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Abstract: To effectively enhance the adaptability of earthquake rescue robots in dynamic environ-
ments and complex tasks, there is an urgent need for an evaluation method that quantifies their
performance and facilitates the selection of rescue robots with optimal overall capabilities. In this
paper, twenty-two evaluation criteria are proposed based on a comprehensive review of existing
evaluation criteria for rescue robots across various domains. The evaluation criteria are tested using
the test modules developed by the National Earthquake Response support service, obtaining the
corresponding values for each criterion. Then, the weights of the criterion layer and comprehensive
evaluation index are determined based on the analytical hierarch process and trapezoidal fuzzy num-
ber complementary judgment matrix, and a new consistency test method is proposed. The qualitative
evaluation and quantitative analysis are effectively combined to overcome the subjective influence of
expert decision-making. Additionally, the performance of three earthquake search and rescue robots
is comprehensively evaluated and ranked using the improved radar chart method as an empirical
example. Finally, the robustness of the ranking results is examined using a weight sensitivity analysis.
The results of the sensitivity analysis demonstrate the effectiveness and feasibility of the proposed
method, thereby providing valuable insights for developing multi-objective optimization control
strategies and structural designs for earthquake search and rescue robots.

Keywords: improve fuzzy analytic hierarchy process (IFAHP); evaluation criteria; comprehensive
evaluation; improved radar chart; earthquake search and rescue robots; sensitivity analysis

1. Introduction

As crucial equipment for earthquake rescue operations, a comprehensive set of multi-
dimensional and multi-level performance indexes for earthquake search and rescue robots
can effectively serve as the key evaluation criteria to reflect the efficiency and quality of
rescue operations [1]. Consequently, evaluating the performance of earthquake search
and rescue robots in terms of both quantitative and qualitative measures proves to be a
challenging task due to the diversity and complexity of performance indexes.

Numerous theories have been proposed to evaluate the performance of rescue robots.
Li, Yutan, et al. [2] have evaluated the walking performance of coal mine rescue robots in
terms of various performance indexes, including the maximum trench width, maximum
obstacle height, maximum climbing angle, and stair climbing capability. Zhang, Di et al. [3]
have assessed the locomotion capabilities of an earthquake search and rescue robot in terms
of its performance in flat terrain traversal, climbing steps, rotational movement, ascending
slopes, and aerial maneuverability. Zhao, Jing, et al. [4] have evaluated the efficiency of
quadruped rescue robots based on their capabilities in survival, locomotion, operation, and
environmental interaction. Baek, Jun, et al. [5] have conducted an analysis of the impact
factors of mobile rescue robots for human body detection, encompassing communication
time and life body identification. However, solely relying on these performance indexes
is insufficient for evaluating the performance of earthquake search and rescue robots.

Appl. Sci. 2024, 14, 3099. https://doi.org/10.3390/app14073099 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14073099
https://doi.org/10.3390/app14073099
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14073099
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14073099?type=check_update&version=2


Appl. Sci. 2024, 14, 3099 2 of 21

Additionally, there is limited literature available on exploring the hierarchical structure of
performance evaluation indexes specifically designed for rescue robots. Therefore, further
research is required to develop an evaluation approach for rescue robots.

The selection of an appropriate evaluation method for performance indexes is benefi-
cial for analysts and evaluators in efficiently evaluating alternatives and determining the
optimal alternative [6]. When selecting multiple earthquake rescue robots, it is essential
to consider the conflicting performance indexes. For instance, during the evaluation of
various indexes, certain robots may opt to enhance the mass-volume ratio in order to
improve the motion stability of the rescue robot. However, this increase in ratio might have
a detrimental impact on obstacle clearance performance when confronted with narrow
or low-height rescue environments. Therefore, it is necessary to address this issue by
employing a multi-criteria decision-making (MCDM) approach that incorporates various
factors [7]. The process of multi-criteria decision-making consists of several stages, in-
cluding (1) defining objectives, (2) selecting the criteria for measuring those objectives,
(3) identifying alternatives, (4) assigning weights to the selected criteria, (5) utilizing a
suitable mathematical algorithm to rank the alternatives [8].

Numerous methods have been suggested in existing literature and employed to tackle
various MCDM issues [9]. The technique for order preference by similarity to ideal solution
(TOPSIS) is a multi-attribute decision-making method based on distance measurement,
which calculates the distance between each attribute and the ideal solution, as well as
the distance between each attribute and the anti-ideal solution. The relative preference
of each attribute is determined by calculating the weighted sum of these two distances,
and the optimal alternative can be determined [10]. However, when the information in
the environment is incomplete or inaccurate, TOPSIS technology may not fully consider
these uncertain factors, resulting in inaccurate decision results. Cluster analysis, a robust
method widely employed in MCDM, efficiently uncovers the underlying rules and struc-
tures within datasets. By grouping similar alternatives into classes, cluster analysis reduces
data dimensionality and facilitates comprehension and processing. Unlike supervised
learning techniques, cluster analysis is an unsupervised learning approach primarily aimed
at identifying natural clusters or groups when dataset labels are ambiguous or challenging
to determine. However, it can only categorize alternatives as either similar or dissimilar
without providing information on their relative superiority or importance. Artificial neural
networks (ANN) have gained traction in MCDM for addressing complex problems and ap-
proximating multi-attribute utility functions by learning the mapping relationship between
input and output, but their successful integration requires substantial data support to
optimize performance. The analytic hierarchy process (AHP) is extensively utilized in the
field of multi-criteria decision-making and has demonstrated its effectiveness in addressing
performance decision-making issues of rescue robots [11]. Yutan Li et al. [2] have utilized
AHP to evaluate the walking performance of walking mechanism in coal mine rescue
robots. Wang, Shipeng et al. [12] have employed AHP to evaluate the technical indexes,
performance indexes, and structural indexes for scheme selection during the design and
manufacturing process of new water-wading rescue robots. The primary advantages of
AHP lie in its ability to simultaneously handle multiple criteria, analyze complex problems
hierarchically, and provide a clear and comprehensible model structure. Moreover, the
AHP method effectively integrates qualitative and quantitative data, enabling decision-
makers to consider both types of information when making decisions and facilitating more
comprehensive and accurate evaluations. However, it is important to note that the process
of factor comparison often entails inherent uncertainty and subjectivity, as experts may
encounter difficulties in establishing a precise scale for comparing two factors. Under
such circumstances, employing the classical AHP method may yield decision results that
lack accuracy. As an effective approach for handling incomplete or fuzzy information, the
fuzzy analytic hierarchy process (FAHP) offers a more comprehensive and scientifically
grounded basis for decision-making in the presence of incomplete information and complex
causal relationships among variables. The fundamental concept behind FAHP lies in its
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consideration of interdependencies between indexes, enabling a clearer understanding
of how changes in one index impact others. Consequently, FAHP method has gained
widespread application across various domains. For instance, in control engineering, it can
optimize control system design; within artificial intelligence [13], it addresses fuzzy logic
problems; management science benefits from its ability to tackle complex decision-making
challenges [14]; and multi-criteria decision-making relies on FAHP as an indispensable tool.

