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Abstract: Traditional capacity forecasting algorithms lack effective data interaction, leading to a
disconnection between the actual plan and production. This paper discusses the multi-factor model
based on a discrete manufacturing workshop and proposes a digital twin-driven discrete manu-
facturing workshop capacity prediction method. Firstly, this paper gives a system framework for
production capacity prediction in discrete manufacturing workshops based on digital twins. Then, a
mathematical model is described for discrete manufacturing workshop production capacity under
multiple disturbance factors. Furthermore, an innovative production capacity prediction method, us-
ing the “digital twin + Long-Short-Term Memory Network (LSTM) algorithm”, is presented. Finally, a
discrete manufacturing workshop twin platform is deployed using a commemorative disk custom pro-
duction line as the prototype platform. The verification shows that the proposed method can achieve
a prediction accuracy rate of 91.8% for production line capacity. By integrating the optimization
feedback function of the digital twin system into the production process control, this paper enables
an accurate perception of the current state and future changes in the production system, effectively
evaluating the production capacity and delivery date of discrete manufacturing workshops.

Keywords: digital twins; industrial big data; multi-factor model; discrete manufacturing workshop;
productivity prediction

1. Introduction

The rapid development of information and communication technology has signifi-
cantly facilitated the digital transformation of enterprises. This process has also promoted
the rapid development of enabling technologies, such as the industrial Internet, digital
twins, and industrial big data. Moreover, the increasing demand for personalized products
will affect the system, production lines, and products. The enterprise digital transformation
is developing towards multi-variety, small-batch, and personalized production, which
promotes the realization of intelligent manufacturing, product life cycle monitoring, and
“Made in China 2025” [1]. Aiming at multi-level spans of time/space scales of components
in the production line cyber–physical system, order-driven and random disturbances inter-
act in the production process. Moreover, the physical resource allocation/execution and
information decision-making reconstruction are loosely related to the control link [2].

The production mode in discrete manufacturing workshops is different from process
production. The production process is usually decomposed into multiple processing tasks
to complete, and each of them is applied to specific equipment or resources within the
enterprise. It should be noted that tasks with the same process are assigned to one device for
processing. At the same time, the production process of discrete manufacturing workshops
needs to adapt to changes in customer needs, product forms, and production factors. In
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discrete workshops, many factors affect production planning, including changes in product
types, production delivery dates, and equipment status, thereby adding complexity to the
formulation of production plans and the prediction of actual factory capacity. In the past
production, factory scheduling and delivery forecasts were mainly evaluated by scheduling
personnel based on experience and historical data. However, with the ever-changing
demand for product production, the management of production factors, production activity
planning, and production process control are becoming increasingly complex. Managing,
controlling, predicting, analyzing, and optimizing efficiently, reasonably, and in real time
are among the important issues facing discrete manufacturing workshops. Furthermore,
before a company builds a new production base and processes new products, realizing the
company’s production capacity forecast, delivery date evaluation, and rational production
arrangement must be the focus of the company’s work.

Discrete manufacturing workshop production activity planning and production capac-
ity evaluation typically involve two stages [3,4]. In the first stage, experienced engineers
manage personnel, materials, equipment, processes, and other information in the discrete
manufacturing workshop. Material storage, planning arrangements, capacity forecasting,
etc., are all evaluated based on personnel experience and historical information and stored
on paper media. Information statistics, transmission, query, and analysis are difficult,
leading to a lower accuracy rate. However, with the introduction of Enterprise Resource
Planning (ERP), Manufacturing Execution System (MES) systems, and computer technol-
ogy, data statistics, archival, and transmission capabilities have been significantly improved.
Since information processing and analysis capabilities are continuously improved, factory
informatization has entered the second stage [5]. According to the material requirement
plan, process route, and man-hour quota, the time and workload required for production ca-
pacity are given and compared with the capacity provided by the manufacturing workshop.
This evaluation shows whether completing the material requirement plan matches the
ability. If the utilization rate of the equipment is unacceptable, the master production plan
should be adjusted, and the material requirements plan should be regenerated. During this
stage, the system can realize production and processing resource constraints, production
process allocation, production equipment monitoring, etc. However, due to the lack of
real-time interaction and information fusion capabilities, production capacity prediction
and delivery dates rely more on historical data for model evaluation [6].

