (22):

y1(k)u,v = eT
U · diag

(
eγk

)
· ev (21)

y2(k)u,v = ∑
j∈Nγk (u)

hT
γk

· hjγk∣∣Nγk (u)
∣∣ (22)

where diag(.) denotes a diagonal matrix with diagonal elements equal to eγk ; and Nγk (u)
denotes the set of sites for user u under k behavior.

The predictive scoring Equation between the target site v and the target customer u
interaction site is as follows:

y(k)u,v = λ1 · y1(k)u,v + (1 − λ1) · y2(k)u,v (23)

The optimization model, the recommendation task loss function, is defined with
Equation (24):

L0 = ∑
(u,vi ,vj∈0)

log σ
(

y(k)u,vi
− y(k)u,vj

)
(24)

where
{(

u, vi, vj
)
|(u, vi) ∈ O+, (u, vi) ∈ O− }

denote paired training samples, and O+ and
O− denote observed and unobserved interaction behaviors that can be observed and
unobserved, respectively, for user u and site v. σ is the sigmoid activation function, and
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the combined cross-behavioral, cross-structural comparison loss, and the overall loss L
Equation is expressed as follows:

L = L0 + λ
(

LG
B + LS

B + LV

)
+ µ∥θ∥2

2 (25)

where θ denotes the chance of all trainable parameters, µ denotes the parameter con-
trolling L2 regularization, and λ denotes the parameter controlling the proportion of
contrast loss. The Nomenclature presents a full explanation of mathematical symbols in the
proposed model.

4. Experimentation and Results Analysis
4.1. Data Set and Data Preprocessing

In this experiment using MATLAB R2018a, we utilize the charging infrastructure
dataset provided by Statista including 41,742 users and 11,953 sites, with three types of
charging behavior including 18,134 (slow), 25,572 (fast), and 1997 (ultra-fast) [30]. Pre-
processing work is carried out on the above data to merge repeated interactions and filter
out users and sites with fewer than 5 interactions.

4.2. Evaluation Indicators and Experimental Setup

The evaluation metrics normalized discounted cumulative gain (NDCG) @N and
hits ratio (HR) @N were applied. They are used to compare the differences between the
recommended list and the user’s real interaction list.

Each site in the list of recommendations has a certain correlation between the use
and the score form of the expression of the correlation that exists. For example, for gain,
if a user’s rating is (5–10 points), the gain is 5–10; if the analysis is of the user’s implicit
behavior, such as observing whether the user clicks on the site, with 0 indicating click and
1 indicating not clicked, then the gain is 0 or 1. Add the gain between each site to obtain
the Cumulative Gain (Cumulative Gain); let each site gain and its discount value (target
site list position) be divided to obtain the discounted cumulative gain DCG (Discounted
Cumulative Gain), which indicates that the site list position is more backward the higher
the discount and the lower the value. Using the DCG to determine whether the user
reference project recommendation is good or bad, but knowing that the DCG between
different customers cannot be compared, it is necessary to use the normalized Discounted
Cumulative Gain NDCG to obtain the best Discounted Cumulative Gain (Ideal Discounted
Cumulative Gain, IDCG); combined with the project gain sorting for ranking, the best DCG
calculation is IDCG. The greater the results of the calculation, the higher the value of the
project list. The closer the calculation result is to 1, the more reasonable the ordering is.
NDCG@N is defined by the Equation (26):

NDCG@N =
DCG@N
IDCG@N

(26)

The hit rate HR is the recommended stronger evaluation metric. The HR@N Equation is:

HR@N =
1
N

· ∑N
i=1 hit(i) (27)

where, N indicates the number of times the site is recommended; the hit function indicates
whether the hit is indicated by 1, if not, 0.

Higher values of the corresponding data indicate more accurate final recommenda-
tions. Non-interaction sites were randomly selected as negative samples and interaction
sites as positive samples.

Set the number of base layers of the graph volume to 4, the λ1 in the prediction
score to 0.7, the L2 normalization factor µ to 0.0001, and the temperature coefficient τ ∈
{0.07, 0.1, 0.2, 0.5, 0.8, 1.0}.
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4.3. Baseline Methodology

The validity of the C-MBR model’s acquisition is verified by launching a comparative
analysis between C-MBR and five other candidates including EHCF (efficient hetero-
geneous collaborative filtering), NMTR (neural multi-task recommendation), NGCF-M
(neural graph collaborative filtering-multi-behavior), NGCF-CL (neural graph collaborative
filtering-contrast learning tasks), and S-MBRec (self-supervised graph neural networks for
multi-behavior recommendation).