However, the aforementioned evaluation methods lack a visual mode, which hinders
the clear interpretation of the evaluation results. This not only obscures the significance of
each index but also complicates the ranking of rescue robots based on their performance.
The radar chart method takes into account both the overall strength and coordinated
development across various aspects, thereby providing a more comprehensive reflection of
an evaluated object’s advantages [15]. The most notable feature of radar charts lies in their
capacity to visually represent the status of a rescue robot and accurately rank similarly
performing rescue robots, thereby facilitating a more comprehensive understanding of their
performance [16,17]. However, the weight of each index is fixed and cannot be adjusted
according to the actual circumstances in the conventional radar chart. This limitation
may result in an underestimation of the pivotal role played by certain indexes during
the evaluation process, as well as an overestimation of the significance of other indexes.
In conventional radar charts, index values solely impact the shape without influencing
evaluation results [18]. Nevertheless, in practical evaluations, index values often become
a focal point of attention. Therefore, this paper proposes an improved radar chart that
incorporates both index weights and values into its design to ensure more accurate and
comprehensive evaluation results.

This paper proposed an improved fuzzy analytic hierarchy process (IFAHP) based
on an improved radar chart to evaluate and rank the performance of earthquake search
and rescue robots, ultimately facilitating the selection of the search and rescue robot with
superior overall performance. Firstly, a comprehensive set of evaluation indexes for search
and rescue robots is constructed to address the limitations associated with using a single
evaluation index. Subsequently, three types of alternatives for earthquake search and
rescue robots are evaluated using performance tests to obtain a comprehensive evaluation
set for the corresponding criteria. Additionally, the criterion layer and the weight of
each evaluation index are determined using hierarchical analysis and a trapezoidal fuzzy
number complementary judgment matrix, and a new consistency test method is proposed,
aiming to mitigate the influence of subjective factors on expert decision-making results.
Subsequently, the performance indexes of earthquake search and rescue robots are analyzed,
followed by a comparative assessment of the overall performance among different types
of such robots using an improved radar chart. Finally, the accuracy and effectiveness of
the proposed method on three types of earthquake search and rescue robots are verified in
practical examples.

The remaining sections of this paper are organized as follows: the related evaluation
criteria and hierarchical structure model are shown in Section 2. The content and process of
the performance test are described in Section 3. Then, the introduction to the improved
fuzzy analytic hierarchy process is given in Section 4. A comprehensive and visual evalua-
tion method for ranking and selection for the performance of earthquake search and rescue
robots is presented in Section 5. Finally, the proposed method is illustrated with a case
study of the three types of earthquake search and rescue robots in Section 6. A sensitivity
analysis of the results is presented in Section 7. The main conclusions, limitations, and
future works are summarized in Sections 8 and 9.

2. Evaluation Criteria

The fundamental performance requirements of rescue robots encompass robust sur-
vivability to ensure seamless access to rescue sites, versatile mobility for diverse mission
execution, precise detection and perception capabilities to enhance rescue efficiency, and
rapid communication abilities for enhanced human–robot collaboration and further im-
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proved rescue efficiency [19,20]. In the process of conducting a comprehensive literature
review on the related concepts of performance evaluation for rescue robots, a series of
targeted and practical evaluation criteria from multiple perspectives have been proposed.
To enhance the depth and professionalism of our criteria research, we collaborated with
an experienced team of experts who possess rich practical experience and excellent theo-
retical knowledge in the field of rescue robots. These experts have profound expertise in
mechanical engineering, automation control, information and communication engineering,
as well as disaster prevention and mitigation engineering. Their professional knowledge
and unique perspectives provide robust support for our research endeavors. Via exten-
sive collaboration with them, thorough discussions regarding the performance evaluation
criteria for rescue robots have been thoroughly discussed.

The evaluation of rescue robots’ performance is a comprehensive problem involving
multiple factors and levels. The evaluation criteria in this paper are classified into two levels,
namely main criteria, and sub-criteria, to facilitate calculation and analysis. The critical
factors for assisting rescuers in efficiently searching for survivors at disaster scenes and
enhancing rescue efficiency include robust survivability, versatile mobility, precise detection
perception capabilities, and rapid communication abilities. Consequently, the main criteria
for evaluating rescue robots encompass survivability, mobility, detection perception ability,
and communication control ability. The following segment provides concise explanations
regarding the interpretations, industry norms, and factors that influence the sub-criteria.

2.1. Survivability

The survivability of rescue robots primarily reflects their reliability, while ensuring an
adequate power supply is crucial to sustain uninterrupted rescue operations. The power
supply unit is often identified as a limiting factor in the performance of rescue robots, as
frequently reported in numerous literature studies [21,22]. The resilience of rescue robots is
directly proportional to the operational duration and walking distance when supplied with
energy by the power unit [23,24]. Additionally, their continuous ability to initiate and cease
operations ensures sustained execution of rescue missions [25]. Therefore, the survivability
evaluation criteria are presented in Table 1, providing comprehensive details for analysis.

Table 1. The survivability evaluation criteria.