Before building new factories and processing new products, problems such as a lack of
historical data are exposed, making it impossible to predict workshop production capacity
accurately. Combining the current requirements of intelligent manufacturing systems,
the introduction of digital workshops signifies a change in the elements of traditional
manufacturing systems. Moreover, the concept of digital twin workshops has also emerged
as the times require [7]. In the digital twin manufacturing workshop, the data of production
factors such as personnel, equipment, materials, and environment in the physical workshop
are fully connected to the information world through the workshop Internet of Things
(IoT), RFID, and other information means, realizing mutual interconnection and data
sharing. Driven by comprehensive production factor data, the simulation, evaluation, and
analysis functions of the virtual workshop and workshop service system can optimize the
behavior of each factor while considering the status of other factors. This approach supports
the linkage and optimal combination of factors necessary to ensure smooth production
operations [8]. The data in the physical space mainly refer to the real data generated by the
physical entities of the workshop. Conversely, the data in the information space mainly refer
to the data related to the virtual workshop and the workshop service system. These data
are not directly collected from the physical space but from virtual workshop data which is
based on digital twin data model, algorithm deduction, and system derivation [9]. With the
introduction of digital twin technology, a multi-physical, multi-scale, and multi-probability
twin of a discrete manufacturing workshop is established through digital means to achieve
deep integration and real-time interaction between physical space and information space,
offering a basis for data-driven workshop capacity prediction.



Appl. Sci. 2024, 14, 3119 3 of 20

Considering the characteristics of discrete manufacturing workshops, such as the
production of many types of products, small batches, and frequent production changes, this
paper discusses the problems of inaccurate production capacity forecasts and unfulfilled
delivery dates during the factory production process. Based on predictive data, it is
possible to optimize production scheduling methods in digital twin systems and provide
follow-up suggestions. The modeling method of discrete manufacturing workshops driven
by twin data and the establishment process of factor conditions are considered based
on the problems faced by discrete manufacturing workshops. In addition, the neural
network algorithm to realize accurate predictions of factory production capacity and
delivery management is studied based on the interactive fusion of twin space and twin data.
Finally, the feasibility of this method is experimentally verified. The main contributions of
this paper are in the following three aspects:

1. Discussing the current production capacity forecasting methods and problems faced
by discrete manufacturing workshops and proposing a digital twin-driven discrete
manufacturing workshop capacity forecasting system framework;

2. Innovating the modeling process of discrete manufacturing workshops driven by
twin data and proposing a time series prediction algorithm for workshop production
capacity based on Long Short-Term Memory (LSTM);

3. Taking the lead in building a digital twin platform for capacity prediction in discrete
manufacturing workshops and conducting digital deployment in actual manufactur-
ing workshops to verify the accuracy of the prediction model.

The subsequent chapters of this paper are arranged as follows: The related work is
described in the second section. Section 3 considers the production mode, management
mode, and current production capacity forecasting method of the discrete manufacturing
workshop. Moreover, the system framework for capacity forecasting in the discrete manu-
facturing workshop is presented. In Section 4, this paper establishes the capacity problem
model for discrete workshops driven by digital twins. Section 5 presents the design of
production capacity prediction algorithms driven by twin data, along with a discussion
of the constraints and solutions involved in the process of building the information space
of discrete manufacturing workshops using digital twin technology. Section 6 conducts
an experiment to validate the feasibility of the proposed approach. Finally, this paper
concludes with a summary of the key findings and contributions.

2. Related Works

This section introduces the current related research on aspects of production capacity
prediction in discrete workshops, workshop production capacity control driven by twin
data, and workshop production capacity prediction algorithms.

2.1. Capacity Forecasting for Discrete Workshops

In a discrete manufacturing workshop, the production process of products is typically
divided into multiple processing tasks. Each task is applied to specific equipment or
resources within the enterprise, ensuring that tasks with the same process are assigned
to the same equipment for processing. The production process route and equipment
usage are flexible and variable, and there are many changes in product design, processing
requirements, order quantity, production lead time, and other aspects during the production
process. The dynamic changes in product types and equipment integration in discrete
manufacturing workshops involve relatively complex product processes and equipment
processing state constraints, requiring multiple processing workstations for processing and
component assembly; the product shape and structure are highly dependent on customer
preferences, leading to a high degree of customization.

Ozturk et al. [10] proposed a branch-and-bound algorithm designed specifically to
solve parallel-batch scheduling problems with different processing times, release times, and
unit sizes, ensuring that the number of job batches does not exceed the equipment capacity
and that the processing time is determined based on the maximum processing time within
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the batch. Zhou et al. [11] introduced a knowledge graph-based framework for discrete
manufacturing workshop resource allocation, integrating workshop implicit engineering
knowledge to support the optimal resource allocation method. During the production
and operation process of enterprises, many different varieties and series of products
are produced simultaneously, resulting in complex and diverse products and frequent
production changes. From the perspective of product processing, the production process in
a discrete manufacturing workshop is a complex process formed by the parallel or serial
connection of various component-processing subprocesses. This process contains complex
constraints and disturbance factors. Therefore, the process control of discrete manufacturing
enterprises becomes more complex and variable. Table 1 provides an overview of the
research methods employed by different scholars and highlights their advantages.

In discrete manufacturing workshops, many factors affect production planning, re-
sulting in a very complex formulation of production plans. Workshop capacity prediction
and production lead time are often estimated by the planning and scheduling person
based on experience. However, any changes in the production process plan frequently
lead to insufficient capacity estimation and delayed delivery times. To meet these needs,
enterprises must be equipped with highly customized supply networks and create resilient
corporate risk management capabilities to improve the decision support system for the
design, scheduling, control, and collaborative management of digital manufacturing [12].

