
Citation: Gembarski, P.C.; Gast, P.

Functional Requirements and Design

Features for the Implementation of 3D

CAD-Based Graphical Interactive

Configurators. Appl. Sci. 2024, 14,

3113. https://doi.org/10.3390/

app14073113

Academic Editor: Alexander Barkalov

Received: 10 March 2024

Revised: 4 April 2024

Accepted: 5 April 2024

Published: 8 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Functional Requirements and Design Features for the
Implementation of 3D CAD-Based Graphical Interactive
Configurators
Paul Christoph Gembarski * and Pauline Gast

Institute of Product Development, Leibniz University of Hannover, 30823 Garbsen, Germany
* Correspondence: gembarski@ipeg.uni-hannover.de

Abstract: Configuring complex computer-aided design (CAD) assemblies just by modifying pa-
rameters requires the attention and abstraction of the users. This interaction cost can be lowered
significantly by graphical interactive control elements that allow for drag and drop modifications
directly in the 3D assembly. Contributing techniques, such as working with skeletons and advanced
or external knowledge-based parameter control, are available. This contribution examines their
integration and implementation into a given CAD system through a case study on creating a pipe
routing configuration system which uses drag points to adjust the position of instrumentation and
routing segments. The results are then generalized to functional requirements and basic design
features of such graphical interactive configurators.

Keywords: CAD configurators; 3D modeling principles; solution space development; CommonKADS;
implementation guidelines; design science research

1. Introduction

Offering complex products for highly developed markets poses the challenge of
tailoring them to the individual requirements of the customer. Centerpieces in efficiently
realizing this are a suitable product model that contains degrees of freedom representing
adjustable product properties and options and an information system that is capable of
translating customer inputs into a valid product specification [1–3].

Today’s computational design systems offer plenty of possibilities to combine the
two. In addition to approaches such as algorithmic and generative design, the traditional
parameter and chronology-based computer-aided design (CAD) systems that are still very
common in mechanical and plant engineering implement different techniques to model
solution spaces instead of a single product variant [4–6]. A sophisticated approach is
knowledge-based CAD configuration. CAD-based configuration systems usually offer
additional functionality that is associated with the complete set of geometrical data and
justify the implementation effort. Such systems contribute to complexity management, e.g.,
by automatically checking for manufacturability, reducing the configuration task through
the automation of part or sub-assembly design and optimization, and generating assembly
instructions or other documentation [7–9].

Independently from the implementation, user inputs commonly are variables and
the selection of options [10,11]. For complex products like in plant engineering, where
the configuration is altered many times during the specification process, identifying and
changing the respecting parameters requires high attention and a level of abstraction.
From the perspective of user experience design, lowering such interaction costs, i.e., the
cognitive and physical load to reach the goal of interaction, is a design rationale [12,13].
For example, virtual and augmented reality applications reach this goal by graphical and
interactive control elements that are attached to the real geometry and allow for immediate
feedback [14,15].

Appl. Sci. 2024, 14, 3113. https://doi.org/10.3390/app14073113 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14073113
https://doi.org/10.3390/app14073113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2642-3445
https://doi.org/10.3390/app14073113
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14073113?type=check_update&version=1

Appl. Sci. 2024, 14, 3113 2 of 16

Implementing such control elements in a CAD model poses additional constraints
for model creation. There are three reasons for that: First, since the rebuild time of the
CAD model is crucial, an efficient model setup and advanced parameter planning with
streamlined dependencies between the geometrical elements is a necessity, avoiding loops
between part and assembly rebuild. Second, after interaction with the control element, its
drop position usually needs to be checked regarding valid limits and possibly translated
to a given increment, which results in additional restrictions and a feedback loop. Third,
the interaction between the geometric model and the knowledge base of the configuration
system requires a reasonable algorithmic abstraction for the functions to be achieved and,
if necessary, additional parameters for, e.g., calculation and plausibility checks [16,17].

From a methodology point of view, many contributing aspects of creating such interac-
tive control elements are covered by literature, e.g., defining levels of detail, working with
skeletons, and applying advanced or external knowledge-based control of CAD model
parameters [18–20]. The crucial point is their combination and implementation in a given
CAD system. Thus, this article addresses the research question: How to implement inter-
active geometric control elements in a CAD assembly, and which generalized design
features are necessary, independently from the CAD system?

To answer the question, the authors follow a learning-by-building approach based
on Hevner’s design science research cycles [21]. The knowledge base is presented in the
following Section 2, where foundational aspects of parametric and knowledge-based mod-
eling in CAD systems and model planning methods are briefly introduced. Section 3 then
introduces the case study, which is an interactive modular piping 3D CAD configuration
system. Afterward, Section 4 reflects the additions to the knowledge base in the form of
generalized design features. The article closes with a summary and conclusion in Section 5.

2. Background
2.1. Knowledge-Based Engineering and Knowledge-Based CAD

The concept of knowledge-based engineering (KBE) involves a shift in computer-
aided product modeling from documenting a single product variant to modeling solution
spaces where a variant can be found to meet a set of requirements [6,7]. Two fundamental
questions must be answered when building a KBE system: how to model the solution
space, and how to explore it to achieve a design task [5,22].

In algorithmic modeling, the focus is on automating the design process rather than
pre-formulated solutions [4,23]. Algorithms are used to extract product properties from
requirements and build product design rules, also taking into account external data or
numerical simulations [24–26]. Therefore, a parametric product master model is unnec-
essary, as this approach aims to generate an individual product for each set of customer
requirements. This is particularly favorable for complex geometries and pure configura-
tion designs but largely restricts subsequent parametric editing of the variant. Instead,
requirements and design rules need to be altered to create the updated version [27–29].

When using parametric design, editing a product model is made easier, allowing
for geometry re-use and also embedding design intent with geometry [18,30]. Defining
logical and mathematical relations between parameters helps differentiate leading and
driven parameters. The designer models geometry and plans configuration concepts and
parameterization of the component [7,31,32]. Today’s CAD system can create user-defined
parameters not only for length or angular dimensions but also to support the computation
and handling of other units such as for stresses, forces, or moments of inertia. This feature
allows for the direct integration of comprehensive dimensioning formulas into the CAD
model, making it more efficient and convenient for users to work with [33]. Furthermore,
some CAD systems offer the option to specify design rules. These rules usually take the
form of if–then–else statements, which link, e.g., the suppression of specific features to
geometric or other parameters [34,35].

As components become more complex, the need for a well-structured configuration
with parameters at various levels becomes increasingly imperative. Assemblies may

Appl. Sci. 2024, 14, 3113 3 of 16

contain a skeleton model that defines the positioning of components and their geometrical
characteristics based on a structural design. The skeleton itself can have different features
and relations to its child models, e.g., the skeletal geometry can be used as a reference
model or its geometric parameters can be linked to the child models via equations or by
design rules [18,19].

The control of parameters can also be externalized. Most CAD systems allow for
linking or embedding spreadsheets, providing additional mathematical and statistical
capabilities compared to the CAD system alone. Lookup tables can be integrated for
selecting standard parts based on geometric or load information. With this, basic reasoning
functions are available [33,36]. Other ways of integrating reasoning are the use of script
languages and macros within the CAD system and coupling external knowledge-based
systems for parameter determination [18,33].

2.2. Model Planning for Knowledge-Based CAD

When creating knowledge-based CAD models, it is important to focus on the control
and rebuild concept of the model itself, as it consists of multiple geometric features and
domain knowledge artifacts that are strongly intertwined. Parameters that are constrained,
correlated, or referenced create dependency chains that must remain flat. Parameter trees,
parameter plans, and constraint networks are used as planning aids to define and manage
the dependencies between parameters [37–39].