Main Criteria Corresponding Criteria Literature Sources

Survivability
Continuous working time with an independent power supply [20–23,25]

Continuous walking distance with an independent power supply [20–23,26]
Success rate of continuous start, working, stop [24,27]

2.2. Mobility

The mobility of rescue robots is paramount for effective disaster relief efforts. Only
with robust mobility can they adeptly navigate the complex disaster environment, expe-
ditiously and efficiently execute rescue tasks, and provide timely assistance to trapped
personnel. When designing a robot for rescue missions, it is crucial to consider its abil-
ity to operate in confined spaces, such as collapsed buildings, caves, or rugged terrains.
Factors like debris, uneven terrain, and narrow passageways impose limitations on the
physical design of the rescue robot; hence, it must be compact. Consequently, optimizing
the size and mass of the rescue robot becomes essential for maneuvering through narrow
spaces and overcoming obstacles [28]. To ensure effective operation in these environments,
designers need to meticulously evaluate the positioning of the rescue robot’s center of
gravity [29]. Specifically, when crossing obstacles, maintaining a low center of gravity
is imperative to ensure optimal traction capability [30,31]. This precautionary measure
prevents tipping over or loss of balance that could hinder task completion. Therefore,
designers must thoughtfully consider both structure and weight distribution to achieve
an appropriate center of gravity position. In addition to the aforementioned factors, the
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continuous advancement and widespread use of re-configurable modular rescue robots
have made the mechanical transformation success rate a crucial factor affecting the mobility
of such robots. This is because their ability to smoothly adapt and transform into different
forms in complex environments directly impacts their task completion success [32,33].
Meanwhile, the rescue robot deployed in disaster sites must possess exceptional climbing,
obstacle-crossing, running, and turning capabilities to effectively adapt to diverse terrain
environments [34,35]. Moreover, it is imperative for the rescue robot to demonstrate flexible
control proficiency and robust load-bearing capacity in order to efficiently transport rescue
equipment and materials, promptly reach locations where individuals are trapped, and
execute rescue operations [36,37]. Therefore, the mobility evaluation criteria are presented
in Table 2, providing comprehensive details for analysis.

Table 2. The mobility evaluation criteria.

Main Criteria Corresponding Criteria Literature Sources

Mobility

Mass-to-volume ratio [29–31,38]
Unit pressure exerted by the tracked device on the ground [2,25,39,40]

Maximum speed of wheel motion [23,29,34,35,41]
Minimum turning radius [42–45]

Maximum width across trenches [29,34,35,46,47]
Maximum height of obstacles to be overcome [29,34,35,46,48]

Maximum angle for climbing [29,34,35,46,49]
Number of steps climbed per unit time [29,34,35,46,50]

Success rate of mechanism transformation [32,33,51]
Success rate of path planning [36,37,52,53]

Subversive resistance on complex road surfaces [23,29–31,41]
Smoothness of walking on complex road surfaces [30,31,41,54]

2.3. Perception Detection Ability

The significance of rescue robots in rescue operations is self-evident, primarily due
to their advanced environmental perception and detection capabilities, as well as their
exceptional capacity to efficiently locate and identify victims. In hazardous, unpredictable,
and intricate rescue environments, the prompt and accurate identification and localization
of victims under harsh conditions while covering extensive search areas within limited
timeframes are pivotal factors for evaluating the detection and perception abilities of rescue
robots [55–57]. Therefore, the detection perception evaluation criteria are presented in
Table 3, providing comprehensive details for analysis.

Table 3. The detection perception evaluation criteria.

Main Criteria Corresponding Criteria Literature Sources

Detection perception ability
Probability of life body identification [55–59]
Maximum radius for effective search [55–59]
Maximum depth for effective search [55–57,59]

2.4. Communication Control Ability

The communication control ability of rescue robots plays a crucial role in the success-
ful execution of their missions. This ability primarily involves real-time communication
between the operator and the rescue robot [60], ensuring precise control by the operator
and effective information collection and transmission by the rescue robot to better assist
rescue personnel in accomplishing tasks. Key elements of the communication control
ability encompass command accuracy and comprehensive signal processing [61]. There-
fore, the communication control evaluation criteria are presented in Table 4, providing
comprehensive details for analysis.
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Table 4. The communication control evaluation criteria.

Main Criteria Corresponding Criteria Literature Sources

Communication
control ability

Time required for establishing communication [21,26,60,61]
Success rate of the operating interface [58,60–62]

Accuracy of data transmission [56,57,60,61]
Maximum distance for wireless control [60,61,63]

The corresponding hierarchical structure of these criteria is established based on the
above comprehensive analysis and quantification of the evaluation criteria for rescue robots,
as illustrated in Figure 1. The hierarchical structure allows for a clear evaluation of the
rescue robot’s performance on each individual criterion and how these criteria impact the
overall performance of rescue robots.
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Figure 1. The hierarchical structure for the performance of rescue robot.

3. Performance Test

At present, a wide range of rescue robots are available in the market, each with distinct
characteristics and functionalities. To comprehensively understand and evaluate their
performance, it is essential to have diverse samples for testing and research purposes.
Therefore, this paper selects three types of earthquake search and rescue robots developed
by the Shenyang Institute of Automation as the subjects of investigation. These three
robots are denoted as Sample A, Sample B, and Sample C with their prototypes depicted in
Figure 2.
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Each robot exhibits unique design concepts, functional configurations, and practical
applications. The related parameters of the three robots are shown in Table 5. Subsequently,
a detailed analysis and comparison of these three robots will be conducted.

• Sample A: The robot is designed for exploring ruins and features three independently
driven tracks. The position of these tracks can be adjusted to suit various rescue
environments and tasks, allowing the robot to transform into linear, triangular, or
side-by-side configurations. Meanwhile, the robot can penetrate into the ruins and
utilize its own infrared camera and sound sensor to transmit real-time image and voice
information from inside the ruins back to the console, enabling rescuers to promptly
identify survivors’ locations and assess their surrounding environment.

• Sample B: According to the terrain characteristics in rescue environments, the robot’s
track geometry can be adjusted to enable it to switch between wheeled and tracked
motion modes. Meanwhile, the robot is capable of entering hazardous situations and
conducting survivor search and environmental detection tasks using its own camera,
temperature, and humidity sensor, as well as a toxic and harmful gas sampling device.
Additionally, the cloud platform can be deployed vertically alongside the robot into
elevator shafts and caves to enhance the rescuer’s visibility range.