Dengiz et al. [13] pointed out that simulation modeling is one of the most useful
techniques for analyzing and evaluating the dynamic behavior of complex manufacturing
systems. They employed virtual simulation analysis modeling to improve productivity in
the automotive industry. Benotsmane et al. [14] used numerical and graphical modeling
and simulation, 3D designs, and Tabu search in trajectory space to evaluate and enhance
productivity through collaborative robot simulation and artificial intelligence methods. A.
Florescu and S. A. Barabas [15] utilized simulation in the control system of intelligent man-
ufacturing systems to analyze current parameters and predict the requirements of future
processing scenarios. In addition, in the customized needs of customers, the complexity
of the process and high-quality requirements necessitate the evaluation of workshop pro-
duction capacity based on multiple factors, such as specific product processes, production
equipment status, and disturbance factors. Relying on on-site operators for estimation
may lead to significant deviations in processing time and production capacity estimation
due to insufficient personnel experience and on-site consideration. Consequently, the goal
of achieving timely delivery may fail. S. Kim and K. Ryu [16] proposed the definition of
AI-based statistical analysis technology, which utilizes on-site information to estimate the
maximum workshop capacity for the proposed process and improve the competitiveness of
the mold industry. Wang et al. [17] proposed a proactive manufacturing resource allocation
(PMRA) method based on intelligent factory production performance prediction. This
approach avoids production interruptions or performance degradation issues based on
real-time analysis and an accurate prediction of production performance.

Table 1. Research on production capacity forecasting.

Author Characteristic Advantage

Ozturk et al. [10] Production capacity forecast based on equipment
capacity, processing time, etc.

For a certain production line, it can quickly predict the
production capacity.

Wang et al. [17] Accurate predictions based on real-time analysis
and production performance.

Real-time dynamic analysis based on equipment and
production line status.

Zhou et al. [11]
A resource allocation framework for discrete
manufacturing workshops based on knowledge
graphs for capacity prediction.

Coordination of all resources in the workshop and
evolution of the current production capacity forecast
of the workshop based on the knowledge graph.
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Table 1. Cont.

Author Characteristic Advantage

Dengiz et al. [13] Improving productivity in the automotive industry
using hybrid simulation–analytical modeling.

Analysis of the bottleneck of automobile production
capacity based on the digital twin system,
optimization of the design, and increase in production
capacity.

This article

Establishing a prediction model for “digital twin
data + LSTM network”. Iteratively optimizing the
system through twin data and systems and
dynamically fitting the production capacity
forecast under different states. It has better
applicability and reliability.

Full use of the advantages of a virtual and real fusion
of digital twin systems and real production lines. With
the support of digital twin data, consideration of the
constraints of the workshop, and the analysis of
production performance under different states and
resources. Combined with the LSTM algorithm,
facilitation of real-time and accurate analysis of
production line capacity.

Hence, for discrete manufacturing enterprises, effectively estimating production ca-
pacity and reasonably predicting delivery time based on production equipment elements,
process requirements, and constraints is a critical issue before constructing discrete work-
shops and undertaking product processing. Once production anomalies occur, production
adjustment demands are often released, and production decisions are often based on histor-
ical production information, which may result in production interruptions or performance
degradation. Capacity prediction is a complex time series prediction problem that considers
multiple factor disturbances.

2.2. Workshop Capacity Control Driven by Digital Twins

Discrete manufacturing workshops encounter many challenges and uncontrollable
factors in production factor management, production activity planning management, and
production process control. When building new factories and processing new products,
achieving accurate production control processes is difficult due to a lack of historical data
as a reference. Digital twinning has brought digital engineering modeling and simulation
into a new era [18]. Serving as the digital representation of real-world entities and systems,
the information space within digital twins can realize the multi-dimensional, multi-scale,
and multi-probability simulation process of physical entities. Through the interaction and
fusion of twin data, digital twins facilitate the understanding, prediction, optimization, and
control of real entities or systems [19,20].