The literature discusses also the application of KBE system development method-
ologies for planning knowledge-based CAD models. [40–42]. Two methods have gained
widespread use: MOKA [43] and CommonKADS [44,45]. While the former emphasizes
knowledge engineering and informal modeling, the latter focuses on formal modeling.
The CommonKADS models are specifications for configuration-based systems and are
divided into three categories: context includes the models of organization, task, and agents,
which together answer questions about the need and benefits of developing a KBE sys-
tem. The concept level includes two important models: the knowledge model and the
communication model. These models define the type of KBE system required and how its
internal elements are related to each other. The design model connects the previous models
and leads to the final design at the artifact level so that it can be implemented in a given
environment [45,46].

An extension of the CommonKADS approach is the correlation model (Figure 1),
which was developed specifically for planning the parametrization of CAD models [16].
This tool supports designers to model correlations only top–down, avoid circular references,
and distinguish between different hierarchy levels. Additionally, it visualizes the length
of a dependency chain to estimate model efficiency. The correlation model is divided into
three layers. The user input layer consists of all the parameters that the user communicates
to the system. The model is visualized with the parameter control of a steel platform:
the user enters the desired dimensions, maximum deflection, and the available raw stock.
These inputs restrict the size of the beams for the support or the gratings. The skeleton layer
is the abstraction of the parameter control concept and transforms the user inputs to the
control parameters of the single components. The parameters on this layer can be used to
define a design skeleton or derive interaction elements such as drag points. The component
layer connects elements of the knowledge-based CAD model, such as geometric features in
a part model or components in an assembly model, to the other layers.

Appl. Sci. 2024, 14, 3113 4 of 16Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 16

Figure 1. Correlation model for a steel platform (adapted from [16]).

3. Learning by Building: Interactive Modular Piping 3D CAD Configuration System
The design of 3D piping to connect installations and instrumentation is an activity in

many engineering disciplines, such as plant engineering, ship design but also mechanical
engineering, and infrastructure planning [47–50]. Engineering systems support designers
in finding intersections between pipe routings, generating isometrics, and creating bills of
materials.

Nonetheless, routing is mainly performed manually following a pearl chain principle
from the start to end connector. Completely automatic pipe routing is challenging. Alt-
hough the task can be abstracted into a set of classical algorithmic problems, the resulting
computational complexity of real-world applications currently restricts intelligent routing
applications to a comparatively simple set of template routings for single already-capaci-
tated routes [51,52].

3.1. System Specification and Limitations
The basic idea behind the industry use case of this study is not complete automation

for routing designs, as shown in Figure 2, but to raise the efficiency in the design process
with an interactive modular piping 3D CAD configuration system. Designers should have
the ability to specify the position and orientation of the starting and ending connectors
(represented by green and red cylinders, respectively), as well as define and subsequently
modify the position and orientation of instrumentation or supports (represented by red
spheres), and efficiently add routings between them.

Figure 1. Correlation model for a steel platform (adapted from [16]).

3. Learning by Building: Interactive Modular Piping 3D CAD Configuration System

The design of 3D piping to connect installations and instrumentation is an activity in
many engineering disciplines, such as plant engineering, ship design but also mechanical
engineering, and infrastructure planning [47–50]. Engineering systems support designers
in finding intersections between pipe routings, generating isometrics, and creating bills
of materials.

Nonetheless, routing is mainly performed manually following a pearl chain princi-
ple from the start to end connector. Completely automatic pipe routing is challenging.
Although the task can be abstracted into a set of classical algorithmic problems, the re-
sulting computational complexity of real-world applications currently restricts intelligent
routing applications to a comparatively simple set of template routings for single already-
capacitated routes [51,52].

3.1. System Specification and Limitations

The basic idea behind the industry use case of this study is not complete automation
for routing designs, as shown in Figure 2, but to raise the efficiency in the design process
with an interactive modular piping 3D CAD configuration system. Designers should have
the ability to specify the position and orientation of the starting and ending connectors
(represented by green and red cylinders, respectively), as well as define and subsequently
modify the position and orientation of instrumentation or supports (represented by red
spheres), and efficiently add routings between them.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 16

Figure 2. Example configuration with four adaptable routings to be realized by the modular config-
uration system.

To specify the configuration system, a user group consisting of piping engineers, con-
struction supervisors, a purchaser, and project managers was interviewed and invited to
create user stories based on their experience and obstacles they observed in past projects
(Figure 3). Before creating a feature list, the development team prioritized tasks, estimated
effort, and then mapped user stories to features. (Figure 4). To simplify the implementa-
tion process, a modular architecture was chosen.

Figure 3. Collected user stories (sample).

In addition to the basic layout (user stories 1, 2, 3, 5, 7, 9, and 10), user story 4 from
the construction supervisor is particularly relevant for this case. When planning meets the
construction site, many routing modifications may occur due to terrain differences, sup-
port foundation positioning or obstacles. When the construction supervisor has access to
the design data but is not the originator of the 3D CAD model, they usually just comment
on the design and send it back to engineering. For such modifications, the feedback of the
engineering department is necessary in many cases as restrictions need to be checked, e.g.,
pressure drop, necessary slope, and manufacturability.

Figure 2. Example configuration with four adaptable routings to be realized by the modular configu-
ration system.

Appl. Sci. 2024, 14, 3113 5 of 16

To specify the configuration system, a user group consisting of piping engineers,
construction supervisors, a purchaser, and project managers was interviewed and invited
to create user stories based on their experience and obstacles they observed in past projects
(Figure 3). Before creating a feature list, the development team prioritized tasks, estimated
effort, and then mapped user stories to features. (Figure 4). To simplify the implementation
process, a modular architecture was chosen.

In addition to the basic layout (user stories 1, 2, 3, 5, 7, 9, and 10), user story 4 from
the construction supervisor is particularly relevant for this case. When planning meets the
construction site, many routing modifications may occur due to terrain differences, support
foundation positioning or obstacles. When the construction supervisor has access to the
design data but is not the originator of the 3D CAD model, they usually just comment on
the design and send it back to engineering. For such modifications, the feedback of the
engineering department is necessary in many cases as restrictions need to be checked, e.g.,
pressure drop, necessary slope, and manufacturability.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 16

Figure 2. Example configuration with four adaptable routings to be realized by the modular config-
uration system.

To specify the configuration system, a user group consisting of piping engineers, con-
struction supervisors, a purchaser, and project managers was interviewed and invited to
create user stories based on their experience and obstacles they observed in past projects
(Figure 3). Before creating a feature list, the development team prioritized tasks, estimated
effort, and then mapped user stories to features. (Figure 4). To simplify the implementa-
tion process, a modular architecture was chosen.

Figure 3. Collected user stories (sample).

In addition to the basic layout (user stories 1, 2, 3, 5, 7, 9, and 10), user story 4 from
the construction supervisor is particularly relevant for this case. When planning meets the
construction site, many routing modifications may occur due to terrain differences, sup-
port foundation positioning or obstacles. When the construction supervisor has access to
the design data but is not the originator of the 3D CAD model, they usually just comment
on the design and send it back to engineering. For such modifications, the feedback of the
engineering department is necessary in many cases as restrictions need to be checked, e.g.,
pressure drop, necessary slope, and manufacturability.

Figure 3. Collected user stories (sample).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 16

Figure 4. User story mapping (excerpt).

