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Abstract: To solve the problem of low diagnostic accuracy caused by the scarcity of fault samples and
class imbalance in the fault diagnosis task of box-type substations, a fault diagnosis method based
on self-attention improvement of conditional tabular generative adversarial network (CTGAN) and
AlexNet was proposed. The self-attention mechanism is introduced into the generator of CTGAN to
maintain the correlation between the indicators of the input data, and a large amounts of high-quality
data are generated according to the small number of fault samples. The generated data are input into
the AlexNet model for fault diagnosis. The experimental results demonstrate that compared with
the SMOTE and CTGAN methods, the dataset generated by the self-attention-conditional tabular
generative adversarial network (SA-CTGAN) model has better data relevance. The accuracy of fault
diagnosis by the proposed method reaches 94.81%, which is improved by about 11% compared with
the model trained on the original data.

Keywords: box-type substation; generative adversarial networks; self-attention mechanism; fault
diagnosis

1. Introduction

As a crucial piece of equipment in the power system’s transmission and distribution
chain, the box-type substation performs a vital role in voltage regulation and electricity
distribution, with widespread applications in urban and rural areas, industrial and mining
enterprises, and public buildings. Because the box-type substation is mainly installed
outdoors, its operating environment is complex and changeable, making it very susceptible
to damage from natural factors and external forces. Therefore, combined with its own
internal equipment diversity, there will be a variety of fault problems in the operation
process, leading to various challenges in maintenance and management. This undoubtedly
poses a severe challenge to the stability and reliability of the power supply system, directly
affecting the safety of daily electricity use and the production efficiency of enterprises.
Therefore, timely, effective, and reliable health monitoring of box-type substations is of
great significance for the safe operation of the power system.

At present, the traditional manual inspection mode requires that the inspection per-
sonnel have certain prior knowledge and experience. Furthermore, the box-type substation
structure is complex, and there are numerous components, which makes the inspection
task extremely challenging. In addition, traditional regular inspections have inherent lags,
which not only seriously reduce work efficiency and increase unnecessary costs but also
make it difficult to detect and troubleshoot hidden faults in time. Therefore, the research of
fault diagnosis technology has gradually become a research hotspot.

Fault diagnosis technology aims to identify both the normal and abnormal conditions
of equipment, whether globally or locally, by monitoring and analyzing its operational
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status. In the case of malfunction, the technology can also classify the fault and pinpoint the
faulty component accurately. Currently, the mainstream fault diagnosis techniques primar-
ily include methods based on physical models, statistical models, and artificial intelligence.
Among them, fault diagnosis technology based on deep learning has received widespread
attention due to its high diagnostic accuracy and the popularity of data acquisition tech-
nology, without needing a deep understanding of the physical model of the diagnostic
object. However, deep learning-based fault diagnosis methods face a challenge in practical
applications: they rely on massive data accumulation. Since box-type power distribution
equipment spends most of its time in normal operating conditions, fault samples are scarce,
resulting in an imbalance between healthy samples and fault samples, which can affect
diagnostic performance. To address this issue, current research tends to adopt generative
adversarial networks (GANs). This approach directly addresses the problems of small
sample sizes and class imbalance from the input source layer, simplifying complex data
sampling and processing procedures while avoiding the tedious task of building specialized
diagnostic models for different diagnostic objects.

Therefore, for highly integrated and complex equipment, such as box-type substations,
this article utilizes collected historical data of box-type substations to construct a data
derivation model based on the improved CTGAN. Replacing the two fully connected
layers in the CTGAN generator with self-attention layers transforms the static weights
generated in the CTGAN generator into dynamic weights that are free from positional
dependencies during data input, enabling better preservation of the correlation between
different features. By learning the relationship matrix between input features through the
self-attention mechanism, the correlation between different features is maintained, thereby
improving the drawback of CTGAN’s failure to model the dependency relationships
between each feature. This approach generates more high-quality data from a limited
number of faulty samples. By employing the data derivation method, the sample data
are enriched, effectively addressing the problem of small samples in the fault diagnosis
of box-type substations and thus enabling precise prediction of the equipment status of
box-type substations.

The remainder of this paper is structured as follows. Section 2 presents an overview
of the current research status on fault diagnosis and deep learning-based fault diagnosis
methods, both domestically and internationally. It further identifies the key research areas
and existing shortcomings. In Section 3, the primary faults associated with the research
subject, the box-type substation, are analyzed and categorized, laying the foundation for
subsequent data analysis. Section 4 elaborates on the fundamental principles of generative
adversarial networks and self-attention mechanisms and establishes an SA-CTGAN data
derivation model based on these principles, along with a corresponding structural diagram.
To assess the model’s derived data performance in future applications, Section 5 intro-
duces the AlexNet fault diagnosis model, detailing its network architecture. Subsequently,
Section 6 designs a comparative experiment through case studies to evaluate the model’s
performance. Finally, Section 7 offers concluding remarks on the overall research.