For EHCF, we use the following parameter values. Embedding Matrix Size: The
embedding matrices are set to have 100 × 100 dimensions, indicating 100 latent features
for both users and sites. The Learning Rate is set to 0.001. The model consists of 2 hidden
layers, each containing 50 neurons, providing a balance between model complexity and
the capacity to capture intricate patterns in the data. A consideration threshold of 0.5 is
established, indicating that recommendations with scores above 0.5 are deemed suitable.
The Adam optimization algorithm is employed to optimize the model parameters.

The NMTR candidate encompasses specific parameter values as follows. The model
can handle multiple recommendation tasks simultaneously, with common choices being
the user–site rating prediction, site–site similarity calculation, and user clustering. In this
comparison, we configure to address three tasks. Two hidden layers in the NN architecture
are set to have sizes like 100 neurons each, providing flexibility in capturing complex
patterns in the data across different tasks. The learning rate for training the model could be
set to 0.001. To prevent overfitting, a dropout rate of 0.5 is applied during training, meaning
that each neuron has a 50% probability of being dropped out during each training iteration.
Training the model with a batch size of 32 samples per batch can balance computational
efficiency and gradient accuracy during optimization.

For the NGCF-M, NGCF-CL, and S-MBRec, we configure similar parameter values
as follows. The sizes of the embedding vectors for users and sites are set to 64 dimen-
sions, allowing the model to learn rich representations of users and sites in the embedding
space. The model architecture includes 2 convolutional layers to capture different lev-
els of neighborhood information in the graph structure. In the NN component, we set
128 neurons each, providing the capacity for learning complex interactions between users
and sites. The dropout rate of 0.2 is deployed. The Learning Rate is set to 0.001. The
attention mechanism is employed with 4 attention heads to allow the model to focus on
different aspects of the neighborhood relationships.

4.4. Experimental Results

The C-MBR was analyzed in comparison with the remaining five baseline models to
show its results in the dataset. Detailed information is shown in Table 1.

Table 1. Performance of different models on the dataset (N = 10).

Evaluation Indicators Clarification HR@10 NDCG@10

EHCF
Predicting each behavior by migration and
unfolding multi-behavior recommendations

using free-sampling learning
0.1520 0.0796

NMTR Deep models for multi-behavioral
recommendations 0.1283 0.0654

NGCF-M Combining multi-behavioral relationships
with graph neural networks 0.1431 0.0750

NGCF-CL Graph-based cross-behavioral comparative
learning added to NGCF-M 0.1556 0.0821

S-MBRec Self-supervised graph neural networks for
multi-behavioral recommendations 0.1577 0.0863

C-MBR Cross-structural multi-behavioral model 0.1687 0.0902
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Table 1 reveals that C-MBR exhibits superior performance compared to the remaining
five baseline models. Across both rating indicators, C-MBR demonstrates an improvement
of 4.5% to 6.9% compared to the optimal baseline model, indicating its superior performance
and effectiveness in constructing local and global structures to capture users’ dynamic
preferences. The fusion of sequence-based and graph-based recommendation models
enhances information complementarity, allowing for more comprehensive learning of user
preferences. Through analyzing sequence- and graph-based user behavior representations
and comparing the two, commonalities are identified, enhancing modeling quality. NGCF
lacks consideration for the comparative learning task, while NGCF-CL, despite its addition
of graph-based cross-behavioral comparative learning, still falls short. However, NGCF-CL
outperforms NGCF-M, underscoring the effectiveness of cross-behavioral comparative
learning in capturing behavior differences and commonalities. EHCF, NMTR, and NGCF-F
rely on supervised model construction, making it challenging to ensure accuracy in sparse
data scenarios. In contrast, the C-MBR model effectively addresses this issue by analyzing
multiple behaviors, learning user dynamic behavioral preferences across structures, and
incorporating a comparative learning task simultaneously.

4.5. Ablation Experiments

The dataset was used to compare a total of six variants, w/o g, w/o s, w/o cl, w/o
vcl, w/o g+cl, and w/o s+cl, with the C-MBR unfolding ablation realizations, as a way of
demonstrating that the C-MBR model has certain rationality in all parts of its construction.
Detailed information is shown in Table 2.

