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Abstract: Black soil plays an important role in maintaining a healthy ecosystem, promoting high-yield
and efficient agricultural production, and conserving soil resources. In this paper, a typical black
soil area of Keshan Farm in Qiqihar City, Heilongjiang Province, China, is used as a case study to
investigate the black soil farmland productivity evaluation model. Based on the analysis of the com-
posite index (CI) model, productivity index (PI) model and various machine learning models, the soil
productivity evaluation method was improved and a prediction model was established. The results
showed that the support vector machine regression model based on simulated annealing algorithm
(SA-SVR), as well as the Gaussian process regression model (GPR), had obvious advantages in data
preprocessing, feature selection, and model optimization compared to the modified composite index
model (MCI), the modified productivity index model (MPI), and the coefficients of determination
(R2) of their modelling, which were up to 0.70 and 0.71, respectively, and these machine learning pre-
diction models can reflect the effects on maize cultivation and its yield through soil parameters even
with small datasets, which can better capture the nonlinear relationship and improve the accuracy
and stability of yield prediction, and is an effective method for guiding agricultural production as
well as soil productivity evaluation.

Keywords: machine learning; agricultural development; soil productivity

1. Introduction

The world population is expected to reach 9 × 109 by 2050, and in response to this demo-
graphic pressure, the demand for world food production will increase by 60–70 percent [1,2].
Land is a fundamental resource for food production [3], and its quality and productivity
are directly related to food supply and national economic stability. Although it is widely
recognized that soil is an abundant resource, the reality is that soil resources are being
rapidly degraded due to salinization, erosion, compaction, pollution, structural collapse,
acidification, organic matter, biological activities, and urban and industrial development [4].
It is necessary to study soil productivity evaluation methods to maintain soil productivity,
and finding more effective assessment methods by studying land productivity is essential to
improve agricultural production efficiency and promote sustainable agriculture. Research
on land productivity evaluation is conducted to gain a comprehensive understanding of
land fertility, potential, and its adaptability under different environmental conditions, to
support scientific and rational land management, to better plan agricultural production, to
reduce pressure on land resources, and to promote the maintenance of ecological balance.

Land productivity evaluation methods in past studies relied on laboratory analyses
and statistical methods, mainly CI models [5] as well as PI models [6]. Gao Chang et al. [7]
summarized the methods related to land productivity evaluation and achieved some re-
sults in assessing soil fertility and potential in China; Duan Xingwu et al. [8] improved
the PI model based on PI model applied to the dry-hot valleys in China; El-Nady MA [9]
confirmed that the PI model is a good prediction model for maize yield; Yang Z et al. [10]
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used an improved soil productivity index model to study the process of soil productivity
change in post-dam debris flow sediments during the restoration process; however, these
research methods are mainly for estimating land productivity, and their final derived land
productivity indices are closely related to the observed areas [11]. Although there are ad-
vanced methods for uncertainty treatment of estimation, such as the National Commodity
Crop Productivity Index (NCCPI) [12], there are always limitations in the estimation of land
productivity assessment methods, which rely on the scores given by the experts’ experience
or the choice of parameter values in the function when constructing the affiliation function
in the process of data processing and modelling.

Since traditional farming methods are characterized by excessive allocations, which
have significant economic and environmental impacts [13], agricultural management re-
quires accurate estimation of land productivity, determination of various combinations of
soil composition and nutrient precision to analyze the soil to reduce the cost of cultivation.
Machine learning models can effectively avoid this evaluation uncertainty caused by em-
pirical knowledge and subjective judgement, and by learning from soil data, assessment
models can be built more quickly and accurately. Zhou et al. [14] used a combination of
optical and radar remote sensing data to apply the SVM algorithm to build a Soil organic C
(SOC) prediction model; Zou et al. [15] collected historical soil data from southern China
and combined multivariate linear model (MLM) and mixed effects regression model (MEM)
for soil productivity assessment; Shehu et al. [16] obtained 1781 sets of maize farmland data
comparison in Northern Nigeria using linear regression models, as well as random forest
machine learning to predict maize yields based on nutrient concentrations in spike leaves;
Pan Y et al. [17] provided an estimate of land productivity in the conterminous United
States of America (CONUS) through machine learning algorithms using a data-driven
approach to incorporate relationships from the data into the land productivity evalua-
tion. However, challenges remain in terms of applicability and interpretability of machine
learning models [18], including the requirement of datasets (e.g., combining large remote
sensing datasets and larger historical datasets) and due to the black box nature of machine
learning resulting in little insight into agricultural management.