• Sample C: The mobile mechanism adopts a modular chain structure to ensure its
capability to navigate complex terrains. Depending on different rescue environments
and tasks, the robot can transform into three distinct configurations: triangular, D-
shaped, and side-by-side. Meanwhile, the robot integrates life detection technology
with life detection radar, video, and audio information. Additionally, it is capable
of penetrating non-metallic materials to effectively detect the vital signs of survivors
using this life detection technology.

Table 5. The related parameters of three robots.

Samples Name Mass Volume

Sample A The deformable robot for searching ruins 20 kg 520 × 420 × 250 mm3

Sample B The wheel-track composite exploration robot 15 kg 360 × 320 × 280 mm3

Sample C The intelligent life detection robot 25 kg 520 × 420 × 250 mm3

The performance test of the three types of earthquake rescue robots is conducted to
obtain the evaluation criteria’s values. In this paper, a series of test modules designed by
the national earthquake response support service are used to test the performance of the
three types of earthquake rescue robots [64]. The real arrangement of each module is shown
in Figure 3. The next section will present the specific content of each module.

1. The dynamic slope test module is a linkage mechanism consisting of a hydraulic
lifting platform and a slope device featuring an adjustable continuous slope ranging
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from 15◦ to 16◦. Additionally, the module allows for variation in the slope material to
assess the climbing ability under different friction conditions.

2. The adjustable cross-cone turning module is designed with a 90◦ turning angle,
allowing for an adjustable cone slope and automatic twisting of the guide frame on
both sides to adapt to the cone. The flexibility of turning and lateral balance ability at
different speeds can be tested.

3. The adjustable ridge side slope module consists of multiple plates joined together by
twisted plates. The slope can be adjusted, and the complexity of the side slope can be
modified by altering the direction in which the plates are joined, allowing for testing
of both passing ability and balance capability.

4. The complex pavement interspersed construction module consists of a grid and
multiple wooden piles. By adjusting the interspersed positions of wooden piles, it is
possible to simulate intricate terrains and assess flexibility and passing capacity.

5. The test module of the pipeline consists of torsional splicing techniques. Rotating
the entire pipeline simulates complex pipelines and tests their ability to pass through
narrow spaces by adjusting the vertical position.

6. The adjustable wave pavement module is constructed by combining multiple plate
strands to form a collapsible fan shape. The handle allows for modification of the
wave spacing, while one end of the simulated staircase can be elevated to assess the
performance on uneven road surfaces and steps.

7. The adjustable slope-crossing module consists of two sets of independent slopes
connected face to face, and the spacing can be adjusted according to the need to test
the ability to cross the gully.

8. The test module consists of multiple depressions that can be filled with various
materials (such as sand and stone columns) to simulate different road conditions.

9. The re-configurable terrain test module consists of a vertical arrangement of hundreds
of wooden cubes, forming a rectangular, square matrix. Each individual cube is
equipped with an independent lifting and locking device, enabling adjustable height
settings. This design allows for the simulation of various complex terrain structures
and facilitates the testing of irregular pavement traversal capabilities.
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The test environment is equipped with real-time monitoring functions. It includes a
total of 11 monitoring cameras, a temperature and humidity sensor, six fixed installation
wireless nodes, and six randomly scattered wireless nodes. By utilizing the multi-source
wireless environment sensing network, remote monitoring of the testing process and
environmental information are achieved, as depicted in Figure 4.
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In this paper, the test standard for each criterion shown in Figure 2 is based on
the General specifications of ground robots for search and rescue in ruins (GB/T 37703-
2019) [65]. The index test methods are derived from the existing methods [66] used at the
national earthquake emergency rescue training base. The performance indexes test results
are presented in Table 6. All tests for performance indexes were conducted three times, and
the average value was considered as the test result. Additionally, a list of test methods for
some important indexes is provided as follows:

1. Testing the values of continuous working time with an independent power supply.
When the battery is fully charged, turn on the power switch and operate the robot
at low speed (one-third of its maximum speed of wheeled motion) until the robot
automatically shuts down due to low power. When the robot starts moving, the
stopwatch starts, and when the robot stops moving, the stopwatch stops. The recorded
time can be taken as the value of continuous working time with an independent power
supply.

2. Testing the values of maximum obstacle height. The initial height of the vertical
obstacle is set to be 10 cm, with a width of 5 cm. The measurement is conducted three
times. If at least one of the three measurements passes, then the height is increased
by 2 cm; if none passes, then the height is reduced by 2 cm. This process is repeated
for three measurements. The loop continues until it reaches a point where further
increase or reduction is not possible anymore, and the maximum value of height is
recorded as the value of maximum obstacle height.

3. Testing the values of walking smoothness on complex road surfaces. The complex
bumpy rubble road surface with a length of 50 m is set up. An acceleration sensor
is installed on the robot body device in the vertical direction. The robot travels at a
uniform speed at 50% of its maximum wheel motion speed. After the movement, the
acceleration curves in the vertical direction are output, and the average value of the
peak of the curve is represented as az is calculated. The value of az can be taken as the
value of walking smoothness on complex road surfaces.

4. Testing the values of life body identification probability. The organisms are placed
at the 70% maximum effective search radius and the 70% maximum effective search
depth. Each experiment is conducted five times, and the probability of successful
perception can be calculated as the value of life body identification probability.
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5. Testing the values of maximum wireless control distance. The initial value of the
wireless control distance is set to 10 m. The measurement is conducted three times. If
the robot can be successfully controlled at least once out of the three measurements,
then the distance is increased by 1 m; if unsuccessful, it is reduced by 1 m. This
measurement process is repeated three times. The loop continues until no further
increase or reduction is possible, and the maximum value of distance can be recorded
as the value of maximum wireless control distance.

Table 6. The specific results for each criterion.