Table 2. C-MBR model: its construction in the various parts of the ablation study.

Morph Description of Partial Ablation HR@10 NDCG@10

w/o g Only the local structure module and the sequence-based
cross-behavioral comparison task are retained. 0.1560 0.0838

w/o s Only the global structure module and the graph-based
cross-behavioral comparison task are retained. 0.1574 0.0842

w/o cl Retain the global structure module, the local structure
module, and delete all comparison learning tasks. 0.1482 0.0790

w/o vcl Delete only the cross-structure comparison learning task. 0.1618 0.0884
w/o
g+cl

Only the local structure module is retained and all
comparison learning tasks are removed. 0.1483 0.0791

w/o s+cl Retain only the global structure module and remove all
comparison learning tasks. 0.1492 0.0796

C-MBR / 0.1688 0.0911

Upon reviewing Table 2, it becomes evident that taking comprehensive considerations
for various types of behaviors may enhance the learning of user preferences. Combining
sequence-based local structure cross-behavioral comparison learning tasks with graph-
based global structure cross-behavioral comparison learning tasks can effectively enhance
overall performance. These tasks primarily focus on capturing both the user’s personal
information and their global information to learn user representations, thereby shaping user
interests and preferences at different levels. The comparative analysis between scenarios
with and without certain components indicates that the cross-behavior comparison learning
task contributes to model performance improvement. This suggests that multiple behaviors
exhibited by the same user can better reflect their preferences, and there exists a degree of
commonality among these behaviors, which can be fully explored to create more robust
representations and address data sparsity issues. The comparative analysis of w/o g and
w/o g+cl, w/o s and w/o s+cl, concluded that the cross-behavior comparison learning task
is conducive to improving the model performance, which indicates that multiple behaviors
unfolded by the same user can better reflect the user’s preferences, and there is also a
certain degree of commonality between the multiple behaviors of the same user, and its
commonalities can be fully explored to form a better representation, and effectively solve
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the data sparsity problems. The comparative analysis of w/o vcl and C-MBR fully verifies
the value of the cross-structure comparison learning task for performance improvement,
and it can be said that the cross-structure comparison learning task aligns the global
structure representation information and the local structure representation information,
which is conducive to obtaining the commonality of the interaction behaviors of users and
projects with different structures, and strengthens the quality of structure modeling.

4.6. Dealing with Cold Starts

In the recommendation model about the cold start problem, its solution is more
difficult, which is due to the interaction behavior between the user and the project being
less active, which will lead to the model being constructed, for it cannot achieve the optimal
representation, so then it is difficult to recommend the project for the user [31–33]. Through
the experiment, 1000 users are randomly selected to use the C-MBR model to carry out a
comparative learning task analysis on the different behaviors of a low interaction between
users and projects, delete the interactions on the training set, carry out ink training for
the rest of the users, and recommend projects for the experimental users, to obtain the
results of the experiment. The results show that C-MBR has a strong ability to deal with the
problem of sparse data, which is because C-MBR can extract the correlation information of
the same site in the construction of the global structure module, and improve the value of
site recommendation by evaluating the user’s previously interacted sites with the target site
using comparative learning, and predicting the final score of the site based on the principle
of the similarity phase (see Figure 1). Compared with the ablation experiment, the model
performance of C-MBR is significantly enhanced, showing that the C-MBR model can fully
apply the information of global structure and local structure in cross-structure comparative
learning and multi-behavioral comparative learning to further alleviate the problem of
data sparsity.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 19 
 

contributes to data sparsity in regions with fewer charging facilities. (3) Sparse usage pat-
terns: the usage of electric vehicles and charging facilities in various locations may be 
sparse compared to the density of charging stations available. Electric vehicle owners may 
not utilize charging stations regularly, resulting in gaps in data collection. (4) Early stage 
of electric vehicle infrastructure development: the electric vehicle infrastructure is still in 
its early stages of development, and the adoption of electric vehicles is gradually increas-
ing. Therefore, data on electric vehicle usage and charging behavior may be limited. (5) 
Challenges in data collection: collecting data on the usage of electric vehicle infrastructure, 
such as charging sessions and energy consumption, can pose challenges. Issues such as 
data privacy concerns, technical difficulties with data collection equipment, and interop-
erability between different charging networks may contribute to data sparsity. 