2. Research Status
2.1. Current Research Status of Fault Diagnosis Methods

Fault diagnosis technology is a technique that monitors and analyzes the operational
status of equipment to determine whether it is functioning normally or abnormally in
its entirety or specific parts. It categorizes the abnormalities and faults that occur in the
equipment and pinpoints the faulty components. Currently, the mainstream fault diagnosis
technologies are mainly divided into physical model-based diagnosis methods [1], statistics-
based diagnosis methods [2], and artificial intelligence-based diagnosis methods.

(1) Physical models

The diagnosis method based on a physical model usually has high diagnostic accuracy
but lacks universality. It requires that the mathematical model of the object system be
known, and as the structures of various equipment become increasingly complex and inte-
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grated, it is difficult to establish accurate mechanistic models. Therefore, the development
and promotion of fault diagnosis methods based on physical models have been limited to a
certain extent, and there is also less related research.

(2) Statistical models

The statistical model-based fault diagnosis method necessitates neither a profound
comprehension of the equipment or the system’s structure and principles nor the establish-
ment of intricate mechanisms or mathematical models, thus exhibiting high universality.
However, it lacks clarity in the physical significance of diagnosed faults, offers limited
interpretation, and possesses slightly lower diagnostic accuracy compared to methods
rooted in physical models. The diagnosis method based on the artificial network can
excavate the fault knowledge contained in the data by analyzing massive amounts of data
and self-learning to realize fault diagnosis, which has stronger explanatory properties than
the first two diagnostic methods.

(3) Artificial intelligence

Fault diagnosis methods based on artificial intelligence can be divided into fault
diagnosis methods based on expert systems [3], diagnosis methods based on shallow
machine learning [4,5], and fault diagnosis methods based on deep learning [6,7]. The
diagnosis method based on the expert system uses expert knowledge and experience to
form a knowledge base, so the diagnostic model has the judgment ability similar to that of
experts and can take into account the uncertain factors in the future and the special situation
of the diagnostic object, but it requires a large amount of knowledge accumulation and
revision, and it is difficult to establish a perfect diagnostic knowledge base. Both shallow
machine learning and deep learning-based fault diagnosis methods rely on their feature
extraction capabilities to mine the hidden information from the data to complete the fault
diagnosis work, but with the increasing amount and dimension of data, the deep learning
method has better performance than the shallow machine learning method [8]. Benefiting
from the massive device state detection data and the rapid development of artificial neural
networks, deep learning has been widely used in the field of fault diagnosis due to its
excellent feature learning ability.

The above research indicates that due to the lack of the need for a deep understanding
of the precise physical model of the diagnostic object or system and the widespread applica-
tion of data acquisition technology, fault diagnosis techniques based on deep learning have
garnered the most widespread attention in related fields due to their high accuracy. There-
fore, this article takes the box-type substation, a key piece of equipment in the distribution
network, as an example to conduct research on fault diagnosis methods for distribution
network equipment based on deep learning methods.

2.2. Research Status of Small Sample Issues in Fault Diagnosis

Deep learning-based fault diagnosis methods rely heavily on vast amounts of data
accumulation. However, in practical application scenarios, equipment often operates
normally under most conditions, resulting in a scarcity of fault samples. This imbalance
between fault samples and healthy samples leads to a decline in the performance of deep
learning-based fault diagnosis methods. In response to this issue, numerous scholars have
proposed various solutions.