A basic requirement was stated that modifications of the routing should be handled
directly to avoid errors and save time by using the configuration system. In this case study,
the modification of a routing should trigger two actions. First, after the update, the routing
assembly is checked for basic manufacturability restrictions, such as minimum segment
lengths and weldability. Secondly, the cut list should be updated and compared to the
initial one to ensure that the same amount of semi-finished materials is kept.

The configuration system is implemented directly into the CAD environment of Au-
todesk Inventor using its base functionalities. The initial release of the configuration sys-
tem is defined as a technology demonstrator to show basic workflows and functionalities,
and the following limitations are applicable:
• Branches: If the routing contains branches, these are treated as instrumentation with-

out flanges. The pipe tee is positioned and aligned directly on a drag point.
• Reducers: Reducers are handled in the same way as instrumentation and aligned on

a drag point.
• Compensators: The check for length compensation due to thermal expansion is ne-

glected and placing compensators is subject to subsequent manual refinement.
• Slope: The slope check is neglected. This could be included in the system either directly

in the path sketches of the routing templates or in the parametrics of the layout.
• Intersection warning: Instead of a separate intersection analysis, the existing assem-

bly interference analysis of the CAD system is used manually.
Based on the concept of reducing interaction costs, the user group and developers

refined the interaction functionality to be implemented as drag points.

3.2. Program Flow and Implementation Concept
After the context was clarified, the development team continued to follow the ex-

tended CommonKADS approach and started to define the models at the concept level. In
addition to gathering all relevant data from industry standards and manufacturing exper-
tise in the form of rules and general equations, the developers collaborated with piping
engineers to define a workflow for configuring the pipe routings (Figure 5).

Typically, when adding routings to pre-existing infrastructure and instrumentation
that already have calculated capacity, the first step is to define the routing number, the
default elbow radius, and the input capacity. The draft diameter is then calculated based
on these inputs and chosen according to the project-relevant standards. The configurator

Figure 4. User story mapping (excerpt).

Appl. Sci. 2024, 14, 3113 6 of 16

A basic requirement was stated that modifications of the routing should be handled
directly to avoid errors and save time by using the configuration system. In this case study,
the modification of a routing should trigger two actions. First, after the update, the routing
assembly is checked for basic manufacturability restrictions, such as minimum segment
lengths and weldability. Secondly, the cut list should be updated and compared to the
initial one to ensure that the same amount of semi-finished materials is kept.

The configuration system is implemented directly into the CAD environment of
Autodesk Inventor using its base functionalities. The initial release of the configuration
system is defined as a technology demonstrator to show basic workflows and functionalities,
and the following limitations are applicable:

• Branches: If the routing contains branches, these are treated as instrumentation without
flanges. The pipe tee is positioned and aligned directly on a drag point.

• Reducers: Reducers are handled in the same way as instrumentation and aligned on a
drag point.

• Compensators: The check for length compensation due to thermal expansion is ne-
glected and placing compensators is subject to subsequent manual refinement.

• Slope: The slope check is neglected. This could be included in the system either directly
in the path sketches of the routing templates or in the parametrics of the layout.

• Intersection warning: Instead of a separate intersection analysis, the existing assembly
interference analysis of the CAD system is used manually.

Based on the concept of reducing interaction costs, the user group and developers
refined the interaction functionality to be implemented as drag points.

3.2. Program Flow and Implementation Concept

After the context was clarified, the development team continued to follow the extended
CommonKADS approach and started to define the models at the concept level. In addition
to gathering all relevant data from industry standards and manufacturing expertise in the
form of rules and general equations, the developers collaborated with piping engineers to
define a workflow for configuring the pipe routings (Figure 5).

Typically, when adding routings to pre-existing infrastructure and instrumentation
that already have calculated capacity, the first step is to define the routing number, the
default elbow radius, and the input capacity. The draft diameter is then calculated based on
these inputs and chosen according to the project-relevant standards. The configurator then
creates a sub-assembly for the piping with the corresponding metadata in the background.
This assembly later contains two levels of detail: one with a simplified sweep geometry
and one with the actual piping assembly.

The next step is to define the start and end connectors of the routing both with position
and orientation. Therefore, either existing connectors can be selected or the connectors are
virtually declared. The configuration system then instantiates the corresponding markers
on a layout component level. The drag points are defined in the same way. To simplify the
later assembly process and geometric constraining, the configuration system additionally
should add work points to each drag-ball position.

Afterward, when the routing is formally declared, the engineers can start adding
predefined segment templates. To do so, the engineer picks the starting and target reference
for the new segment. In the background, the configurator instantiates the geometry to the
routing assembly, assigns all necessary parameters, and adds geometry constraints to the
model. To replace a routing template, the old one is deleted and a new one is inserted the
same way. For the majority of routings, three drag points per route are sufficient.

Appl. Sci. 2024, 14, 3113 7 of 16

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 16

then creates a sub-assembly for the piping with the corresponding metadata in the back-
ground. This assembly later contains two levels of detail: one with a simplified sweep
geometry and one with the actual piping assembly.

The next step is to define the start and end connectors of the routing both with posi-
tion and orientation. Therefore, either existing connectors can be selected or the connect-
ors are virtually declared. The configuration system then instantiates the corresponding
markers on a layout component level. The drag points are defined in the same way. To
simplify the later assembly process and geometric constraining, the configuration system
additionally should add work points to each drag-ball position.

Figure 5. Activity diagram for layout creation using the modular configuration system.

Afterward, when the routing is formally declared, the engineers can start adding pre-
defined segment templates. To do so, the engineer picks the starting and target reference
for the new segment. In the background, the configurator instantiates the geometry to the

Figure 5. Activity diagram for layout creation using the modular configuration system.

3.3. Implementation in Autodesk Inventor Professional

The technology demonstrator was implemented using basic functionalities in the CAD
system Autodesk Inventor Professional. CAD administration requested that the system be
maintained in-house by expert applicants without requiring deep programming knowledge.
The development team decided to use mainly the iLogic scripting environment. iLogic is a
basic language directly integrated with Inventor and is easy to understand. To simplify
automation programming, users can utilize a comprehensive structure and a snippet library.
iLogic rules are no rules in the traditional sense but routines and functions that can be
nested and combined with user inputs. In comparison, its functionality is smaller than
with the application programming interface but, if necessary, VBA macros can be executed
by iLogic rules as well.

Appl. Sci. 2024, 14, 3113 8 of 16

Having this in mind, the development team worked out a correlation model instan-
tiating three layers (Figure 6). The skeleton layer consists of a routing skeleton (template
sketch) and the references for the single segment templates. These need to be constrained
mathematically. Later, when a drag point is freely moved, its coordinates are determined,
rounded to a given increment, and handed over to the segment templates and the parts
on the component level. To raise the efficiency, some parameters are directly handed over
from the user input layer to the component layer. Since iLogic does not allow for creating
new variables at runtime, single routing templates with one, two, and three drag points are
created so that all predetermined parameters can be constrained beforehand.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 16

routing assembly, assigns all necessary parameters, and adds geometry constraints to the
model. To replace a routing template, the old one is deleted and a new one is inserted the
same way. For the majority of routings, three drag points per route are sufficient.