To maintain a robust and sustainable e-trans infrastructure, it is imperative to solve 
the data sparsity problem, with data management systems being one of the most critical. 
Without data, other components become paralyzed, rendering the e-trans platform inef-
fective, impeding operations for platform businesses and retailers, and hindering cus-
tomer shopping experiences. Creating a robust and sustainable data management plat-
form requires addressing data sparsity and cold start problems. The proposed C-MBR 
model by the authors contributes to addressing these challenges. As seen in Figure 1, the 
performance comparison chart of models (EHCF, NMTR, NGCF-M, NGCF-CL, S-MBRec, 
and C-MBR) illustrates the relationship between performance metrics such as accuracy, 
coverage, and diversity. C-MBR achieves the highest performance in all three metrics, 
with the highest accuracy score, coverage score, and diversity score, surpassing those of 
the remaining models. This indicates that C-MBR demonstrates superior diversification 
capability while providing extensive coverage and high precision in recommendations. 
Both NMTR and NGCF-CL also exhibit relatively high performance, whereas other mod-
els such as EHCF, NGCF-M, and S-MBRec show lower performance on certain metrics. 
This provides an overview of the diversity and performance of the models in the recom-
mendation task. 

 
Figure 1. Cold start problem by model. 

Therefore, compared to previous models that did not focus much on highlighting 
cross-behavioral comparative and sequence-based cross-behavioral aspects, as well as the 
issue of sparse data in selecting charging sites, this paper provides the following contri-
butions. Firstly, a thorough investigation into user behavior and embedding it into the 
training model can help the system separate behaviors more accurately. This is a signifi-
cant step of the model towards improving training accuracy. Secondly, through integrat-
ing a range of techniques for behavior separation into the local and global structural layer-

Figure 1. Cold start problem by model.

5. Discussion

Transportation serves as the backbone of every economy. Maintaining sustainable e-
trans infrastructure provides a solid foundation for a robust economy, while also advancing
the decarbonization process and effectively addressing the adverse effects of fossil fuel
consumption. This is a task proven to be a strategic imperative for many major economies
worldwide, including China.

In the endeavor to construct e-trans infrastructure, as mentioned above, establishing a
network of charging stations is paramount. To achieve this, scientific research on existing
transportation infrastructure, such as road systems, population density, public transporta-
tion needs, electric vehicle usage demands, and charging station usage behaviors, among
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others, is essential. However, charging station networks may be deployed based solely on
past experiences, lacking thorough scientific analysis, leading to suboptimal installations.
This contributes to one of the factors leading to data sparsity. Additionally, other contribut-
ing factors may include the following. (1) Installations in certain regions or areas with low
population density and outdated infrastructure may result in fewer opportunities for data
collection. (2) Uneven distribution of charging infrastructure: charging infrastructure may
be unevenly distributed across different geographic locations, with some areas having more
charging stations than others. This non-uniform distribution contributes to data sparsity
in regions with fewer charging facilities. (3) Sparse usage patterns: the usage of electric
vehicles and charging facilities in various locations may be sparse compared to the density
of charging stations available. Electric vehicle owners may not utilize charging stations
regularly, resulting in gaps in data collection. (4) Early stage of electric vehicle infrastructure
development: the electric vehicle infrastructure is still in its early stages of development,
and the adoption of electric vehicles is gradually increasing. Therefore, data on electric
vehicle usage and charging behavior may be limited. (5) Challenges in data collection:
collecting data on the usage of electric vehicle infrastructure, such as charging sessions and
energy consumption, can pose challenges. Issues such as data privacy concerns, technical
difficulties with data collection equipment, and interoperability between different charging
networks may contribute to data sparsity.