(1) Research on methods based on data preprocessing and model structure

Some scholars adopted sampling technology to solve the problems of sparse input
data and class imbalance in diagnostic models, which effectively improves the diagnostic
performance of the model [9,10]. However, sampling technology has the potential to alter
the distribution of the original data-set, resulting in distortion of the model, which will
reduce the accuracy of fault diagnosis. Jia [11] designed a new learning mechanism to
train the deep neural network by improving the loss function so that the deep neural
network can maintain the accurate feature representation driven by the consistency of
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trend features and ensure the accurate fault classification driven by the consistency of the
fault direction. The accuracy of this method can reach about 90% with only 100 samples
polluted by strong noise. Zhang [12] proposed a compact convolutional neural network
fault diagnosis model based on multi-scale feature extraction. This model utilized the
multi-scale feature extraction unit to extract fault features of different time scales and
comprehensively analyze them through the compact neural network, allowing for the
extraction of more sensitive features with relatively shallow structures. This improvement
led to enhanced diagnostic accuracy under conditions of small samples. Zhao [13] added a
classification branch to the Siamese network, replaced the Euclidean distance measurement
with a network measurement, and constructed an improved fault diagnosis model based
on the Siamese neural network, consisting of a feature extraction network, a relationship
measurement network, and a fault classification network. The similarity of the extracted
features is measured by the relationship measurement network, which effectively guar-
antees the accuracy of fault diagnosis in the case of small samples. Xu [14] introduced
a vision transformer model that incorporates multi-information fusion and leverages a
time frequency representation graph. This model first decomposes the original vibration
signal into various sub-signals of different scales through a discrete wavelet transform.
Subsequently, it converts these sub-signals into time–frequency representation graphs using
a continuous wavelet transform. Finally, the model serially inputs these graphs into its
framework for accurate fault diagnosis. The experimental results show that this method
can diagnose the fault of small sample bearing and has strong universality and robustness.
Chen [15] combined wavelet and depthwise separable convolutional neural networks to
design a few-parameter branch for time–frequency feature extraction. This branch captured
fault features from a limited number of samples to realize fault diagnosis under small
samples together with regular convolution.

(2) Research on methods based on transfer learning

The process of dealing with small samples and class imbalanced problems by data
preprocessing and improved neural networks is often complex and less versatile. The rise
of transfer learning [16] provides a new direction for solving this problem. Liu [17] intro-
duced a generalized transfer framework equipped with evolutionary capabilities, aimed at
tackling the challenge of limited fault samples in industrial process fault diagnosis. The
framework employs a transfer learning strategy combined with the adaptive mixup method
to adaptively expand the fault samples to ensure the number and diversity of extended
samples and uses the transformation matrix as the evolutionary channel to reduce the
diagnostic error with the increase in fault samples without retraining the framework. Based
on simulation data, Dong [18] proposed a fault diagnosis method combining convolutional
neural networks and parameter transfer strategies, which avoids the problem of diagnosis
accuracy caused by insufficient model training under small samples. Fu Song [19] con-
structed an engine fault diagnosis framework combining deep auto-encoders with transfer
learning. The framework uses a deep auto-encoder to establish an engine fault feature
extraction model with sufficient samples and transfer learning to extract features in small
samples, using a support vector machine as a classifier to complete fault classification of
small samples. Zhang [20] used a global average pooling layer instead of the fully con-
nected layer to reduce the number of parameters to be trained in the convolutional neural
network. Based on the improved transfer learning method of pre-training and fine tuning,
it avoids the problem of overfitting in the case of small samples and the fault diagnosis
task in the same scenario. The classification accuracy of the method was 92.25% when fine
tuning was performed with 1% of the training set data in the target domain. Xiao [21],
based on the transfer learning framework, added a large amount of source data with
different distributions as training data to the target data and used the convolutional neural
network as the base learner to update the weights of the training samples by employing
the improved Tr AdaBoost algorithm. This formed a high-performance diagnostic model,
improving the diagnostic accuracy in case of insufficient data in the target domain.
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(3) Research on methods based on generative adversarial learning

Transfer learning has a significant effect on the fault diagnosis of small samples, but it is
difficult to find a suitable adaptive source domain for fault diagnosis knowledge transfer in
equipment with complex structures (for example, the lack of fault data is common in the box-
type substation targeted in this paper). With the emergence of GANs [22], more and more
scholars have been focusing on the input source layer to solve the problem of fault diagnosis
of small samples. Some scholars [23] expanded the bearing vibration signal of small samples
using WGAN with a gradient penalty as the data generation model and used the expanded
samples as the input of the self-attention convolutional neural network for fault diagnosis.
This effectively improved the accuracy of bearing fault diagnosis under small samples. The
scholars in [24] proposed a fault diagnosis method combining a generative adversarial
network with transfer learning, which used a generative adversarial network to generate
dummy samples with similar fault characteristics to actual engineering monitoring data
and then introduced domain adaptation regular term constraints in the residual network
training process to form a deep transfer fault diagnosis model. This effectively addressed
the problem of low accuracy of the fault diagnosis model caused by insufficient available
data of mechanical equipment and large data distribution differences under multiple
working conditions in practical applications. Huang [25] introduced a dropout layer into
the auxiliary classifier generative adversarial network (AC-GAN) to prevent the model from
generating duplicate samples and added a convolutional layer to the AC-GAN discriminant
to improve the anti-noise ability of the discriminator. This was performed to enhance the
performance of the auxiliary classification generative adversarial network and generate
a large number of high-quality fault samples. This approach solves the problem of a
low fault recognition rate in the case of small samples. XU [26] introduced conditional
constraints to the semi-supervised generative adversarial networks and optimized the loss
function to enhance its guidance for the generator and discriminator, thereby improving the
generative adversarial network. The generative model and semi-supervised learning ability
of the model were utilized to solve the problem of insufficient data samples and sample
labeling in fault diagnosis. Zhang [27] proposed a multi-module generative adversarial
network augmented with an adaptive decoupling strategy. This strategy uses an adaptive
learning method to update the initialized random noise of the generator, enabling it to
obtain a better combination for generating samples. Additionally, a reconstruction module
provides stronger constraints for the generator, which greatly improves the quality of the
generated samples.