No.
Test Results of the Samples Normalization Results

Sample A Sample B Sample C Sample A Sample B Sample C

C11 (h) 3.13 20 4.35 0.067 0.594 0.105
C12 (m) 3000 6000 4000 0.222 0.556 0.333
C13 (%) 100 90 90 1.000 0.875 0.875

C21 (kg/m3) 1083 1442 980 0.404 0.917 0.257
C22 (Pa) 2200 4688 2500 0.960 0.462 0.900

C23 (m/s) 328 100 350 0.430 1.000 0.375
C24 (mm) 30 15 20 0.000 0.750 0.500
C25 (mm) 300 250 300 0.500 0.250 0.500
C26 (mm) 250 200 200 0.500 0.250 0.250
C27 (deg) 34 30 32 0.700 0.500 0.600
C28 (pc) 20 14 18 0.565 0.304 0.478
C29 (%) 90 100 90 0.857 1.000 0.857
C210 (%) 90 70 80 0.875 0.625 0.750

C211 (mm/s2) 2 7 3 0.889 0.333 0.778
C212 (mm/s2) 4 5 6 0.857 0.714 0.571

C31 (%) 70 70 80 0.500 0.500 0.667
C32 (m) 18 15 20 0.846 0.615 1.000
C33 (m) 9 7 12 0.353 0.235 0.529
C41 (s) 40 60 50 0.250 0.750 0.500
C42 (%) 90 80 90 0.875 0.750 0.875
C43 (%) 90 80 90 0.857 0.714 0.857
C44 (m) 500 600 800 0.167 0.333 0.667

4. Improved Fuzzy Analytic Hierarchy Process (IFAHP)

The AHP method integrates qualitative analysis and quantitative calculation to achieve
multi-objective decision-making. It is characterized by its simple structure and strong
systematic approach, making it suitable for establishing a hierarchical analysis model
to evaluate the performance of earthquake rescue robots. By decomposing the complex
problem into objectives, criteria, and indexes at multiple levels and angles, the rationality
and systematicness of ranking earthquake rescue robots are ensured. Simultaneously,
fuzzy theory is employed to fuzzify the process of weight calculation in order to reduce
the influence of subjective factors in expert evaluation. Moreover, an improved fuzzy
analytic hierarchy process is utilized for determining the weight calculation of earthquake
search and rescue robots, and the conversion between qualitative analysis and quantitative
computation is illustrated in Table 7.

It can be seen from Table 7 that the trapezoidal fuzzy complementary judgment
matrix can be used to replace the judgment matrix of AHP, and the weight calculation can
be fuzzified so as to improve the limitations of subjective decision-making of AHP and
ensure the objectivity and rationality of the weight calculation of performance indexes of
earthquake rescue robots.

Assuming that the performance evaluation of the earthquake search and rescue
robots consists of n (n > 2) performance evaluation indexes y1, y2, · · · , yn, denoted as set
Y = {yi, |i ∈ N } with N = {1, 2, · · · , n}. The trapezoidal fuzzy number complementary
judgment matrix X̃ = (x̃ij)n×n is derived, where x̃ij =

[
aij, bij, cij, dij

]
represents the relative
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importance of the index yi compared to yj, with aij ≤ bij ≤ cij ≤ dij, ∀i, j ∈ N(i ̸= j) and sat-
isfying aii = bii = cii = dii = 0.5, ∀i ∈ N, aij + dji = 1, bij + cji = 1, cij + bji = 1, dij + aji = 1.

Table 7. Corresponding table of qualitative analysis and quantitative calculation.

Qualitative Language Trapezoidal Fuzzy Number

Highly significant (0.8, 1, 1, 1)
Significant (0.7, 0.9, 1, 1)

Relatively significant (0.6, 0.8, 0.8, 1)
Average (0.3, 0.5, 0.5, 0.7)

Less significant (0, 0.2, 0.2, 0.4)
Insignificant (0, 0, 0.1, 0.3)

Highly insignificant (0, 0, 0, 0.2)

4.1. Establishment of Hierarchical Model

As shown in Figure 1, the hierarchical model of performance evaluation indexes for
earthquake search and rescue robots takes the comprehensive performance of earthquake
rescue robots as the target layer, while the criteria layer comprises four key aspects: surviv-
ability, mobility, detection, and perception ability, and communication and control ability.
Each criterion contains multiple specific indexes.

4.2. Improved Method of Consistency Test

Assuming the participation of K experts in the evaluation, the complementary judg-
ment matrix for each expert can be established as X̃(x̃k

ij)n×n
based on Table 7, where

x̃k
ij =

[
ak

ij, bk
ij, ck

ij, dk
ij

]
represents a trapezoidal fuzzy number, k ∈ {1, 2, · · · , K}, i, j ∈ N.

The kernel and kernel operator are introduced to compute the kernel matrix of the
complementary judgment matrix for trapezoidal fuzzy numbers, aiming to test the consis-
tency [67]. The kernel of trapezoidal fuzzy numbers x̃k

ij is defined as follows.

x̃k
ker,ij =


ak

ij, when ak
ij = bk

ij = ck
ij = dk

ij
(ck

ij)
2
+(dk

ij)
2−(ak

ij)
2−(bk

ij)
2
+ak

ijc
k
ij−ak

ijb
k
ij

3(ck
ij+dk

ij−ak
ij−bk

ij)
, otherwise

(1)

The kernel matrix of X̃(x̃k
ij)n×n

can be obtained as Xk
ker = (xk

ker,ij)n×n
.

The process of consistency testing is outlined as follows.

1. The kernel matrix of the k-th expert is obtained as Xk
ker, in accordance with Equation (1).

2. According to Equation (2), the consistency index ρ of Xk
ker can be determined.

ρ =
2

n(n − 1)(n − 2)

n−1

∑
i=1

n

∑
j=i+1

n

∑
f = 1
f ̸= i, j

∣∣∣∣x̃k
ker,ij − (x̃k

ker,i f + x̃k
ker, f j −

1
2
)

∣∣∣∣ (2)

If ρ < ε, then X̃
k

satisfies the consistency criterion and proceed to step 7; otherwise,
proceed to the next step. ε = 0.2 can be identified as the critical value of the consistency
indexes.

3. The eigenvalue matrix Xk
ker∗ =

(
xk

ker∗ ,ij

)
n×n

can be calculated for the kernel ma-

trix Xk
ker, denoted as follows.

xk
ker∗ ,ij = χ

(
φk

i − φk
j

)
+ 0.5 (3)
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where the vector φk
i = χn/(n − 1) +

n
∑

j=1
xk

ker,ij/χn represents the sorted values,

where χ ≥ (n − 1)/2.
4. The deviation matrix O can be calculated for the kernel matrix Xk

ker, where
O = (oij)n×n = Xk

ker − Xk
ker∗ , |ost| = max

{∣∣oij
∣∣ : i < j, i, j ∈ n

}
.