To maintain a robust and sustainable e-trans infrastructure, it is imperative to solve the
data sparsity problem, with data management systems being one of the most critical. With-
out data, other components become paralyzed, rendering the e-trans platform ineffective,
impeding operations for platform businesses and retailers, and hindering customer shop-
ping experiences. Creating a robust and sustainable data management platform requires
addressing data sparsity and cold start problems. The proposed C-MBR model by the
authors contributes to addressing these challenges. As seen in Figure 1, the performance
comparison chart of models (EHCF, NMTR, NGCF-M, NGCF-CL, S-MBRec, and C-MBR)
illustrates the relationship between performance metrics such as accuracy, coverage, and
diversity. C-MBR achieves the highest performance in all three metrics, with the highest
accuracy score, coverage score, and diversity score, surpassing those of the remaining
models. This indicates that C-MBR demonstrates superior diversification capability while
providing extensive coverage and high precision in recommendations. Both NMTR and
NGCF-CL also exhibit relatively high performance, whereas other models such as EHCF,
NGCF-M, and S-MBRec show lower performance on certain metrics. This provides an
overview of the diversity and performance of the models in the recommendation task.

Therefore, compared to previous models that did not focus much on highlighting
cross-behavioral comparative and sequence-based cross-behavioral aspects, as well as
the issue of sparse data in selecting charging sites, this paper provides the following
contributions. Firstly, a thorough investigation into user behavior and embedding it into
the training model can help the system separate behaviors more accurately. This is a
significant step of the model towards improving training accuracy. Secondly, through
integrating a range of techniques for behavior separation into the local and global structural
layer-based model during training, along with optimizing the distance from the user to the
target site, user choice prediction becomes more accurate and optimal. Finally, based on the
training and prediction results, the issue of sparse data is also addressed and reinforced.
Consequently, this can assist in establishing additional charging stations. Additionally,
regulatory bodies overseeing transportation infrastructure may formulate more tailored
infrastructure policies to better align with user behaviors and choices.

6. Conclusions

In summary, based on the introduction and implementation of the C-MBR model, this
study has successfully addressed its initial research objective of focusing on the dynamics of
user behavioral preferences to tackle the challenges of data sparsity and cold start problems
in constructing e-trans infrastructure, especially for charging networks. Consequently, there
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has been a significant improvement in one of the key components aimed at maintaining a
sustainable e-trans infrastructure to enhance resilience in the face of disruptive conditions.
Through experimental research, it was found that C-MBR has a strong recommendation
value for studying users’ dynamic preferences. In the process of dataset analysis, based on
the performance possessed by the HR evaluation index, it can be found that the C-MBR
model finally presents data results of higher quality. In the analysis of ablation experiments,
it can be found that the C-MBR model has strong comprehensiveness and can effectively
improve the quality of comparison. Exploring the analysis of the C-MBR model for the cold
start problem, it is found that this model can alleviate the data sparsity problem. Finally, it
is shown that the C-MBR proposed in this paper is effective on public datasets.

A notable limitation lies in the reliance on simulated or synthetic data for assessing
the model efficacy, which may not fully encapsulate the intricacies of real-world e-trans
dynamics. To mitigate this constraint, forthcoming research could concentrate on amassing
and scrutinizing extensive real-world datasets to authenticate the models’ efficacy in au-
thentic settings. Furthermore, while the evaluation metrics employed in this study, such
as accuracy, coverage, and diversity, are widely acknowledged, they might not compre-
hensively encompass the resilience and sustainability attributes of e-trans infrastructure.
Future investigations could formulate novel assessment metrics that explicitly consider
resilience and sustainability factors, such as adaptability to market fluctuations, resilience
to disruptions, and environmental impact.

Moreover, the research predominantly focuses on the technical dimensions of model
performance, overlooking broader socioeconomic and organizational factors influencing
the maintenance of enduring e-trans infrastructure. Subsequent studies could adopt an in-
terdisciplinary approach, amalgamating insights from domains like business management,
economics, and environmental science to formulate holistic frameworks for the assessment
and fortification of e-trans infrastructure sustainability. In essence, addressing these limita-
tions and pursuing interdisciplinary research trajectories will enrich our comprehension of
effectively upholding sustainable e-trans infrastructure and bolstering resilience amidst
burgeoning challenges.