Based on the above research, it can be seen that the solution utilizing generative ad-
versarial networks can directly address the issues of small sample size and class imbalance
in fault diagnosis from the input source layer, reducing the complexity of data sampling
and processing procedures. It also avoids the complicated process of building specific
diagnostic models for different diagnostic objects. Consequently, focusing on complex
integrated equipment such as box-type substations, this project constructs a data derivation
model based on generative adversarial networks, aiming to solve the problem of small
sample size in fault diagnosis of a box-type substation.

To address the challenge of training a high-performance fault diagnosis model with
small samples, this paper proposes a fault diagnosis method for box-type substations
based on an improved CTGAN and AlexNet network. In this method, the self-attention
mechanism is added to the generator of CTGAN. The SA-CTGAN data derivation model
is constructed, and the data are enriched and enhanced based on the original samples,
particularly those with fewer samples. This, in turn, addresses the imbalance of health
status data and fault status data categories, as well as the scarcity of fault data, all at the
input source level. Finally, the expanded data are used as the input for the AlexNet fault
diagnosis model to complete the fault diagnosis task of the box-type substation.
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3. Main Fault Analysis of the Box-Type Substation

The box-type substation, also known as a pre-installed substation, is a kind of distri-
bution transformer. It is a factory-prefabricated indoor and outdoor compact distribution
device arranged according to a certain wiring scheme, and it is an organic combination
of transformer step-down, low-voltage distribution, and other functions. It is especially
suitable for the construction and transformation of urban power grids and has a series
of advantages, such as strong completeness, small size, minimal land occupation, deep
penetration into the load center, improved power supply quality, reduced loss, a short
power transmission cycle, flexible site selection, strong adaptability to the environment,
and convenient installation.

The box-type substation is composed of three parts: a high-voltage room, a transformer
room, and a low-voltage room. There are two combinations, as shown in Figure 1. The
high-voltage room consists of a high-voltage incoming cabinet, a high-voltage meter, and a
high-voltage feeder cabinet. The dry-type transformers are generally placed in transformer
rooms. The low-voltage room is composed of a low-voltage incoming cabinet, a capacitor
compensation device, and a low-voltage outgoing cabinet.
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To facilitate the timely location of fault components in the box-type substation, based
on the overall structure and common faults of the box-type substation, the health state type
can be divided into seven categories: normal operation F1, high-voltage circuit breaker
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fault F2, high-voltage arrester fault F3, dry-type transformer fault F4, low-voltage incoming
circuit breaker fault F5, low-voltage outgoing circuit breaker fault F6, and capacitor arrester
fault F7. On this basis, fault diagnosis research is carried out, and 24 indicators, as shown
in Table 1, are collected as data support for data mining.

Table 1. Fault indicators of box-type substations.

Number Index Unit

X1 Box internal temperature ◦C
X2 Box internal humidity RH
X3 Water immersion in the box mL
X4 Smoke detection in the box ppm
X5 Condensation in the box mL
X6 Contact resistance Ω
X7 Partial discharge pC
X8 Dielectric loss rate /
X9 Winding absorption ratio /
X10 Core ground current A
X11 Core temperature ◦C
X12 Frequency Hz
X13 Voltage of the h-v KV
X14 Current of the h-v A
X15 Incoming line voltage of the l-v V
X16 Outgoing line voltage of the l-v V
X17 Incoming line current of the l-v A
X18 Outgoing line current of the l-v A
X19 Busbar temperature ◦C
X20 Neutral current A
X21 Action rejection message /
X22 Trip information /
X23 Temperature of circuit contacts ◦C
X24 Circuit breaker current A