The connotations, reference models, applications, and research issues of digital twin-
driven intelligent manufacturing have been proposed in [21]. This application focuses on
continuous optimization, proactive maintenance, and continuous data processing through-
out the production process. Vachálek et al. [22] highlighted that the digital twin of industrial
production lines could support the existing production structure within the automotive
industry and utilize resources effectively through expanded production and planning
strategies. Ma et al. [23] proposed a digital twin-driven production management system
for production workshops, enabling the dynamic simulation and optimization of the pro-
duction process of the manufacturing industry while achieving real-time synchronization,
high fidelity, and real virtual integration in network physical production. In response to
constantly changing customer demands, rising resource costs, and growing uncertainty,
Kunath et al. [24] integrated the digital twin of manufacturing systems into decision sup-
port systems to enhance the order management process. In summary, digital twins achieve
statistical, analytical, and optimized decision-making based on twin data through real-time
interaction and fusion between the physical and information worlds. By utilizing con-
tinuous simulation and iterative input data and constraint conditions, digital twins offer
an effective solution to the problem of inaccurate production capacity prediction prior to
factory construction and product production and processing.
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Due to the asynchronous data between the physical and information spaces in the
workshop, a significant delay exists in production process control, resulting in a discon-
nection from actual production. Defects will be observed when using basic process data
(key elements of Industry 4.0) for the fully automated data collection process, as well as the
evaluation, quantification, and analysis of collected data. According to the superposition
of digital twins and new-generation information technology, the discrete manufacturing
physical and digital workshops have achieved bidirectional real mapping and real-time
interaction capabilities, fully realizing the management mode encompassing all elements,
processes, and businesses within the entire discrete manufacturing workshop. Driven by
twin data, continuous iterative optimization is achieved by setting product process routes,
production line constraints, production factor conditions, and production process control
to achieve the optimal operation mode of workshop production and control. The virtual
workshop model and related information can be overlaid and interacted with the physical
workshop in real time, thereby simulating the operation process of the physical workshop
based on historical time series data. Digital chain technology enables seamless integration,
real-time interaction, and fusion between the virtual workshop and the physical work-
shop, which is expected to drive the production capacity evaluation and prediction of
the workshop.

2.3. Prediction Algorithm for Production Capacity in Discrete Workshops

To address the problem of workshop capacity fluctuations with attributes such as large
scale, strong NP-hard, non-convex optimization, and randomness, a combined approach
employing a digital twin model and a digital twin data-driven approach is proposed to
study production capacity prediction algorithms. These algorithms exhibit time sensitivity
to meet fast and effective solution requirements, which is particularly crucial. In the
past production, since yield prediction is a time series data analysis problem, the main
methods included linear regression, exponential smoothing, and time series smoothing.
However, with the increasing accuracy requirements of production capacity prediction
models, advanced algorithms such as heuristic graph search, simulated annealing, genetic
algorithms, and neural networks have emerged. Among them, in the discrete workshop,
the ARIMA algorithm is suitable for predicting and analyzing the production capacity of
a single product during stable equipment operation, maintaining data stability without
production state iteration; RNN can effectively iterate process data and is suitable for
processes where the state of products and equipment in discrete workshops is constantly
changing. However, due to gradient explosion, convergence cannot be achieved, which is
shown in Table 2.

Table 2. Comparison of production capacity prediction algorithms.

Algorithm Name Characteristic Advantage Disadvantage

ARIMA [25] Quickly captures time series
data features

Strong pertinence, good
robustness Need for smoothing the data

Holt–Winters [26] Effectively predicts data with
seasonal trends

Automatically shields the
influence of abnormal data;
the process is simple

False positives for periodic
anomaly data

GBM-class regression
algorithm [27]

Overfitting can be controlled
by controlling the number of
iterations

Model learning with a high
degree of freedom and high
precision

Promotion and application
complexity are high

RNN [28] Handles data input of
arbitrary length

High learning freedom and
good customization

Long-term dependence on
data, resulting in gradient
disappearance

LSTM [29] Solves the long-term
dependency problem of RNNs

With long-term memory
function

High data volume
requirements, limited
optimization methods
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2.4. Summary of Relevant Research

The above research mainly elaborates on discrete workshop capacity prediction, digital
twin modeling, driving decision-making, and capacity prediction algorithms. This clearly
illustrates the value and prospects of digital twins in workshop control. It also elaborates
on the types and adaptability of production prediction algorithms. However, there is a lack
of correlation and architectural systems for establishing digital twin models and capacity
analysis. No effective algorithm has been developed to demonstrate the value of data
analysis and their application in discrete workshop capacity prediction in digital twins.

This paper establishes a digital twin workshop to simulate the operation and evolution
of the workshop in different stages, such as discrete manufacturing production factor
management, production plan management, and production process control driven by
twin data. Then, it achieves applications, including evaluation, optimization, prediction,
and traceability. By integrating production process control with the optimization feedback
functions of the twin system, it becomes possible to accurately perceive the current state
and future changes in the system, thereby effectively evaluating the workshop’s production
capacity and delivery time.

3. System Framework for Capacity Prediction in Discrete Manufacturing Workshop

Discrete manufacturing workshops often allocate and schedule production based on
the specific process and equipment status of products, resulting in many constraints on
production scheduling and abnormally complex production process control. During the
production process, there are many non-standard products due to the large variety of
product types, and most production enterprises often have on-site workers for flexible
adaptation [30]. Consequently, data such as production evaluation, scheduling, production
capacity prediction, and delivery time prediction rely on the abilities and experience of
employees, leading to inaccuracies in predicting the actual production capacity of the
workshop. In the production process of discrete manufacturing workshops, a variety
of heterogeneous data sources, such as customer data, material data, production activity
planning data, equipment status, and time-varying production process control, are involved.
Currently, data analysis and processing are only performed manually or through ERP, MES,
and other application systems. However, these approaches lack real-time interaction
and information fusion, thereby limiting effective control over current production factors,
production activity plans, and production process control within the workshop.