5. If ost < 0, proceed to step 6; if ost > 0, appropriately decrease x̃k
st by a value of α,

that is, x̃k
st,ker = x̃k

st − α, and correspondingly increase x̃k
st by the same value, that

is, x̃k
st,ker = x̃k

st + α. Where α represents the adjustment quantity with 0 < α < 1.
6. If ost remains less than zero, then appropriately increase x̃k

st, denoted as
x̃k

st,ker = x̃k
st + α, and correspondingly decrease x̃k

st, denoted as x̃k
st,ker = x̃k

st − α.
7. If the consistency requirement is not satisfied, proceed to step 1; otherwise, generate

output.

4.3. Weight Calculation

According to Equation (4), the evaluation information from various experts is synthe-
sized.

x̃ij =
[
aij, bij, cij, dij

]
=

[
1
K

K

∑
k=1

ak
ij,

1
K

K

∑
k=1

bk
ij,

1
K

K

∑
k=1

ck
ij,

1
K

K

∑
k=1

dk
ij

]
(4)

and X̃ = (x̃)n×n can be obtained. Then, the weights between each layer and the fuzzy
evaluation values of each indexes yi can be calculated as follows.

m̃(ai, bi, ci, di) =


n
∑

j=1
aij

n
∑

i=1

n
∑

j=1
dij

,

n
∑

j=1
bij

n
∑

i=1

n
∑

j=1
cij

,

n
∑

j=1
cij

n
∑

i=1

n
∑

j=1
bij

,

n
∑

j=1
dij

n
∑

i=1

n
∑

j=1
aij

 (5)

The fuzzy evaluation value of index yi is expected as follows.

J(m̃i) =
ai + bi + ci + di

4
(6)

The relative weights of each index are determined by normalizing Equation (7).

ωi =
J(m̃i)

n
∑

i=1
J(m̃i)

, i ∈ N (7)

where ωi represents the relative weight assigned to index yi.

4.4. Normalization Calculation of Index Values

Each attribute of the evaluation criteria is assigned a performance rating, which reflects
their respective characteristics. It is a frequent occurrence for performance evaluations to
utilize diverse units of measurement for various criteria, thus necessitating the quantifica-
tion and standardization of these criteria in order to facilitate comparability. The method of
linear scale transformation takes into account the maximum and minimum performance
ratings for attributes when performing the calculations. This approach offers the benefit of
ensuring that the scale measurement falls exclusively within the range of 0 to 1 for every
attribute [68]. In general, the evaluation criteria can be categorized into two types: those
that emphasize greater and superior relative value (referred to as benefit type) and those
that focus on the opposite (referred to as cost type).

For the performance criteria of the three types of earthquake search and rescue robots
in this paper, the criteria C11, C12, C13, C21, C23, C25, C26, C27, C28, C29, C210, C12, C31,
C32, C33, C41, C42, and C43 are benefit type criteria. The criteria C22, C24, C211, C212, and
C41 are cost type criteria. To ensure ease of plotting and subsequent data processing,
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Equation (8) is employed to normalize the benefit type criteria, while Equation (9) is
utilized for normalizing the cost type criteria.

x∗ij =
xij − xmin

j

xmax
j − xmin

j
(8)

x∗ij =
xmax

j − xij

xmax
j − xmin

j
(9)

where xmax
j and xmin

j are the maximum and minimum performance ratings for attributes
Cj(j = 1, 2, · · · , n) among the alternatives, respectively.

The specific results of the three types of earthquake search and rescue robots (Sample
A, Sample B, and Sample C) after testing and normalization are presented in Table 6.

5. Improved Radar Chart

The conventional radar chart method is founded upon the unit circle, where the
radial line extending from the center to the circumference serves as the axis of evaluation
corresponding to each criterion. The normalized evaluation criteria are plotted on their
corresponding axes, and the points marked on these axes are connected in sequence to
form a closed polygon. This process yields the radar chart of the evaluated object, as shown
in Figure 5a. However, due to the variation in index order, which results in the connection
of marker points and leads to polygons of varying shapes, the conventional radar chart
method fails to yield a unique final evaluation outcome. Therefore, This paper introduces
an improved radar chart method, as illustrated in Figure 5b, to address this issue. The
analysis procedure of the improved radar chart method encompasses the subsequent steps.

1. The unit circle, centered at O, is partitioned into n sectors according to a selected set
of criteria, where each sector represents the domain corresponding to its respective
criterion. By utilizing the equation αi = 2πωi, the weights (ωi) assigned to evaluation
criterion Xi are subsequently transformed into central angles (αi).

2. The axis can be set as sector radius, and the corresponding criterion axis is labeled
with the normalized quantitative value of each criterion.

3. The radius (ri) is considered as the calibration value, while the determination of the
central angle (αi) depends on the weight assigned. This weight is utilized for drawing
a circular arc, as depicted in Figure 5b.

4. The evaluation result is derived from the criterion of eigenvectors utilizing the dimen-
sions of both area and perimeter in the improved radar chart [69].
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Figure 5. Radar chart: (a) Traditional radar chart; (b) Improved radar chart.

By utilizing the improved radar chart, the values for area Si and perimeter Li can
be derived, which represent the overall strengths of the evaluated object and the balance
between different evaluation criteria. The evaluation object is considered better when the
area in the radar chart is larger. In cases where the area remains constant, a larger perimeter
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indicates a more balanced set of criteria. The area and perimeter of the radar chart are
defined as follows.  Si = ∑n

j
πωjr2

j
n j = 1, 2, · · · , n

Li = ∑n
j

2πωjrj
n j = 1, 2, · · · , n

(10)

where Si denotes the overall merits of subject being evaluated, Li signifies the balance
achieved among different criteria for evaluation, n represents the number of criteria.

Utilizing the established eigenvectors Si and Li, the evaluation vector vi can be defined
as follows. {

vi1 = Si/Smax
vi2 = Li/(2π

√
Si/π)

(11)

where vi1 ∈ [0, 1] is the area evaluation value. The magnitude of the value is directly
proportional to the degree of comprehensiveness in evaluating the object. Similarly,
vi2 ∈ [0, 1] is the perimeter evaluation value. The magnitude of the value reflects a higher
level of equilibrium in the fluctuations of the evaluation object’s criterion. As a result, the
evaluation vector takes into account both the extent of change in the object being evaluated
and the level of balance for each criterion.