4. Research on the Data Derivation Method Based on CTGAN

GANs are typical data generation methods used to address issues such as small sam-
ple sizes or unbalanced data categories. They generate high-quality samples through
adversarial competition between their generative network and discriminative network, but
they are currently mainly applied to image-based data. CTGAN is a variant of GAN that
can model and sample the class table data distribution. CTGAN overcomes the long-tail
distribution and multi-mode distribution by taking advantage of normalization across
patterns and designing a condition generator that is trained by sampling to deal with un-
balanced discrete columns and generate high-quality tabular data. The box-type substation
monitoring data collected in this paper have the same properties and characteristics as the
tabular data regulated by CTGAN, so this paper establishes a data-derived model based
on CTGAN. Due to the insufficient modeling of the relationship between the features of
high-dimensional samples by CTGAN, the correlation between the dimensions of the gener-
ated samples cannot be maintained, so this paper introduces the self-attention mechanism
into the generator of CTGAN to maintain the coupling relationship between features and
establishes an SA-CTGAN data-derived model to enhance the original data and improve
the accuracy of fault diagnosis.

4.1. Principle of CTGAN

To complete the task of generating tabular data, CTGAN enhances the training pro-
cess through normalization for patterns and framework changes for patterns and solves
the problem of data imbalance using conditional generators and sampling training. By
combining Gaussian mixture models with VAE, CTGAN is capable of learning the la-
tent representations of data and generating new tabular data samples. This combined
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approach helps solve the problems of data encoding and generation and improves the
sample efficiency and quality of the model.

CTGAN consists of two models that present a competitive game relationship: the gen-
erative model G, which captures the distribution of data, and the discriminative model D,
which estimates the probability of the sample coming from the original data. The G network
generates fault samples by transmitting random noise through a multi-layer perceptron,
and the D network is also composed of a multi-layer perceptron, learning and judging
whether the samples come from the model distribution or the original data distribution.
Under the definition of G and D by the multi-layer perceptron, the whole system can be
trained by the backpropagation mechanism, and the two achieve an antagonistic game
balance. In addition, there is an encoder that models the raw data, and a classifier trained
on the raw data to better interpret the semantic integrity of the data. The CTGAN structure
is shown in Figure 3.
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The CTGAN training process is as follows:
Step 1: Random noise z and conditional vectors are input into the generator to generate

data G(z) in the specified format;
Step 2: The original data sample x is modeled through the encoder and input into the

discriminator together with the generated data G(z) and the conditional vector;
Step 3: The discriminator distinguishes the original data sample x and the generated

data sample G(z), respectively, and then updates the weight of the discriminator D through
the backpropagation of the loss function; that is, the discriminator continuously improves
its ability to discriminate generated data samples;

Step 4: According to the output of the discriminator, constantly adjust the parameters
of generator G; that is, improve the ability of the generator to generate data, making the
data generated as consistent as possible with the original data so that the discriminator
cannot correctly discriminate;

Step 5: Repeat Step 1~Step 4 until the loss function of the discriminator converges
within a certain number of iterations and stops training.

4.2. Principle of the Self-Attention Mechanism

In high-latitude data, there is often a certain correlation between different dimensions.
When mining key features, the influence of other features on this correlation cannot be
ignored, so the self-attention mechanism needs to be used.

Self-attention allows each unit to capture the overall information, while different units
can be calculated or processed in parallel, which can be understood as self-attention, find
the relationship between each feature and consider whether one feature will have an impact
on the other. The basic principle is shown in Figure 4.
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The thought steps are as follows:
Step 1: Transform the input X through the linear transformation matrix Wq, Wk, and Wv

into Q, K, and V, where Q is the query vector, K is the key vector, and V is the value vector.
Step 2: Calculate the similarity by the dot product operation of Q and K.

αi,j = qi·k j (1)

Step 3: SoftMax normalization of the similarity obtained in Step 2.