The digital twin of discrete manufacturing workshops represents a digital mapping of
discrete workshops, as shown in Figure 1, providing a system framework for predicting
workshop capacity driven by digital twins. Based on the digital twin five-dimensional
model theory, the discrete manufacturing workshop twin system involves physical work-
shops, virtual workshops, service systems, twin data, and connected services. The construc-
tion process of the digital twin system includes the construction of production factors, such
as the human–machine material environment in the workshop, a production activity plan
and process construction that organizes and distributes production factors reasonably, and
system modeling processes, i.e., production system monitoring, analysis, and optimiza-
tion. The digital twin system depicts all elements, processes, and business of the physical
workshop, along with real-time interaction and system integration based on twin data.
Through a full-factor modeling process based on the twin system, precise characterization
of production factors in discrete manufacturing workshops can be achieved, leading to the
establishment of a twin model that exhibits virtual and real consistencies. Additionally,
a dynamic modeling process based on models and twin data can effectively solve the
problem of twin data-driven production process state identification and dynamic iterative
modeling. This process enables equipment fault diagnosis and predictive maintenance
through iterative analysis based on the real-time status of the production line. Furthermore,
the simulation analysis and decision-making of the production process are achieved based
on the twin model and data fusion-driven modeling process by establishing constraints
and coupling relationships among production factors, models, and data.
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Figure 1. Workshop capacity prediction framework driven by digital twin data.

The precise prediction of production capacity for discrete manufacturing workshops
is shown in Figure 1. Firstly, a digital twin of discrete workshops is constructed using
the software of Process Simulate 16.0.0. This architecture enables real-time interaction
between information space and physical space through the utilization of digital chain
technology. At this level, virtual and physical space production lines achieve physical
fusion based on the same 3D and behavioral models. Based on mutual control between
virtual space and physical space, bidirectional data transmission and service integration
are achieved. Secondly, the data related to workshop production (cluster analysis, cleaning,
and packaging) are preprocessed, which mainly includes workshop process data, workshop
material data, and workshop equipment status. Then, the data are fused, and a prediction
model is established using a combination of “digital twin data + LSTM network”. Finally,
an accurate prediction of workshop production capacity is achieved through a series of
data analysis techniques. By integrating all elements, processes, and business control in the
production process, as well as the optimization feedback function of the twin system, it is
possible to accurately perceive the current state and future changes in the system.

4. Discrete Shop Capacity Model Driven by Digital Twins

The discrete workshop capacity analysis based on digital twins is built on a data-
driven twin system simulation model. The mathematical relationship between products
and production capacity can be established by simulating the production process of twin
systems and iterating the data. The first step in this analysis is to construct a model for
discrete workshop production capacity.
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The occurrence of production capacity disturbance factors in discrete manufacturing
workshops is random and variable. Twin data can be used in the model based on the fast
simulation iteration ability of twin models to iterate production line operation information,
collect and analyze production process data, and analyze data based on material pulling.
Neural networks and other methods can be used to model the impact of disturbance
factors on the production status and then achieve the model establishment of disturbance
constraints. The disturbance constraint conditions include explicit and implicit disturbances.
The explicit disturbance factors include product line changes, equipment failures, material
shortages, and product quality non-conformities. The implicit disturbance factors include
encompassing work-hour fluctuations and deviations from the workpiece completion time.
Constraints caused by abnormal factors are established by varying the impact of multiple
uncertain disturbances on the available production capacity time of the processes in the
production system. Hence, this paper presents a mathematical modeling roadmap for
workshop capacity driven by digital twins, which is shown in Figure 2. By clarifying
the capacity reduction caused by disturbance factors, a mathematical model for discrete
manufacturing workshop capacity is constructed, and prediction algorithms are employed
to predict changes in workshop capacity.
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Capacity loss involves the identification of production bottlenecks, which can be
attributed to various factors, such as delays in work-in-progress flow, process planning,
process delays, material storage conditions, and equipment utilization. In a customized
environment, the workshop requires considering the priority of orders and the urgency of



Appl. Sci. 2024, 14, 3119 10 of 20

delivery times. The workshop digital twin system pre-simulates the disturbance factors
that affect capacity loss through the previously collected workshop data and calculates the
identification and transfer of capacity loss or production bottlenecks caused by uncertain
disturbance factors. The production capacity model of a discrete workshop is a typical
multi-constraint function constrained by production bottlenecks, as shown in Equation (1).

Cobj = FC − FMR − FER − FPR (1)

where FER represents the production capacity reduced by insufficient equipment utilization,
FPR indicates the production capacity reduced by process fluctuations, and Cobj denotes
the actual production capacity of the workshop.