3.3. Implementation in Autodesk Inventor Professional
The technology demonstrator was implemented using basic functionalities in the

CAD system Autodesk Inventor Professional. CAD administration requested that the sys-
tem be maintained in-house by expert applicants without requiring deep programming
knowledge. The development team decided to use mainly the iLogic scripting environ-
ment. iLogic is a basic language directly integrated with Inventor and is easy to under-
stand. To simplify automation programming, users can utilize a comprehensive structure
and a snippet library. iLogic rules are no rules in the traditional sense but routines and
functions that can be nested and combined with user inputs. In comparison, its function-
ality is smaller than with the application programming interface but, if necessary, VBA
macros can be executed by iLogic rules as well.

Having this in mind, the development team worked out a correlation model instan-
tiating three layers (Figure 6). The skeleton layer consists of a routing skeleton (template
sketch) and the references for the single segment templates. These need to be constrained
mathematically. Later, when a drag point is freely moved, its coordinates are determined,
rounded to a given increment, and handed over to the segment templates and the parts
on the component level. To raise the efficiency, some parameters are directly handed over
from the user input layer to the component layer. Since iLogic does not allow for creating
new variables at runtime, single routing templates with one, two, and three drag points
are created so that all predetermined parameters can be constrained beforehand.

Figure 6. Correlation model for drag point control of segment templates (excerpt).

3.3.1. Segment Templates
The specification of the piping engineers included five basic segment templates (Fig-

ure 7). The first is a straight segment where the distance between two drag points is
bridged. For the high level of detail, the assembly contains a sequence of standard-length
pipes, joint preparation, and welding information. The second is an angled segment with
one elbow to connect instrumentation perpendicularly, while the z-type bridges instru-
mentation with parallel axis with an offset. The fourth and fifth are a cranked and angular
segment to run around obstacles.

Figure 6. Correlation model for drag point control of segment templates (excerpt).

3.3.1. Segment Templates

The specification of the piping engineers included five basic segment templates (Figure 7).
The first is a straight segment where the distance between two drag points is bridged. For the
high level of detail, the assembly contains a sequence of standard-length pipes, joint prepara-
tion, and welding information. The second is an angled segment with one elbow to connect
instrumentation perpendicularly, while the z-type bridges instrumentation with parallel axis
with an offset. The fourth and fifth are a cranked and angular segment to run around obstacles.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 16

Figure 7. Predefined segment templates implemented in the system.

In general, all segment templates consist of a simplified sweeping body and a sketch
with reference parameters for later constraint handling (Figure 8), iMates for automatic
placement at the front and end face, iLogic rules and forms for user interaction as well as
a spreadsheet data link as a cut list for the segment.

Figure 8. Routing template sweeping path sketch (left) and reference parameters (right).

The behavior of the segment templates is controlled by iLogic rules. One rule is nec-
essary to map the corresponding parameters from the routing skeleton, segment template,
and the single parts in it after inserting the segment into the routing. Another rule toggles
between three preset dimensions, i.e., minimum pipe length to first elbow, elbows in the
middle, minimum pipe length to last elbow (Figure 9), and individual proportions.

Figure 9. Preset dimensions for angular segment with move-in.

The dimensions of the segment template are then used to create a cut list. Based on
minimum weldable and maximum buyable pipe lengths, the strait segments of the rout-
ing are calculated and divided into the corresponding parts. The individual pipe lengths
are also supervised by an automatic manufacturability check. If, e.g., the minimum length
is violated, the system generates a message and a suggestion on how to adapt the segment.

Figure 7. Predefined segment templates implemented in the system.

In general, all segment templates consist of a simplified sweeping body and a sketch
with reference parameters for later constraint handling (Figure 8), iMates for automatic
placement at the front and end face, iLogic rules and forms for user interaction as well as a
spreadsheet data link as a cut list for the segment.

Appl. Sci. 2024, 14, 3113 9 of 16

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 16

Figure 7. Predefined segment templates implemented in the system.

In general, all segment templates consist of a simplified sweeping body and a sketch
with reference parameters for later constraint handling (Figure 8), iMates for automatic
placement at the front and end face, iLogic rules and forms for user interaction as well as
a spreadsheet data link as a cut list for the segment.

Figure 8. Routing template sweeping path sketch (left) and reference parameters (right).

The behavior of the segment templates is controlled by iLogic rules. One rule is nec-
essary to map the corresponding parameters from the routing skeleton, segment template,
and the single parts in it after inserting the segment into the routing. Another rule toggles
between three preset dimensions, i.e., minimum pipe length to first elbow, elbows in the
middle, minimum pipe length to last elbow (Figure 9), and individual proportions.

Figure 9. Preset dimensions for angular segment with move-in.

The dimensions of the segment template are then used to create a cut list. Based on
minimum weldable and maximum buyable pipe lengths, the strait segments of the rout-
ing are calculated and divided into the corresponding parts. The individual pipe lengths
are also supervised by an automatic manufacturability check. If, e.g., the minimum length
is violated, the system generates a message and a suggestion on how to adapt the segment.

Figure 8. Routing template sweeping path sketch (left) and reference parameters (right).

The behavior of the segment templates is controlled by iLogic rules. One rule is neces-
sary to map the corresponding parameters from the routing skeleton, segment template,
and the single parts in it after inserting the segment into the routing. Another rule toggles
between three preset dimensions, i.e., minimum pipe length to first elbow, elbows in the
middle, minimum pipe length to last elbow (Figure 9), and individual proportions.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 16

Figure 7. Predefined segment templates implemented in the system.

In general, all segment templates consist of a simplified sweeping body and a sketch
with reference parameters for later constraint handling (Figure 8), iMates for automatic
placement at the front and end face, iLogic rules and forms for user interaction as well as
a spreadsheet data link as a cut list for the segment.

Figure 8. Routing template sweeping path sketch (left) and reference parameters (right).

The behavior of the segment templates is controlled by iLogic rules. One rule is nec-
essary to map the corresponding parameters from the routing skeleton, segment template,
and the single parts in it after inserting the segment into the routing. Another rule toggles
between three preset dimensions, i.e., minimum pipe length to first elbow, elbows in the
middle, minimum pipe length to last elbow (Figure 9), and individual proportions.

Figure 9. Preset dimensions for angular segment with move-in.

The dimensions of the segment template are then used to create a cut list. Based on
minimum weldable and maximum buyable pipe lengths, the strait segments of the rout-
ing are calculated and divided into the corresponding parts. The individual pipe lengths
are also supervised by an automatic manufacturability check. If, e.g., the minimum length
is violated, the system generates a message and a suggestion on how to adapt the segment.

Figure 9. Preset dimensions for angular segment with move-in.

The dimensions of the segment template are then used to create a cut list. Based on
minimum weldable and maximum buyable pipe lengths, the strait segments of the routing
are calculated and divided into the corresponding parts. The individual pipe lengths are
also supervised by an automatic manufacturability check. If, e.g., the minimum length is
violated, the system generates a message and a suggestion on how to adapt the segment.

3.3.2. Routing Master

The basic components of the routing master assembly (Figure 10) are four work
points. The first, to which the starting point marker will be attached, is always located
at the assembly origin. The other three markers, two of which are used for setting the
positions of the drag points, and one for the end marker, are defined by a sketch, i.e.,
the routing skeleton, in their respective positions. This skeleton uses just driven refer-
ence parameters between the assembly origin and sketch points and is then switched to
adaptive to achieve the drag point functionality. For adapting the routing after initial
configuration, this sketch needs to be activated, and the corresponding drag point must
be moved. The reference parameters are necessary for later constraining, but their value
cannot be modified due to the writing protection associated with them. The work points
are also fitted with iMates for automatic placement of the drag-balls and the start and
end markers according to the workflow defined before. These markers are necessary
since work points cannot be picked as contact components with the function ThisAppli-
cation.CommandManager.Pick(SelectionFilterEnum.kAssemblyLeafOccurrenceFilter) to add the
predefined routing templates in between.