α̂i,j = exp(αi,j)/∑
j

exp(αi,j) (2)

Step 4: Calculate the comprehensive output B of each unit after self-attention.

bi = ∑
i

αi,jvi (3)

4.3. SA-CTGAN Data-Derived Model

Although CTGAN can generate data based on conditional vectors through the classifier
and capture the general distribution of each variable well through the encoder, it does not
model the dependency relationship of each feature. It only captures the possible connections
between the features through two fully connected hidden layers in the generator, which
is ineffective because there is a strong correlation among the indicators in the monitoring
dataset of box-type substations. Using CTGAN to generate fault samples for box-type
substations may produce suboptimal results. The weights of the fully connected layers
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in the CTGAN generator are determined based on position, meaning that the weight
generation is static. In contrast, the weight generation of self-attention is dynamic, which
frees it from positional dependency during data input and better maintains the correlation
among different features. This paper inducts self-attention in generator G to construct the
SA-CTGAN model. Specifically, it replaces the two fully connected layers in the generator
of CTGAN with self-attention layers. The model can learn the relationship matrix between
the input features through the self-attention mechanism to maintain the correlation between
different features and make the data generated by CTGAN closer to the real data. The
model of SA-CTGAN data-derived model is shown in Figure 6.
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5. AlexNet Fault Diagnosis Model

AlexNet is a classical convolutional neural network model that can extract and classify
depth features, and it is widely used in the field of fault diagnosis. AlexNet uses the
ReLU activation function instead of Tanh and Sigmoid to speed up training, solving the
gradient vanishing problem of deep networks. At the same time, AlexNet uses overlapping
maximum pooling operations to avoid the fuzzy effect of average pooling, and the step size
is smaller than the size of the pooling kernel so that it can extract features in more detail.
In addition, AlexNet uses Local Response Normalization (LRN) to create a competition
mechanism for the activity of local neurons, making neurons with larger responses more
active and inhibiting those with less feedback, thereby enhancing the generalization ability
of the model.

In this paper, the box-type substation fault diagnosis model is established based on
the AlexNet network model, which comprises a total of eight layers, five convolutional
layers, and three fully connected layers. Finally, the samples are classified by the SoftMax
classifier, as shown in Figure 7.
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The one-dimensional convolution and pooling layers are used to build the AlexNet
network, and TensorFlow 2.0 is used to build the network model for completing the fault
diagnosis task. The model structure is shown in Table 2.

Table 2. Network structure.

Network Layer Network Layer Structure

1 One-dimensional convolution (convolution kernel:16, Step:1) →
Relu activation → Normalization → Maximum pooling

2 One-dimensional convolution (convolution kernel:3, Step:1) →
Relu activation → Normalization → Maximum pooling

3 One-dimensional convolution (convolution kernel:3, Step:1) →
Relu activation → Maximum pooling

4 One-dimensional convolution (convolution kernel:3, Step:1) →
Relu activation → Maximum pooling

5 One-dimensional convolution (convolution kernel:3, Step:1) →
Maximum pooling

6 Flatten the layer → Random inactivation (50%) → Fully Connected (Relu)
7 Fully Connected (Relu) → (Reu) Random inactivation (50%)
8 SoftMax fully connected layer

Next, train the model in using the Adaptive Gradient Algorithm (Adagrad) as the
optimizer and categorical cross entropy as the loss function.

6. Experiment and Result Analysis
6.1. Evaluation Indicators of the Data-Derived Effect

The model was evaluated by calculating the similarity between the generated data-set
and the original data-set, and the performance effect of the model was evaluated from two
perspectives: similarity of data distribution and correlation of different dimensions.

(1) KL divergence

Kullback–Leible (KL) divergence, also known as relative entropy, is a metric used to
measure the similarity of two probability distributions, can used to express the difference
or similarity between two distributions, and is calculated as follows:

DKL(P||Q) = ∑i P(xi) log
P(xi)

Q(xi)
(4)

The smaller the KL divergence, the higher the similarity between P and Q.

(2) Mean Cosine Similarity

Cosine similarity (CS) is the cosine value of the angle between two n-dimensional
vectors in n-dimensional space, which is equal to the dot product (vector product) of the
two vectors divided by the product of the length (size) of the two vectors. The cosine
similarity between n-dimensional vectors A and B is calculated as follows:
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Similarity(A, B) =
A•B

∥A∥ × ∥B∥ =

n
∑

i=I
(Ai × Bi)√

n
∑

i=1
Ai

2 ×
√

n
∑

i=1
Bi

2

(5)

In this paper, the cosine similarity between the original data-set and the generated
data-set of the same category is calculated, the average cosine similarity is calculated
cumulatively, and the data similarity is evaluated by the mean cosine similarity, which is
calculated as follows:

Similarity =

m
∑

i=1

n
∑

j=1
Similarity(RAWi, GENj)

m × n
(6)

where RAWi is the ith indicator vector of the original data and GENi is the ith indicator
vector of the generated data. The value of Similarity ranges from [−1,1], with −1 being
completely different and 1 being completely similar.