Material shortages are an important factor in reducing workshop production capacity.
For each product, the material requirements of the product, FMR, are determined by the
product type and product process, as shown in Equation (2):

FMR =
l

∑
i=1

n

∑
j=1

SP(i,j) (2)

where SP(i,j) represents the finished product caused by missing materials, l is the type
of product in the workshop, and n symbolizes the number of processes in the finished
product.

Equipment utilization rate, which refers to the ratio of the number of pieces of equip-
ment involved in actual workshop production to the total number of pieces of equipment,
is mainly influenced by factors such as the operational status of the equipment, the product
types, and the process requirements and can be determined by Equation (3), as follows:

FER =
l

∑
i=1

n

∑
j=1

m

∑
k=1

(
SP(i,j) ⊗ Ek

)
(3)

where Eij represents the set of equipment to be maintained in the j process of workpiece ji.
Changes in orders mainly cause a reduction in production capacity caused by process

fluctuations. The same category, different models, and different batches of products often
exhibit differences, which can introduce fluctuations in the pace of processing changes in
the previous process and the connection between the subsequent processes during process
planning. These fluctuations, in turn, result in a reduction in workshop production capacity.
Pr represents the interval between the pre- and post-process segments where there is no
need to wait and production is blocked. In this part, Pr ⊂ {P1, P2, . . . , PR}. FPR is shown
in Equation (4), in which ⊗ represents the mapping between the finished product SP(i,j)
and Pr.

FPR =
l

∑
i=1

n

∑
j=1

p

∑
r=1

(
SP(i,j) ⊗ Pr

)
(4)

The above equation provides the main three causes of capacity loss. In actual work-
shops, the occurrence of production capacity disturbance factors is random and not fixed.
Thus, the production system may be affected by multiple uncertain disturbance factors
together, impacting the time variation in available production capacity. Let ∆Ti1, ∆Ti2,
∆Ti3 be the loss of available production capacity duration caused by the three production
capacity disturbance factors on the i process, as shown in Equation (5).

∆Ti1 = Li ×
[

∑
0≤c≤n

Tia + ∑
0≤d≤n

Tib

]
+ Tic × BLi

∆Ti2 = Li × Tid × EFi

∆Ti3 = Li ×
(

∑
0≤e≤n

Tie + ∑0≤ f≤n Ti f + ∑
0≤g≤n

Tig

) (5)



Appl. Sci. 2024, 14, 3119 11 of 20

where Li is the i process of a certain L category product, Tia represents the available
production capacity time lost in the i process due to the delay in the flow of work in
process in the previous process, Tib indicates the available production capacity time for
the i process due to production line blockage or work-in-process blockage, and Tic denotes
the rework time of the product at the i process. In addition, BLi is the rework quantity of
the product, Tid symbolizes the time from the occurrence of a fault in the i process to the
repair of the fault, EFi represents the number of failures, Tie defines the loss of available
production capacity time caused by insufficient material supply, Ti f means the loss of
available capacity time caused by material handling tool damage, and Tig refers to the loss
of available production capacity time caused by quality issues with the materials on the
workstation and failure to replenish them in a timely manner.

Equation (6) defines coupling multiple disturbance factors with production capacity
time loss as a link, showing the possible capacity reduction in Ci

loss, coupling function and
capacity availability rate for the i process.{

Ci
loss = SUM(∆Ti1(FMR) , ∆Ti2(FER) , ∆Ti3(FPR))

ηi =
(

FCi − Ci
loss
)
/FCi

(6)

5. Algorithm Design for Capacity Forecasting Driven by Twin Data

As can be seen in the previous section, a digital twin system is established before
constructing a new factory and processing new products based on the construction of high-
fidelity simulation models and the integration of constraints such as production factors,
production plans, and production process control. Through the digital twin system, various
data can be collected to evaluate the production capacity of new factories and new product
processing. This prediction method can effectively address problems such as inaccurate
predictions and the inability to meet delivery dates due to insufficient historical data
and personnel experience. Production capacity analysis based on discrete manufacturing
workshops involves the prediction of future production capacity based on twin data
operations. Since the digital twin data belong to time series data, after analysis, this paper
uses the short-term memory network algorithm of recurrent neural networks (RNNs) to
predict production capacity.

LSTM is a temporal recurrent neural network designed to solve the long-term depen-
dency problem of general RNNs, which can address the problems of gradient vanishing
and gradient explosion in RNNs. The unique design structure of LSTM makes it suitable
for processing and predicting important events with very long intervals and delays in the
time series. Recurrent neural networks have the form of repeated module chains of neural
networks. In the LSTM chain structure, each module contains four network layers, as
shown in Figure 3. Additionally, LSTM has three gates (information-forgetting gate, input
gate, and output gate) to optimize neuronal information.