Appl. Sci. 2024, 14, 3113 10 of 16

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 16

3.3.2. Routing Master
The basic components of the routing master assembly (Figure 10) are four work

points. The first, to which the starting point marker will be attached, is always located at
the assembly origin. The other three markers, two of which are used for setting the posi-
tions of the drag points, and one for the end marker, are defined by a sketch, i.e., the rout-
ing skeleton, in their respective positions. This skeleton uses just driven reference param-
eters between the assembly origin and sketch points and is then switched to adaptive to
achieve the drag point functionality. For adapting the routing after initial configuration,
this sketch needs to be activated, and the corresponding drag point must be moved. The
reference parameters are necessary for later constraining, but their value cannot be modi-
fied due to the writing protection associated with them. The work points are also fitted
with iMates for automatic placement of the drag-balls and the start and end markers ac-
cording to the workflow defined before. These markers are necessary since work points
cannot be picked as contact components with the function ThisApplication.CommandMan-
ager.Pick(SelectionFilterEnum.kAssemblyLeafOccurrenceFilter) to add the predefined routing
templates in between.

Figure 10. Work point definition, routing skeleton, and marker placement.

The behavior of the routing master is again controlled by iLogic rules. When a new
routing is created, the piping engineer is queried for the basic layout and metadata (see
Figure 11).

3.3.3. Configuring a Routing
After the declaration of the routing, the configuration system automatically assigns

the pipe diameters from a spreadsheet containing the standards to each marker and drag
ball in the assembly. This would allow the implementation of reducers in a segment in a
later version. Additionally, depending on the selected alignment direction for start and
end, the rotation parameter is saved.

Figure 10. Work point definition, routing skeleton, and marker placement.

The behavior of the routing master is again controlled by iLogic rules. When a new
routing is created, the piping engineer is queried for the basic layout and metadata (see
Figure 11).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 16

Figure 11. iLogic form for routing declaration.

The next step is to insert the first segment template. The user chooses this from a list
and picks the contact components for the start and end. In the background, the configura-
tion system instantiates the template, adjusts its dimensions, creates a separate copy of the
sub-assembly, and adds it to the routing assembly. To automatically connect the iMates
of the component to the contact components a distinction is made between three cases.
The first case is that one of the contacts is the start marker, and the other one is one of the
drag-balls. The similar second case has the end marker as one of the contacts. The third
case is that both contacts are drag-balls, so the component is to be inserted in the middle
of the routing. The contacts are connected using the function AddByiMateAndEntity if the
contact is one of the drag-balls. Otherwise, they are connected using the function AddBy-
iMates to which the iMates for the axles and contact surfaces are passed, since this is com-
putationally more efficient. If both contacts are drag-balls further constraints are added to
eliminate degrees of freedom.

The alignment from a segment template to a drag-ball can be switched by a rule from
collinear to perpendicular and vice versa, which causes the iMates to reassign and the
dimensions to update to the new geometric configuration. Additionally, it is possible to
change the preset of the segment template.

In case of a modification using the drag-balls, the routing assembly needs to be
switched to editing mode, which causes the constraints between the routing skeleton and
the assembly work points to be deactivated. The user then interactively adapts the posi-
tion of the drag-ball and obtains immediate visual feedback from the routing skeleton. If
the modification is finished, the routing assembly is switched back to documentation
mode, and the constraints are reactivated. The assembly is finally rebuilt.

3.3.4. Interim Conclusion
The implemented technology demonstrator fulfilled the expectations. What remains

uncomfortable is the necessity of having a fixed predefined number of drag points in a
routing due to the lack of creating new variable instances at runtime. There is no drawback
since the number of instruments in the routing can be obtained from the corresponding

Figure 11. iLogic form for routing declaration.

Appl. Sci. 2024, 14, 3113 11 of 16

3.3.3. Configuring a Routing

After the declaration of the routing, the configuration system automatically assigns
the pipe diameters from a spreadsheet containing the standards to each marker and drag
ball in the assembly. This would allow the implementation of reducers in a segment in a
later version. Additionally, depending on the selected alignment direction for start and
end, the rotation parameter is saved.

The next step is to insert the first segment template. The user chooses this from
a list and picks the contact components for the start and end. In the background, the
configuration system instantiates the template, adjusts its dimensions, creates a separate
copy of the sub-assembly, and adds it to the routing assembly. To automatically connect the
iMates of the component to the contact components a distinction is made between three
cases. The first case is that one of the contacts is the start marker, and the other one is one
of the drag-balls. The similar second case has the end marker as one of the contacts. The
third case is that both contacts are drag-balls, so the component is to be inserted in the
middle of the routing. The contacts are connected using the function AddByiMateAndEntity
if the contact is one of the drag-balls. Otherwise, they are connected using the function
AddByiMates to which the iMates for the axles and contact surfaces are passed, since this
is computationally more efficient. If both contacts are drag-balls further constraints are
added to eliminate degrees of freedom.

The alignment from a segment template to a drag-ball can be switched by a rule from
collinear to perpendicular and vice versa, which causes the iMates to reassign and the
dimensions to update to the new geometric configuration. Additionally, it is possible to
change the preset of the segment template.

In case of a modification using the drag-balls, the routing assembly needs to be
switched to editing mode, which causes the constraints between the routing skeleton and
the assembly work points to be deactivated. The user then interactively adapts the position
of the drag-ball and obtains immediate visual feedback from the routing skeleton. If the
modification is finished, the routing assembly is switched back to documentation mode,
and the constraints are reactivated. The assembly is finally rebuilt.

3.3.4. Interim Conclusion

The implemented technology demonstrator fulfilled the expectations. What remains
uncomfortable is the necessity of having a fixed predefined number of drag points in a
routing due to the lack of creating new variable instances at runtime. There is no drawback
since the number of instruments in the routing can be obtained from the corresponding
P&ID diagram. However, if this changes during assembly design, a redesign of parts of the
routing would be necessary.

The drag points behave as intended, and the performance of the CAD models with the
low level of detail allows for immediate visual feedback. After confirmation, the detailed
models are updated, and manufacturability checks are carried out automatically to shorten
the loop for engineering department approval.

The technology demonstrator is currently being further developed into a fully featured
piping configuration system. Necessary enhancements represent the integration of the
slope and compensation check as well as a more detailed declaration of the routings. This is
necessary to, e.g., automatically reason about applicable types of compensators depending
on media and capacitation.

4. Requirements and Design Features for Graphic Interactive CAD Configuration

Upon completing the design cycle, Hevner’s DSR approach shifts the focus back to
the rigor cycle, posing questions about the new knowledge gained from the case and how
it contributes to the knowledge base. Table 1 contains the list of commands that were used
during the project in Autodesk Inventor Professional. By taking an inductive approach,
this work aims to generalize the requirements and design features that a CAD system must
meet to implement graphical interactive configurators.

Appl. Sci. 2024, 14, 3113 12 of 16

Table 1. Used Inventor automation commands.