The geometric average method is adopted to construct the evaluation function. The
larger the value is, the better the comprehensive performance is. The formulation of the
evaluation function is shown as follows.

f (vi1, vi2) =
√

vi1vi2 (12)

where f (vi1, vi2) represents the comprehensive performance value.

6. Application

Three evaluators who are decision-makers in the field of rescue robots have meticu-
lously chosen, each with distinct backgrounds and extensive experience. The first evaluator
has a Ph.D. degree and boasts more than two decades of research proficiency in robot mo-
tion control and drive. The second decision maker is an engineer specializing in earthquake
rescue robot exploration and rescue technology, who has made significant contributions to
the development of testing and evaluation processes. The third decision maker is a member
of an earthquake emergency rescue team, possessing extensive knowledge about the practi-
cal application scenarios for earthquake rescue robots. According to Table 7, the X̃ value
of the criterion layer relative to the target layer was determined by each decision maker.
The consistency indexes were calculated as ρ1 = 0.1667, ρ2 = 0.0417, and ρ3 = 0.1333, all
falling below the predefined threshold ε.

X̃ =

(0.5, 0.5, 0.5, 0.5) (0.5, 0.7, 0.8, 0.9) (0.8, 1, 1, 1)
(0.1, 0.2, 0.3, 0.5) (0.5, 0.5, 0.5, 0.5) (0.5, 0.7, 0.7, 0.9)

(0, 0, 0, 0.2) (0.1, 0.3, 0.3, 0.5) (0.5, 0.5, 0.5, 0.5)


According to Equations (4)–(7), The corresponding weights for the performance of

earthquake search and rescue robots can be further obtained WA = {0.2080, 0.2570, 0.2690,
0.2660}T The results highlight that detection perception capability is recognized as a crucial
factor influencing the selection of earthquake search and rescue robots based on their
performance. According to the same principle, the relative weight of each index with
respect to each criterion can be derived, as illustrated in Table 8.

The findings indicate that the probability of life body identification C31 has the most
significant impact on the performance of earthquake search and rescue robots, followed
by the Success rate of the operating interface C42 and Continuous working time with an
independent power supply C11. This is because efficiently locating survivors in earthquake
debris is the primary function of earthquake search and rescue robots, and the duration
of their operation significantly affects search and rescue effectiveness. Ensuring accurate
communication data between the robot and operator serves as a crucial guarantee for
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successful survivor detection by the earthquake search and rescue robot. However, while
enhancing the overall performance of earthquake search and rescue robots, the Mass-to-
volume ratio C21, Unit pressure exerted by the tracked device on the ground C22, and
Subversive resistance on complex road surface C211 are less significant. Additionally,
the survivability of the earthquake search and rescue robot is significantly impacted by
Continuous working time with an independent power supply C11. The mobility of the
earthquake search and rescue robot is significantly impacted by the Maximum width
across trenches C25, Maximum height of obstacles to be overcome C26, Maximum angle for
climbing C27, Number of steps climbed per unit time C28 and Success rate of mechanism
transformation C29. The detection perception ability of the earthquake search and rescue
robot is significantly impacted by the Probability of life body identification C31. The
Communication control ability of the earthquake search and rescue robot is significantly
impacted by the Success rate of the operating interface C42.

Table 8. Weights and consistency ratios for each criterion.

Main Criterion Sub-Criterion
Weight

Ci Cij

C1 0.2080
C11 0.5753
C12 0.2740
C13 0.1507

C2 0.2570
C21 0.0105
C22 0.0210
C23 0.0829
C24 0.0804
C25 0.1590
C26 0.1741
C27 0.1300
C28 0.1043
C29 0.1013
C210 0.0444
C211 0.0338
C212 0.0583

C3 0.2690
C31 0.6000
C32 0.2000
C33 0.2000

C4 0.2660
C41 0.0664
C42 0.4839
C43 0.1768
C44 0.2730

The data presented in Tables 6 and 8 have been incorporated into the improved radar
chart, as depicted in Figure 6a. The findings demonstrate that Sample C offers a viable
solution for enhancing the capability of earthquake search and rescue robots to effectively
penetrate debris and locate survivors while aiding rescuers in establishing access routes.
By utilizing Sample C, the associated risks with search and rescue operations can be
mitigated, thereby leading to improved overall efficiency of rescue efforts. The overall
evaluation results for both Sample A and Sample B are strikingly alike; however, Sample B
demonstrates a higher level of proportionality across all criteria compared to Sample A.
After that, by applying Equation (12), the colored sections within the improved radar chart
are analyzed to determine their area and perimeter, resulting in the extraction of evaluation
results for each respective section.
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Figure 6. Performance graphic of three types of earthquake search and rescue robots: (a) Improved
radar chart; (b) Evaluation results.

The order of performance ranking for the three earthquake search and rescue robots is
as follows: Sample C (the evaluation result is 0.613) outperforms Sample A (the evaluation
result is 0.522), which in turn outperforms Sample B (the evaluation result is 0.510), as
depicted in Figure 6b. The height of a rectangle represents the weight assigned to each
criterion, with weights of 0.208 for survivability, 0.257 for mobility, 0.269 for Detection
perception ability, and 0.266 for Communication control ability. It is clear that Sample B
surpasses in Survivability and Communication control ability but falls behind in Mobility
and Detection perception ability. Sample B demonstrates lower walking performance
values, including Minimum turning radius C24, Maximum width across trenches C25,
Maximum height of obstacles to be overcome C26, Maximum angle for climbing C27, and
Number of steps climbed per unit time C28, which are deemed important factors by experts.
Consequently, this results in the comparatively inferior performance of sample B among
the three earthquake search and rescue robots.

7. Sensitivity Analysis

The weights of criteria may continuously fluctuate throughout the entire project
ranking process, potentially impacting the final rankings. Conducting sensitivity analysis
facilitates a better understanding of the significance and priority of each criterion, ensuring
that crucial factors are adequately considered during the project ranking process. In the
case of selecting earthquake search and rescue robots, it is imperative to perform sensitivity
analysis to assess their robustness and reliability. This analysis aids in comprehending
potential outcomes under different circumstances and facilitates necessary measures to
ensure that selected earthquake search and rescue robots remain competent in any situation.