(3) Cumulative deviation of the correlation coefficient

The correlation coefficient is a statistic proposed by the statistician Pearson to mea-
sure the degree of linear correlation between two random variables. It is defined as the
covariance of two variables divided by the product of their standard deviations as follows:

ρXi ,Xi =
E[(Xi − E(Xi))(Xj − E(Xj))]√

E[(Xi − E(Xi))(Xj − E(Xj))]E[(Xj − E(Xj))(Xi − E(Xi))]
(7)

The correlation coefficient matrix of the original dataset and the generated dataset is
calculated, and then the cumulative deviation of the correlation coefficient of the generated
dataset relative to the original dataset is calculated by Equation (8).

S2 =
k

∑
i=1

k

∑
j=1

(ρXi ,XjRAW − ρXi ,XjGEN )
2 (8)

where ρXi ,XjRAW is the correlation coefficient between dimensions Xi and Xj in the original
data and ρXi ,XjGEN is the correlation coefficient between dimensions Xi and Xj in the
generated data. The smaller the cumulative deviation of the correlation coefficient, the
more similar the correlation between the different dimensions of the generated data-set
and the original data-set.

(4) Heatmap SSIM metric

A heatmap is a way to express the correlation of different dimensions in a data-set in
the form of an image, and the magnitude of the correlation is described by the values of
different RGBA components. Therefore, the dimensional correlation between the generated
data-set and the original data-set can be evaluated by comparing the heatmap of the original
dataset and the generated data-set.

The SSIM (Structure Similarity Index Measure) is an index used to measure the simi-
larity of images, which consists of three parts: luminance, contrast, and structure.

The SSIM of images x and y can be defined as follows:

SSIM(x, y) =
(2µxµy + C1)(2σx,y + C2)

(µ2
x + µ2

x + C1)(σ2
x + σ2

x + C2)
(9)

where µx and µy are the average gray scale of the image x and y, σx and σy are the standard
deviation of the gray scale of the image x and y, C1 = (K1L)2, C2 = (K2L)2, and C3 = C2/2,
and by experience, K1 = 0.01, K2 = 0.03, and L, are the dynamic ranges of the pixel value.
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The range of the SSIM is [0,1], and the larger the value, the higher the similarity
between the two images; that is, the closer the correlation between the original data-set and
the generated data-set in different dimensions.

6.2. Comparative Analysis of Data-Derived Models

To verify the performance of SA-CTGAN, a box-type substation acquisition system
was established for enterprise A, and a total of 700 different fault data and normal operation
data were randomly selected from the database to form a small sample unbalanced data-
set. The SMOTE model, CTGAN model, and SA-CTGAN model were used for data
derivation experiments.

For the above three data-sets, the number of nearest neighbors of the SMOTE model is
set to five. The DE optimization algorithm was used to optimize the number of iterations,
training batches, and learning rate in the CTGAN model and the SA-CTGAN model. The
amount of the expanded data in all models is set to 1400.

Select the original data and generated data of the fault type of the high-voltage circuit
breaker and draw the heatmap of the raw data and the generated data, respectively, as
shown in Figure 8, where (a), (b), (c), and (d) are the original data heatmap, the SMOTE- gen-
erated data heatmap, the CTGAN-generated data heatmap, and the SA-CTGAN-generated
data heatmap, respectively.
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Based on the correlation coefficients shown in Figure 8, the correlation coefficient ma-
trix of the data generated by SA-CTGAN is the closest to the original data. To quantitatively
compare the data generation effects from the three derived models, four evaluation metrics
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constructed in Section 6.1 were used to evaluate the derived data of the three models. The
evaluation results are shown in Table 3.

Table 3. Comparison of model results.

Index SMOTE CTGAN SA-CTGAN

KL divergence 0.0101 0.0042 0.0037
Mean cosine similarity 0.8494 0.8768 0.8996

Cumulative deviation of the correlation coefficient 11.9714 11.9682 9.8331
Heatmap SSIM metric 0.8365 0.8527 0.9135

By comparing the KL divergence and the mean cosine similarity, it is found that the
CTGAN model and SA-CTGAN model are better than the SMOTE model in the similarity
of data distribution. Comparing the cumulative deviation of correlation coefficient and
the heatmap SSIM metric, the cumulative deviation of the correlation coefficient of the SA-
CTGAN model is significantly lower than that of SMOTE and CTGAN, and the heatmap
SSIM metric of the SA-CTGAN model is significantly higher than that of SMOTE and
CTGAN. It is deduced that the SMOTE model and the CTGAN model are similar in
the maintenance of data correlation, the data generated by the SA-CTGAN model with
the introduction of the self-attention mechanism is significantly better than the other two
models in terms of correlation similarity; that is, the self-attention mechanism can effectively
maintain the correlation between different indicators.