Class Command Arguments

File Manager

Document.Open (arg_FileName)
Document.SaveAs (arg_FileName, arg_SaveAsCopy)

ThisDoc.Path -
Path.Combine (arg_Path, areg_FileName)

User
Interaction

MsgBox (arg_Prompt)
iLogicForm.Show (arg_iLogicFormName)

CAD
Automation

Parameter (arg_ComponentInstanceName,
arg_ParameterName)

Component.Visible (arg_ComponentInstanceName)

Components.Add (arg_InstanceName, arg_FileName, arg_Position,
arg_Grounded, arg_Visible, arg_Appearance)

Components.AddContentCenterPart

(arg_InstanceName,
arg_ContentCenterFolerName,

arg_ContentCenterFileName, arg_CellAddress,
arg_Position, arg_Grounded, arg_Visible,

arg_Appearance)

Constraints.AddByiMates
(arg_ConstraintName, arg_ComponentName_1,

arg_iMateName_1, arg_ComponentName_2,
arg_iMateName_2)

Constraints.AddByiMateAndEntity
(arg_ConstraintName, arg_ComponentName_1,

arg_iMateName, arg_ComponentName_2,
arg_EntityName)

Constraint.IsActive (arg_ConstraintName)

ThisApplication.CommandManager.Pick (arg_PickSelectionFilter,
arg_CommandLinePrompt)

InventorVb.DocumentUpdate() -
Document.Rebuild2 -
iLogicVb.RunRule (arg_InstanceName, arg_RuleName)

Spreadsheet
Interaction

GoExcel.Open (arg_Filename, arg_WorksheetName)

GoExcel.FindRow (arg_Filename, arg_WorksheetName,
arg_ColumnName, arg_Constraint, arg_Var)

GoExcel.CellValue (arg_FileName, arg_WorksheetName,
arg_CellAddress)

GoExcel.Save -
GoExcel.Close -

In addition to the fundamental file managing functions such as opening, closing, sav-
ing, determining and setting the file path, and user interaction functions such as generating
message prompts, displaying message boxes, opening forms, and input boxes, the capa-
bilities for CAD automation and spreadsheet interaction are particularly significant. The
following Table 2 summarizes functional requirements, design features and implementation
alternatives for the application of interactive control elements.

The control of parameters is a foundational function of implementing knowledge-
based engineering into CAD models, as stated in the literature. This includes accessing
parameters by name, reading and assigning values to them, and using them in equations
even across different CAD documents and independently from being assembly or part.
In most parametric CAD systems, the user must constrain the geometry in sketches and
assemblies properly. However, the case of the routing skeleton demonstrates that controlled
degrees of freedom are essential for realizing interactive control elements. Driven parame-
ters were used to evaluate the position of control elements in the routing skeleton’s main
sketch and make them available for further processing. The resulting design feature for
the requirement of driving parameters by geometry change is to pass control element data
to skeleton or component parameters. Implementation variants include the availability
of driving and driven parameters such as those shown in the use case, the possibility to

Appl. Sci. 2024, 14, 3113 13 of 16

temporarily relax or transform driving parameters into driven ones or the possibility to
determine, e.g., the position of a drag point by measuring its distances from the assembly
origin and write this to the corresponding parameter. Thereby, it is necessary to abstract
the control element position either to a given increment or restrict its movement by using a
defined grid.

Table 2. Functional requirements and design features for interactive control elements.

Requirement Design Feature Implementation Variants

Driving parameters by
geometry change

Pass control element position or
state to skeleton or

component parameters

Availability of driving and driven parameters and
relating both by equations

Possibility to relax/transform driving parameters
into driven parameters temporarily

Possibility to automatically determine or measure
the position of a component related to the assembly

origin and passing this automatically to
driving parameters

Automatically adding
assembly components

Add component from document ID
Add by document name

Add by drag and drop from file system

Add library component by ID
Add component by CAD system library

Add variant from part family

Automatically position newly
added assembly components

Declare reference component
for mating

Select by pick (geometry or feature tree)

Select by name (list containing marker IDs)

Query name from user by input box

Constrain new component
with reference

Constrain component using assembly origin and
reference coordinates

Constrain component using IDs of
geometric elements

Constrain components using predefined
mate features

Coupling of external
parameter control

Integrate external
spreadsheet application

Link external spreadsheet file

Embed spreadsheet file with assembly document

Integrate CAD remote control Pass inputs from external application to the
CAD system

Regarding processing components in an assembly document, it is necessary to control
the visibility and suppression state of a component, to add, replace, and delete them. A
special case is the addition of components from a part library such as the Inventor content
center. When these are designed as part families controlled by a table or spreadsheet,
addressing the corresponding variant may require a different query.

Newly introduced components usually need to be constrained in the assembly to
avoid unexpected behavior when components are moved. This involves two actions: first
to declare the reference for mating and second the addition of the constraints themselves.
With respect to the reference component, alternative ways of implementation include
selecting the component by clicking in the 3D view or using the feature tree of the CAD
system, selecting the reference from a list with the marker IDs or to query them from the
user by input boxes. Automatic constraining can be performed via automatically adding
constraints between the new component and the assembly origin, using the IDs from
geometric elements such as face IDs (note that many parametric CAD system use a chaotic
numbering of face IDs, which makes this option less convenient) or using predefined mate
features like in the case study.

Appl. Sci. 2024, 14, 3113 14 of 16

Coupling an external parameter control can involve, e.g., a spreadsheet application
which needs to be linked or embedded with the assembly document or using an external
application as remote control for the CAD system. When using spreadsheets as external
parameter control, it is important to have the ability to retrieve and change cell values in
addition to basic functions such as opening, saving, and closing spreadsheet documents.

Suppressing necessary constraints in a controlled editing mode avoids rebuild errors.

5. Conclusions

Graphical interactive control elements can reduce interaction costs with complex
configurable CAD assemblies, but they add additional constraints to the setup of the
corresponding CAD documents. To achieve an efficient model rebuild, the case study
relied on advanced parameter planning through the use of the extended CommonKADS
approach and its correlation model. Additionally, the CAD system must meet specific
requirements related to constraining sketches and components in assemblies, addressing
parameters and components, and integrating external parameter control and scripting. The
case study is exemplary for many modular configuration designs, such as cable routing,
conveyors, and suspension monorails, but also infrastructural or building designs like
sewage, tunnels, and facades. What they all have in common is that components of the
configurable product can be modified in their position or geometry using an abstracted
skeleton that can be translated into the drag points.

Functional requirements and design features have been established for Autodesk
Inventor Professional, contributing to a reference framework for creating similar control
elements in any parametric CAD system with similar functionalities available. The use of
the Inventor internal iLogic posed certain restrictions since the scripting language does
not allow the creation of new variables at runtime of the rules. Moving the control of
parameters and the arrangement of the modular configuration to a higher language can
eliminate certain issues, but it can also bring about new challenges in terms of planning
workflows and ensuring smooth interaction between the CAD system and the external
configuration system. The basic working principle is independent of this.

Author Contributions: Conceptualization, P.C.G. and P.G.; methodology, P.C.G. and P.G.; software,
P.G.; validation, P.C.G. and P.G.; formal analysis, P.G.; investigation, P.G.; resources, P.G.; data
curation, P.C.G. and P.G.; writing—original draft preparation, P.C.G. and P.G.; writing—review and
editing, P.C.G.; visualization, P.G.; supervision, P.C.G.; project administration, P.C.G. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kristjansdottir, K.; Shafiee, S.; Hvam, L. How to identify possible applications of product configuration systems in Engineer-to-

Order companies. Int. J. Ind. Eng. Manag. (IJIEM) 2017, 8, 157–165. [CrossRef]
2. Gembarski, P.C.; Lachmayer, R. Product-Service-Systems: What and why Developers can learn from Mass Customization. Enterp.