In this paper, the perturbation method is adopted to conduct sensitivity analysis on
index weight; that is, after the index weight in the decision is slightly perturbed, the change
of scheme ordering under the same decision framework is observed. Assuming that the
weight of the initial index Cj is ωj, the index weight after disturbance changes to ω′

j = tωj,
where 0 < ω′

j < 1 and 0 < t < 1/ωj. Simultaneously, the weights of other indexes
undergo adjustments as ω′

k = dωk, k ̸= j, k = 1, 2, · · · , m. The adjusted weights satisfy the
following conditions.

ω′
j +

m

∑
k ̸=j,k=1

ω′
k = 1 (13)

Equation (13) can be transformed into d = (1 − tωj)/(1 − ωj). Therefore, for each
index weight ωj, when different t is taken, m index weights can be disturbed, and m groups
of index weights after disturbance can also be obtained.

According to the variation of Equation (13), different values of t correspond to distinct
index weight ωj. The four criteria weights are individually perturbed, resulting in the
derivation of four new criteria weights. It is important to note that when adjusting the
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weight of an individual criterion, it is necessary to normalize all criteria weights to maintain
consistency in the weighted scheme. The detailed data can be found in Table 9.

Table 9. Weight range for each criterion.

No.
Weight Range Evaluation Results

C1 C2 C3 C4 Sample A Sample B Sample C

1 0.179 (−0.029) 0.282 (+0.025) 0.293 (+0.024) 0.246 (−0.0200) 0.511 0.512 0.620
2 0.181 (−0.027) 0.297 (+0.040) 0.27 (+0.001) 0.252 (−0.0140) 0.513 0.514 0.619
3 0.237 (+0.029) 0.237 (−0.020) 0.19 (−0.079) 0.336 (+0.070) 0.515 0.516 0.618
4 0.218 (+0.010) 0.208 (−0.049) 0.318 (+0.049) 0.294 (+0.028) 0.518 0.519 0.615

The impact of weight changes on the sample grades can be observed in Figure 7.
Sample A is evaluated as the third grade, and Sample B is evaluated as the second grade
when the weight of the Survivability criterion decreases from its initial value of 0.208 in
Figure 7a to 0.179 or below or when the weight of the Mobility criterion increases from
its initial value of 0.257 in Figure 7b to 0.297 or above, or when the weight of Detection
perception ability criterion decreases from its initial value of 0.269 in Figure 7c to 0.19 or
below, or when the weight of Communication control ability criterion increases from its
initial value of 0.266 in Figure 7d to 0.294 or above.
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Figure 7. Findings of weight sensitivity analysis: (a) Sensitivity findings regarding the criterion of
“Survivability”; (b) Sensitivity findings regarding the criterion of “Mobility”; (c) Sensitivity findings
regarding the criterion of “Detection perception ability”; (d) Sensitivity findings regarding the
criterion of “Communication control ability”.

Sample C consistently maintains a leading position in the performance evaluation of
earthquake search and rescue robots, demonstrating its resilience against changes in other
criterion weights. This finding suggests that the performance evaluation system for these
robots is relatively insensitive to variations in criterion weights, indicating a certain level of
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stability and reliability. However, the sensitivity analysis reveals that ranking results are
more responsive to changes in the weights assigned to detection perception ability while
being less sensitive to alterations in survivability weights. This discovery implies that
detection perception ability plays a crucial role in determining the performance ranking of
earthquake search and rescue robots, aligning with our expectations as these robots need
exceptional perception abilities to swiftly identify and locate trapped individuals within
complex environments. Therefore, when formulating performance evaluation criteria for
such robots, criteria related to detection perception ability should be thoroughly considered
as they significantly enhance actual rescue effectiveness. Simultaneously, it is important to
strike a balance among various criterion weights and avoid overemphasizing one aspect at
the expense of neglecting other vital performances; this approach ensures better fulfillment
of earthquake search and rescue robot requirements during real-life scenarios.

8. Conclusions

Considering the rapid advancements in earthquake search and rescue robot develop-
ment across various research institutions worldwide, this paper proposes a novel evaluation
method for comprehensively analyzing the performance of earthquake search and rescue
robots. By horizontally comparing and evaluating the overall performance of multiple
earthquake search and rescue robots, the one with superior comprehensive capabilities can
be identified.

(1) The evaluation criteria for the indexes of rescue robots are identified, resulting in the
establishment of a comprehensive and hierarchical structure of earthquake search and
rescue robots. This structure considers four aspects, namely survival ability, motion
ability, detection perception ability, and communication control ability.

(2) The weights of the criterion layer and comprehensive evaluation index are determined
based on the analytical hierarch process and trapezoidal fuzzy number complemen-
tary judgment matrix, and a new consistency test method is proposed. Qualitative
evaluation and quantitative analysis are effectively combined to overcome the sub-
jective influence of expert decision-making. The performance of earthquake search
and rescue robots is comprehensively evaluated and ranked using an improved radar
chart method. Furthermore, sensitivity analysis is conducted to examine how changes
in the weights of the main criteria affect the ranking results.

(3) An in-depth case analysis using three types of earthquake search and rescue robots
is presented as examples. The results demonstrate that the evaluation criteria are
not only practical but also effectively measure and evaluate the performance and
effectiveness of earthquake search and rescue robots. Furthermore, the proposed
evaluation method has been validated using practical application, providing valuable
insights for optimizing control strategies and structural designs of rescue robots.

9. Recommendations and Future Work

(1) Evaluating the performance of rescue robots is a highly intricate and time-consuming
task that encompasses a vast array of knowledge. Not all potential criteria that could
be incorporated into the model were considered in the proposed approach. These
criteria may include safety performance criteria and economic performance criteria in
relation to the overall performance of rescue robots. Additionally, the inclusion of a
new criterion has the potential to alter the ranking of the alternatives.

(2) The establishment of a scientific and rational evaluation index system is pivotal for
the performance assessment of seismic search and rescue robots, as it directly impacts
the accuracy and reliability of the evaluation results. Hence, future research should
focus on selecting key indexes while eliminating redundant ones to establish a more
comprehensive evaluation index system.

(3) The performance test environment test methods of the index were based on the
existing methods of the national earthquake emergency rescue training base. In the
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future, it is necessary to propose new index test methods according to the requirements
of each index.
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