The output of the result can be expressed as Equation (7):

ht = ot × tanh(Ct) (7)

where ot is used to determine the output gate information transmitted by the neurons. From
the input ht−1 of the previous neuron and the raw input, xt is calculated by the activation
function and weight parameters. It can be expressed as shown in Equation (8):

ot = σ(Wo[ht−1, xt] + bo) (8)

where Wo and bo are weight parameters and paranoia parameters, respectively.
In Equation (7), tan h is the activation function with an output range of [−1, 1]. More-

over, the value range of the derivative function is 0–1, which can effectively solve the
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problem of gradient disappearance in the cyclic network. The formula can be expressed as
shown in Equation (9):

tan h(x) =
ex − e−x

ex + e−x (9)

In Equation (8), σ represents the activation function, which is a smooth step function
and differentiable. It can convert any value between 0 and 1 for binary classification using
Equation (10).

σ =
1

1 + e−x (10)
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Ct in Equation (7) represents the updated information of neurons, which effectively
eliminates the long-term dependency problem in neural networks and establishes a more
accurate connection between input and output information. The parameter Ct can be
expressed as shown in Equation (11):

Ct = ft × Ct−1 + it × C′
t (11)

where ft indicates the forgetting gate information, which determines the information that
must be discarded in the network state. In a sequence of data, different data may change in
focus over time, forgetting unnecessary and unimportant information, which is also the
reason for the emergence of forgetting gates. ft can be expressed as shown in Equation (12):

ft = σ
(

W f [ht−1, xt] + b f

)
(12)

where it and C′
t are input gate information. In the process of neuron update, the first

step is to delete information, followed by the update of information. The network up-
date information is obtained by transforming the previous neuron input ht−1 and system
input xt through the activation function of σ and tan h. it can be expressed as shown in
Equation (13):

it = σ(Wi[ht−1, xt] + bi) (13)
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where C′
t can be expressed as shown in Equation (14):

C′
t = tanh

(
Wc

[
h(t−1), xt

]
+ bc

)
(14)

∆Ti1, ∆Ti2, and ∆Ti3 are taken as the input signals and propagate forward along the
network. Under the action of each neuron weight, wij, and the activation function of g(e),
the output value of the network coupled with three disturbance factors is obtained through
the output layer.

The input time series samples are considered as X =

x11 x12 x13
. . . . . . . . .
xt1 xt2 xt3

 in the input

layer, in which X is the three disturbance factors that affect the workshop production
capacity. The output value is subtracted from the actual value to obtain network error b.
This error is transmitted backward through the neural network, and the connection weights
between neurons in each layer are corrected layer by layer.

The hidden layers in the model are represented as shown in Equation (15):

htj = σ(
n

∑
i=1

xtiuji + ht−1,jwjj
)

(15)

where xti is the value of the i node in the input layer at time t, and uji indicates the weight
coefficient matrix between the j node in the hidden layer and the i node in the input layer.
In addition, htj represents the output value of the j node of the hidden layer at time t, ht−1,j
defines the output value of the j node of the hidden layer at time t − 1, and wjj symbolizes
the weight coefficient matrix of the j node of the hidden layer during backpropagation.

The number of hidden layer nodes in the model is set to m, and its output value is

H =

h11 h12 h1m
. . . . . . . . .
ht1 xt2 xtm

. The model output layer is shown in Equation (16):

yt =
m

∑
j=1

(
htjvkj

)
+ b (16)

where yt is the output value of the output layer at time t,Vkj indicates the weight coefficient
matrix between the j node of the hidden layer and the k node of the output layer, and
b denotes the bias term.

The output layer of the model is shown in Equation (17):

RMSE(y, y′) =

√
n

∑
i=1

(
yi − y′i)

2

n
(17)

where y represents the actual workshop production capacity, y′ indicates the predicted
value output by the model, and n denotes the number of samples. It mainly needs to
determine the five hyperparameters of the model, namely the time steps of the input layer,
the dimension of the input layer, the number of hidden layers, the dimension of each
hidden layer, and the dimension of the output variable.

The LSTM neural network uses input information, xt, and ht−1 to form the final
output objective function ht. By continuously iterating and updating the system, effective
prediction results are formed. The iterative process of the LSTM neural network system is
defined in Algorithm 1.
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Algorithm 1: Algorithm for LSTM-based production capacity

Input: Production capacity time series setting.
Output: Time series value of the production forecast.