From an algorithmic perspective, the cross-behavioral comparative and sequence-
based cross-behavioral aspects of the training model have some limitations. Integrating
cross-behavioral aspects into the model increases its complexity, which can lead to longer
training times and higher computational costs. The interpretation of results becomes more
challenging as the model becomes more complex due to the inclusion of cross-behavioral
aspects. The effectiveness of cross-behavioral aspects may vary depending on the specific
context and dataset used for training. As for applications in other fields, difficulties may
arise in adapting cross-behavioral aspects to different domains due to the following reasons.
First, behavior patterns and interactions may differ significantly across domains. Data for
training models with cross-behavioral aspects may be more difficult in some domains where
relevant data are scarce or less accessible. Certain domains may have unique constraints
or considerations that affect the applicability of cross-behavioral aspects. Future research
may focus on improving training time as well as reducing the complexity of algorithm
interpretation. In addition, for the data sparsity, we can consider experimenting with
combining techniques such as data augmentation and matrix factorization. This approach
aims to generate synthetic data points to increase the size of the dataset and decompose the
user–item interaction matrix into lower-dimensional matrices.
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Nomenclature

Symbol Explanation
G global structure
U set of users
V set of sites
E set of edges
u a user
v a site
Yγk the user–site interaction matrix under the k behavior type
k behavior type
T user–site interaction behavior type

eγk ,(l)
u,g k-behavior of user u after convolutional propagation in the lth layer

γk target behavior in relationship k
δ activation function
N(u, γk) behavior of user u in relationship k
N(v, γk) project v on relationship k

1√
|Nu,γk ||Nv,γk |

symmetric normalized form to prevent the embedding size from increasing

following the increase in graph convolution operation
W(l) weight parameter matrix of a particular graph convolution from layer l

to layer l + 1
α

γk
u propagation weight assigned to the user

eγk ,(l−1)
v,g behavior of site v after the convolution propagation at layer l − 1

e(l−1)
γk behavior of site v in relation k to target behavior in relation k after the l − 1

layer of convolutional propagation
j interaction site

h(l−1)
jγk

embedding of interaction site j in layer l − 1 when site v performs behavior k
Nγk (v) set of sites that the user interacts with on the same site v
eu,g output vector or feature representation for the edge (or possibly the

attention score) between nodes u and g
ev,g final representation of the relationship between nodes v and g
e(0)u initial features of nodes u
e(0)v initial features of nodes v
MLPg two-layer MLPs with ReLU activation function
sγk

u sequence of user interactions with the project in chronological order
under behavior k

eγk
u,s local mechanism module

Bert4rec local structure encoder
eu,s output vector or embedding for a specific relationship or context involving

entities denoted by u and s
N total of customers
eγa

ui ,s embedding of target behavior a based on the given user ui
eγb

ui ,s embedding of target behavior b based on the given user ui
eγb

uj ,s embedding of target behavior b based on the given user uj
p project p
LS

B,(a,b) comparative loss of each pair of behaviors of the user and the project

φ(.) cosine similarity function between two behavioral embeddings
τ temperature coefficient of the softmax function
LS

B cross-behavioral comparison learning loss definition
LV cross-structure comparison learning loss
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y1(k)u,v and y2(k)u,v correlation score between the target site v and the target customer
u interaction sites under the specified k behaviors

diag(·, B7) diagonal matrix with diagonal elements equal to eγk

Nγk (u) set of sites for user u under k behavior
hT

γk
transpose of the feature vector of γk, indicating it is used as a row vector
for subsequent dot multiplication

hjγk
feature vector of entity j, indicating it is used as a column vector for dot
multiplication with hT

γk

y(k)u,v predictive scoring between the target site v and the target customer
u interaction site

λ1 a weighting factor that determines the contribution of y1(k)u,v to the
final measure. This might be a hyperparameter that is learned or set
during the modeling process

L0 model’s loss function, which is typically optimized during the training
process to adjust the model parameters

σ sigmoid function
θ chance of all trainable parameters
µ parameter controlling L2 regularization
L overall loss
λ parameter controlling the proportion of contrast loss
NDCG@N Normalized Discounted Cumulative Gain at rank position N, which is a

number between 0 and 1 used to evaluate the quality of the ranking. Discounted
DCG@N Cumulative Gain at rank position N, which accounts for the relevance and

the position of the ranks, giving more weight to the sites at higher positions
IDCG@N Ideal Discounted Cumulative Gain at rank position N, which is the maximum

possible DCG value that could be achieved if all the relevant sites were
arranged in the best possible order

HR@N frequency at which the target site appears within the top N recommendations
1
N a normalization factor to ensure the result is a ratio rather than an

absolute number
hit(i) an indicator function that equals 1 if the ith recommendation is correct (the

target site is among the top N recommended sites); otherwise, it equals 0
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