Model. Inf. Syst. Archit. (EMISAJ) 2018, 13, 16. [CrossRef]
3. Forza, C.; Salvador, F. Product Information Management for Mass Customization: Connecting Customer, Front-Office and Back-Office for

Fast and Efficient Customization; Palgrave Macmillan: Basingstoke, UK, 2006. [CrossRef]
4. Caetano, I.; Santos, L.; Leitão, A. Computational design in architecture: Defining parametric, generative, and algorithmic design.

Front. Archit. Res. 2020, 9, 287–300. [CrossRef]
5. Gembarski, P.C.; Lachmayer, R. Solution Space Development: Conceptual Reflections and Development of the Parameter Space

Matrix as Planning Tool for Geometry-based Solution Spaces. Int. J. Ind. Eng. Manag. (IJIEM) 2018, 9, 177–186. [CrossRef]

https://doi.org/10.24867/IJIEM-2017-3-116
https://doi.org/10.18417/emisa.13.16
https://doi.org/10.1057/9780230800922
https://doi.org/10.1016/j.foar.2019.12.008
https://doi.org/10.24867/IJIEM-2018-4-177

Appl. Sci. 2024, 14, 3113 15 of 16

6. Amadori, K.; Tarkian, M.; Ölvander, J.; Krus, M. Flexible and robust CAD models for design automation. Adv. Eng. Inform. 2012,
26, 180–195. [CrossRef]

7. Skarka, W. Application of MOKA methodology in generative model creation using CATIA. Eng. Appl. Artif. Intell. 2007, 20,
677–690. [CrossRef]

8. Poot, L.P.; Wehlin, C.; Tarkian, M.; Ölvander, J. Integrating sales and design: Applying CAD configurators in the product
development process. Proc. Des. Soc. 2020, 1, 345–354. [CrossRef]

9. Frank, G.; Entner, D.; Prante, T.; Khachatouri, V.; Schwarz, M. Towards a generic framework of engineering design automation for
creating complex CAD models. Int. J. Adv. Syst. Meas. 2014, 7, 179–192.

10. Felfernig, A.; Hotz, L.; Bagley, C.; Tiihonen, J. Knowledge-Based Configuration: From Research to Business Cases; Newnes: London,
UK, 2014. [CrossRef]

11. Blažek, P.; Kolb, M.; Streichsbier, C.; Honetz, S. The evolutionary process of product configurators. In Managing Complexity:
Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015); Bellemare, J., Carrier, S.,
Nielsen, K., Piller, F.T., Eds.; Springer: Heidelberg, Germany, 2015; pp. 161–172. [CrossRef]

12. Lam, H. A framework of interaction costs in information visualization. IEEE Trans. Vis. Comput. Graph. 2008, 14, 1149–1156.
[CrossRef]

13. Rind, A.; Aigner, W.; Wagner, M.; Miksch, S.; Lammarsch, T. Task cube: A three-dimensional conceptual space of user tasks in
visualization design and evaluation. Inf. Vis. 2016, 15, 288–300. [CrossRef]

14. Zaky, A.; Zagermann, J.; Reiterer, H.; Feuchtner, T. Opportunities and Challenges of Hybrid User Interfaces for Optimization of
Mixed Reality Interfaces. In Proceedings of the 2023 IEEE International Symposium on Mixed and Augmented Reality Adjunct
(ISMAR-Adjunct), Sydney, Australia, 16–20 October 2023; IEEE: New York City, NY, USA, 2023; pp. 215–219. [CrossRef]

15. Seth, A.; Vance, J.M.; Oliver, J.H. Virtual reality for assembly methods prototyping: A review. Virtual Real. 2011, 15, 5–20.
[CrossRef]

16. Gembarski, P.C.; Gast, P. Interactive Geometric Configuration Using Sketch-Based CAD Models. In Proceedings of the 10th
International Conference on Mass Customization and Personalization-Community of Europe (MCE-CE 2022), Novi Sad, Serbia,
21–23 September 2022; University of Novi Sad-Faculty of Technical Sciences: Novi Sad, Serbia, 2022; pp. 45–52. [CrossRef]

17. Ortner-Pichler, A.; Landschützer, C. Integration of parametric modelling in web-based knowledge-based engineering applications.
Adv. Eng. Inform. 2022, 51, 101492. [CrossRef]

18. Hirz, M.; Dietrich, W.; Gfrerrer, A.; Lang, J. Integrated Computer-Aided Design in Automotive Development; Springer:
Berlin/Heidelberg, Germany, 2013. [CrossRef]

19. Demoly, F.; Roth, S. Knowledge-based parametric CAD models of configurable biomechanical structures using geometric
skeletons. Comput. Ind. 2017, 92, 104–117. [CrossRef]

20. Demoly, F.; Toussaint, L.; Eynard, B.; Kiritsis, D.; Gomes, S. Geometric skeleton computation enabling concurrent product
engineering and assembly sequence planning. Comput. Aided Des. 2011, 43, 1654–1673. [CrossRef]

21. Hevner, A.R. A three cycle view of design science research. Scand. J. Inf. Syst. 2007, 19, 87–92.
22. Zhang, L.L. Product configuration: A review of the state-of-the-art and future research. Int. J. Prod. Res. 2014, 52, 6381–6398.

[CrossRef]
23. Terzidis, K. Algorithmic design: A paradigm shift in architecture. In Proceedings of the 22nd eCAADe Conference, Copenhagen,

Denmark, 15–18 September 2004; pp. 201–207. [CrossRef]
24. Chakrabarti, A.; Shea, K.; Stone, R.; Cagan, J.; Campbell, M.; Hernandez, N.V.; Wood, K.L. Computer-based design synthesis

research: An overview. J. Comput. Inf. Sci. Eng. 2011, 11, 021003. [CrossRef]
25. Brockmöller, T.; Siqueira, R.; Gembarski, P.C.; Mozgova, I.; Lachmayer, R. Computer-aided engineering environment for designing

tailored forming components. Metals 2020, 10, 1589. [CrossRef]
26. Tedeschi, A.; Lombardi, D. The algorithms-aided design (AAD). In Informed Architecture; Springer: Berlin/Heidelberg, Germany,

2018; pp. 33–38. [CrossRef]
27. Biedermann, M.; Meboldt, M. Computational design synthesis of additive manufactured multi-flow nozzles. Addit. Manuf. 2020,

35, 101231. [CrossRef]
28. Fuchs, D.; Bartz, R.; Kuschmitz, S.; Vietor, T. Necessary advances in computer-aided design to leverage on additive manufacturing

design freedom. Int. J. Interact. Des. Manuf. 2022, 16, 1633–1651. [CrossRef]
29. Gembarski, P.C. Joining Constraint Satisfaction Problems and Configurable CAD Product Models: A Step-by-Step Implementation

Guide. Algorithms 2022, 15, 318. [CrossRef]
30. Shah, J.J. Designing with parametric cad: Classification and comparison of construction techniques. In International Workshop on

Geometric Modelling; Springer: Boston, MA, USA, 1998; pp. 53–68. [CrossRef]
31. Yao, D.; Chang, Z.Y.; Zhao, J.; Dou, Y.L. Study on key techniques of parametric design system based on solid works and KBE.