Begin
Initialize data by first-order difference
Data transformation into supervised learning
--------Offline model training process-------
Normalize the data set //include ∆Ti1, ∆Ti2, ∆Ti3, and y
Training the LSTM_model
If (RMSE(y, y′) ≤ δ) then

Export the LSTM_model
Else

Adjusting parameters and re-fitting the LSTM_model
End if
-------Online model Test process-----------
For i in range (normalized test data)

X= test_scaled[i, 0: −1]
y= test_scaled[i, −1]
Forecast_data= forecast_lstm(lstm_model, 1, X)

End for
Restore the first-order differential data
Store predicted values //calculate the Ci

loss and ηi
Draw the comparison curve
End

6. Experimental Verification

The commemorative disk custom production line exemplifies a small, customized
production line that belongs to a typical discrete manufacturing workshop. In the design
process, facing the verification process of production line capacity is inevitable. As shown
in Figure 4, the commemorative plate customization production line consists of seven
modules, including lean material racks, grinding workstations, UV printing workstations,
laser marking workstations, packaging workstations, storage workstations, and AGV
workstations. The process is determined by the customer’s order, where customers can
choose a specific style of commemorative plate, text, and pattern according to their own
needs. Using the RFID tag that facilitates the identification of binding information, the
system determines the operational status of each workstation and verifies the completion
of customized processing content. Once the processing is completed, all of these products
enter the storage system and are subsequently transported to a fixed location by the AGV
for delivery.

The twin system modeling approach for the commemorative disk custom production
line based on twin data mainly includes three aspects. Among them, in terms of workshop
element modeling, the three-dimensional geometric model based on CAD design, pro-
duction process model, equipment motion model, and robot rule model is assembled and
fused into workstation modules, such as storage workstations and assembly workstations.
The workshop production line model is formed by assembling the workstation model.
Among these models, the geometry, behavior, and rules of equipment and production lines
are described. The production process modeling includes collected order data from the
order system, actual production data from the simulation system, equipment processing
efficiency data, and quality inspection data. According to the processing and fusion of
various data, multi-dimensional analysis and optimization of production status can be
realized. In terms of constructing the production system model, the complete production
process of the commemorative disk custom production line is constructed based on the twin
data and the virtual model, which provides effective support for subsequent production
process data monitoring and visual analysis.
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Since the production capacity is time series data, according to the above twin system
model construction, the data are counted for one hour for production capacity statistics, as
listed in Table 3.

Table 3. Production capacity statistics.

Serial Number Order Processing
Time (h)

Product Processing
Quantity

Average Completion
Time (s)

1 5 23 782.5
2 5 29 620.5
3 5 27 666.5
4 5 27 666.5

. . . . . . . . . . . . . . . . . . . . . . . .
144 5 14 1285.5

This paper utilizes the twin data collected from the production process simulation
to realize the entire workshop production capacity prediction process through the LSTM
algorithm. And this article depicts the production status analysis process based on the
combination of virtual and real models, which can be seen in Figure 5. The parameters
used in the algorithm include a time window size (N) of 60, a step size of 1, 128 memory
units, and three hidden layers. The prediction results are shown in Figures 6–8 for 1000,
2000, and 5000 iterations on the model, with the number of neurons set to four.
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By calculating the algorithm results, the prediction accuracy of the algorithm is 0.869,
0.878, and 0.918, respectively. These results indicate that the system design conforms to
the real performance and situation. Furthermore, as the number of iterations increases, the
prediction accuracy gradually increases. At the same time, LSTM is a variant of traditional
RNNs, which can effectively capture the semantic association between long sequences and
alleviate the phenomenon of gradient disappearance or explosion compared with classic
RNNs. In addition, the method is controlled by the gate structure, including the forget gate,
input gate, cell state, and output gate, and its function is equivalent to adding a “processor”
to judge whether the information is useful. It is also worth noting that the LSTM can better
handle time series tasks and has better accuracy than a multi-layer perceptron (MLP: an
artificial neural network that tends to structure). As shown in Figure 9, the LSTM has a
better performance advantage than the MLP when the number of cycles is the same.
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7. Conclusions

Before processing new products, the workshop’s production capacity predictions are
inaccurate, and the delivery date of new products often cannot be fulfilled due to the
many types of products in discrete manufacturing workshops, small batches, and frequent
production changes. To address the difficulty of predicting the production capacity of
discrete manufacturing workshops, this paper analyzed the existing problems and related
research in academia and proposed a digital twin-driven production capacity prediction
framework for discrete manufacturing workshops. According to multiple disturbances,
such as material shortages, equipment abnormalities, and process changes, a mathematical
model for the production capacity reduction in discrete manufacturing workshops was
given, and a production capacity prediction method of “twin data + LSTM algorithm” was
innovatively proposed. Finally, the accuracy rate of production capacity prediction was
verified using the commemorative disk custom production line as a prototype platform.
The verification showed that the accuracy rate of the production line capacity prediction
could reach 91.8%. The research in this paper was expected to predict the production
capacity of new products from the current state and historical state of the workshop to
establish a theoretical basis for evaluating product delivery. In addition, this paper only
analyzed and discussed production capacity through the constructed digital twin model
and did not explore deep-seated issues such as model evolution and iterative updates in
the production process. Future research will investigate the evolution mechanism of the
digital twin model for production processes, considering the iterative update of the twin
data. Additionally, the impact of various elements of the production control process on
workshop capacity will be further analyzed.
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