Furthermore, draw a distribution histogram, comparing the derived data results
through the distribution of 24 indicators, as shown in Figure 9, where (a), (b), (c), and (d)
are the distribution of original data, SMOTE-generated data, CTGAN-generated data, and
generated data, respectively.
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The distribution of the data generated by the three models is roughly similar to that of
the original data. Among them, the SMOTE model has the worst generation effect, while
the CTGAN model and SA-CTGAN model are better. This is because the SMOTE model
can only generate edge data when generating data with positive samples distributed at the
edge through sampling, which cannot solve the problem of distribution marginalization.

6.3. Fault Diagnosis Case Analysis of Different Datasets

This section will compare the performance of AlexNet using original data, data en-
hanced by the SMOTE model, the CTGAN model, and the SA-CTGAN model as inputs.
The specific scheme is as follows: the original dataset is divided into the training set,
verification set, and testing set in a ratio of 7:2:1, which are input into the AlexNet model
for training and testing. For the datasets enhanced by the three data-derived models, they
are divided into a training set and a validation set according to the ratio of 7:3, while the
original data are used as the testing set. The early stopping mechanism is set during model
training based on the accuracy of the verification set; if the improvement is less than 0.05%
over 20 iterations, the training will be stopped in advance.

The specific iteration process of the four data-sets is shown in Figure 10.
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From the perspective of the iterative process, due to the small amount of data in
the original data without data enhancement, the early stop mechanism was triggered
after 121 iterations, the loss value of the verification set was always greater than that
of the training set in the whole iteration process, and there was an obvious oscillation
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phenomenon. The dataset that underwent data enhancement using SMOTE exhibited
the highest number of iterations, albeit with evident oscillation throughout the training
process. In contrast, the dataset enhanced with the CTGAN model terminated training
after 147 iterations, displaying significantly less oscillation compared to the first two
datasets. The data enhanced by the SA-CTGAN model established in this paper experienced
182 iterations, and there are obvious oscillations in the first 50 iterations of the model, but
the oscillations gradually disappear after 50 iterations. Table 4 shows the accuracy of the
four data-sets.

Table 4. Performances of different input datasets.

Accuracy Original Dataset SMOTE CTGAN SA-CTGAN

Training set 89.32% 91.47% 94.46% 94.91%
Validation set 84.15% 90.78% 92.55% 94.34%

Testing set 82.94% 89.94% 92.61% 94.81%

From the accuracy of the four types of data-sets, it can be seen that the accuracy of the
validation set is about 5% lower than that of the training set, and the accuracy of the testing
set is about 6.5% lower than that of the training set. This is due to the lack of training data,
as the model can only over-extract features unrelated to the direction of diagnosis and only
learn the patterns related to the training set data. This pattern is wrong or irrelevant for the
new data (validation set and testing set), resulting in the trained model not being universal.
The accuracy of other data-augmented datasets is relatively close to that of the training set,
validation set, and test set. Among them, the SA-CTGAN model constructed in this paper
has the highest data accuracy and the smallest gap between the training set and the test
set, which indicates that the model trained with the dataset generated by SA-CTGAN has
higher versatility.

7. Conclusions

This article takes the fault diagnosis of box-type substations as an example to study and
improve the fault diagnosis model under the conditions of scarce samples and unbalanced
classes, aiming to enhance its prediction accuracy. An improved CTGAN data derivation
method based on a self-attention mechanism is proposed, which can take into account
the strong correlation between the monitoring data features of box-type substations while
deriving and enhancing the samples. It solves the problem of CTGAN being unable to
model the dependency relationship between various features. The established SA-CTGAN
data derivation model can generate enough samples similar to the original data based on a
small amount of data to support the training of the fault diagnosis model. Furthermore, a
box-type substation fault diagnosis model based on AlexNet is established to verify the
proposed SA-CTGAN data derivation model. Experimental results show that compared
with SMOTE and CTGAN data derivation models, the model trained with the dataset
generated by the SA-CTGAN model has the best performance. The proposed method can
effectively improve the fault diagnosis accuracy, and the diagnosis accuracy reaches 94.81%.
Compared with the model trained with the original data, the accuracy is improved by
about 11%, effectively solving the problem that the high-performance diagnosis model
cannot be trained due to the scarcity of box-type substation fault data.
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