Appl. Mech. Mater. 2011, 71, 3861–3867. [CrossRef]
32. Myung, S.; Han, S. Knowledge-based parametric design of mechanical products based on configuration design method. Expert

Syst. Appl. 2001, 21, 99–107. [CrossRef]
33. Gembarski, P.C.; Li, H.; Lachmayer, R. KBE-modeling techniques in standard CAD-systems: Case study—Autodesk inventor

professional. In Managing Complexity; Springer: Berlin/Heidelberg, Germany, 2017; pp. 215–233. [CrossRef]

https://doi.org/10.1016/j.aei.2012.01.004
https://doi.org/10.1016/j.engappai.2006.11.019
https://doi.org/10.1017/dsd.2020.129
https://doi.org/10.1016/C2011-0-69705-4
https://doi.org/10.1007/978-3-319-29058-4_13
https://doi.org/10.1109/TVCG.2008.109
https://doi.org/10.1177/1473871615621602
https://doi.org/10.1109/ISMAR-Adjunct60411.2023.00050
https://doi.org/10.1007/s10055-009-0153-y
https://doi.org/10.15488/12911
https://doi.org/10.1016/j.aei.2021.101492
https://doi.org/10.1007/978-3-642-11940-8
https://doi.org/10.1016/j.compind.2017.06.006
https://doi.org/10.1016/j.cad.2011.09.006
https://doi.org/10.1080/00207543.2014.942012
https://doi.org/10.52842/conf.ecaade.2004.201
https://doi.org/10.1115/1.3593409
https://doi.org/10.3390/met10121589
https://doi.org/10.1007/978-3-319-53135-9_4
https://doi.org/10.1016/j.addma.2020.101231
https://doi.org/10.1007/s12008-022-00888-z
https://doi.org/10.3390/a15090318
https://doi.org/10.1007/978-0-387-35490-3_4
https://doi.org/10.4028/www.scientific.net/AMM.71-78.3861
https://doi.org/10.1016/S0957-4174(01)00030-6
https://doi.org/10.1007/978-3-319-29058-4_17

Appl. Sci. 2024, 14, 3113 16 of 16

34. LaRocca, G. Knowledge based engineering: Between AI and CAD. Review of a language based technology to support engineering
design. Adv. Eng. Inform. 2012, 26, 159–179. [CrossRef]

35. Grković, V.; Kolarević, M.; Petrović, A.; Bjelić, M. CAD Configurator for Automatic Configuration of Modular Strongrooms. In
Proceedings of the 9th International Conference on Mass Customization and Personalization-Community of Europe (MCE-CE
2020), Novi Sad, Serbia, 23–25 September 2020; University of Novi Sad-Faculty of Technical Sciences: Novi Sad, Serbia, 2020;
pp. 85–92.

36. Peng, C.C.; Rigdway, K. Integration of CAD/CAM and Spreadsheet Data Processing. Integr. Manuf. Syst. 1993, 4, 29–36.
[CrossRef]

37. Marchenko, M.; Behrens, B.A.; Wrobel, G.; Scheffler, R.; Pleßow, M. A new method of visualization and documentation of
parametric information of 3D CAD models. Comput. Aided Des. Appl. 2011, 8, 435–448. [CrossRef]

38. Hoffmann, C.M.; Kim, K.J. Towards valid parametric CAD models. Comput. Aided Des. 2001, 33, 81–90. [CrossRef]
39. Tang, Z.; Zou, Q.; Gao, S. A decision-support method for multi-parameter editing of parametric CAD models. Adv. Eng. Inform.

2023, 56, 101997. [CrossRef]
40. Torres, V.H.; Ríos, J.; Vizán, A.; Pérez, J.M. Integration of design tools and knowledge capture into a CAD system: A case study.

Concurr. Eng. 2010, 18, 311–324. [CrossRef]
41. Zheng, P.; Torres, V.H.; Ríos, J.; Zhao, G. Integration of Conceptual Design and MOKA into CATIA v5: A Knowledge-based

Application for an Aircraft Y-bolt Component. Appl. Mech. Mater. 2013, 271, 974–980. [CrossRef]
42. Alarcón, R.H.; Chueco, J.R.; García, J.P.; Idoipe, A.V. Fixture knowledge model development and implementation based on a

functional design approach. Robot. Comput. Integr. Manuf. 2010, 26, 56–66. [CrossRef]
43. Stokes, M. Managing Engineering Knowledge: MOKA: Methodology for Knowledge Based Engineering Applications; Professional

Engineering Publishing: London, UK, 2001.
44. Schreiber, G.; Wielinga, B.; de Hoog, R.; Akkermans, H.; Van de Velde, W. CommonKADS: A comprehensive methodology for

KBS development. IEEE Expert 1994, 9, 28–37. [CrossRef]
45. Schreiber, G.; Akkermans, H.; Anjewierden, A.; de Hoog, R.; Shadbolt, N.; Van de Velde, W.; Wielinga, B. Knowledge Engineering

and Management: The CommonKADS Methodology; MIT Press: Cambridge, MA, USA, 2000.
46. Kingston, J.K. Designing knowledge based systems: The CommonKADS design model. Knowl. Based Syst. 1998, 11, 311–319.

[CrossRef]
47. Park, J.H.; Storch, R.L. Pipe-routing algorithm development: Case study of a ship engine room design. Expert Syst. Appl. 2002, 23,

299–309. [CrossRef]
48. Qu, Y.F.; Jiang, D.; Zhang, X.L. A new pipe routing approach for aero-engines by octree modeling and modified max-min ant

system optimization algorithm. J. Mech. 2018, 34, 11–19. [CrossRef]
49. Kumar, S.S.; Cheng, J.C. A BIM-based automated site layout planning framework for congested construction sites. Autom. Constr.

2015, 59, 24–37. [CrossRef]
50. Rodrigues, G.P.W.; Costa, L.H.M.; Farias, G.M.; de Castro, M.A.H. A Depth-First Search Algorithm for Optimizing the Gravity

Pipe Networks Layout. Water Resour. Manag. 2019, 33, 4583–4598. [CrossRef]
51. Calixto, E.E.; Bordeira, P.G.; Calazans, H.T.; Tavares, C.A.; Rodriguez, M.T. Plant design project automation using an automatic

pipe routing routine. Comput. Aided Chem. Eng. 2009, 27, 807–812. [CrossRef]
52. Blokland, M.; van der Mei, R.D.; Pruyn, J.F.J.; Berkhout, J. Literature Survey on Automatic Pipe Routing. Oper. Res. Forum 2023,

4, 35. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.aei.2012.02.002
https://doi.org/10.1108/09576069310044646
https://doi.org/10.3722/cadaps.2011.435-448
https://doi.org/10.1016/S0010-4485(00)00073-7
https://doi.org/10.1016/j.aei.2023.101997
https://doi.org/10.1177/1063293X10389788
https://doi.org/10.4028/www.scientific.net/AMM.271-272.974
https://doi.org/10.1016/j.rcim.2009.02.001
https://doi.org/10.1109/64.363263
https://doi.org/10.1016/S0950-7051(98)00071-9
https://doi.org/10.1016/S0957-4174(02)00049-0
https://doi.org/10.1017/jmech.2016.86
https://doi.org/10.1016/j.autcon.2015.07.008
https://doi.org/10.1007/s11269-019-02373-x
https://doi.org/10.1016/S1570-7946(09)70355-4
https://doi.org/10.1007/s43069-023-00208-5

	Introduction
	Background
	Knowledge-Based Engineering and Knowledge-Based CAD
	Model Planning for Knowledge-Based CAD

	Learning by Building: Interactive Modular Piping 3D CAD Configuration System
	System Specification and Limitations
	Program Flow and Implementation Concept
	Implementation in Autodesk Inventor Professional
	Segment Templates
	Routing Master
	Configuring a Routing
	Interim Conclusion

	Requirements and Design Features for Graphic Interactive CAD Configuration
	Conclusions
	References