In order to address these limitations, this paper studies land productivity evaluation
methods using the black soil area of Northeast China as a case study, and compares and
optimizes land productivity evaluation learning methods to improve the performance and
explanatory ability of the model. By making full use of the soil data acquired by the group,
an accurate and reliable land productivity evaluation model is established. The purpose of
this study is to establish a reasonable land productivity evaluation model based on the field
scale through the case of land productivity evaluation methods in the black soil area of
Northeast China, the data set of these models contains only the physicochemical properties
of the soil, and in order to ensure the validity of the data set the soil selection blocks of this
group are basically at a similar altitude and the same slope. This kind of evaluation method
can inspire the relationship between soil and crop in other regions, such as the county level,
and provide a scientific basis for national and regional agricultural decision-making.

2. Materials and Methods
2.1. Data Sources and Data Preprocessing
2.1.1. Description of the Experimental Site

The data in this paper were obtained from Keshan Farm in Qiqihar City, Heilongjiang
Province, China, which is located in the territory of Nehe and Keshan County, at
48◦12′–48◦23′ N, 125◦8′–125◦37′ E. Its land area is about 351 square kilometers (km2),
and the cultivated area is about 272 km2. The farmland’s landscape is primarily charac-
terized by rolling hills and undulating terrains. It is located on the western foothills of
the Lesser Khingan Mountains and in the northeastern part of the Songnen Plain. The
slopes generally range from 1 to 5 degrees, with an average slope of 3 degrees. The length
of slopes is mostly between 500 and 100 m. The average altitude is 315 m. The annual
average temperature is 1.3 ◦C. The main climatic characteristics in spring are windy with
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sparse rainfall, while summer is primarily characterized by concentrated and heavy rainfall.
Winter temperatures are cold, with a lowest temperature of −37.6 ◦C, and snowfall is the
primary form of precipitation. The soil of Keshan Farm is mainly black calcareous soil,
belonging to the typical black soil region of Northeast China.

In October 2022, the research team selected Sample Plot A (48◦16′31.7′′ N, 125◦25′10.4′′

E) in Keshan Farm, which had been reclaimed for 26 years. In this area, 21 field sampling
points were obtained. Sample Plot B (48◦16′37.7′′ N, 125◦25′4.6′′ E), reclaimed for 39 years,
yielded 15 field sampling points. Sample Plot C (48◦17′0.0′′ N, 125◦24′6.4′′ E), reclaimed
for 59 years, provided 45 field sampling points. Lastly, Sample Plot D (48◦21′12.5′′ N,
125◦33′5.3′′ E), reclaimed for 90 years, contributed 33 sampling points. In total, 114 soil
physicochemical data points and corresponding yield data were collected. The sampling
methods were identical across all four plots, and a schematic diagram of the sampling
process in Sample Plot A is shown in Figure 1.
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2.1.2. Measurement of Physical and Chemical Properties of Soil

Fresh fruits were harvested within a 1 square meter area centered on the sampling
point for maize yield measurement. Threshed fruits were weighed, and the yield was
calculated based on a moisture content of 14%. Soil sampling was conducted with the
sampling point as the center, collecting topsoil samples (0–5 cm) using a soil auger.

The measurement of soil physical indicators includes bulk density and moisture
content. Bulk density was determined using the ring knife method [19,20], and moisture
content was measured using the drying method [19,20].

Soil chemical indicators were measured, including total nitrogen, total carbon, total
phosphorus, total potassium, alkali nitrogen, available phosphorus, available potassium,
and pH. Measurement methods involved acid-base elimination for total nitrogen, total
carbon, total phosphorus, and total potassium. Soil samples were digested under acidic
and alkaline conditions, followed by measuring the respective element contents [21–23].
Alkali nitrogen, available phosphorus, and available potassium were measured using alkali
extraction, strong acid extraction, and weak acid extraction methods, respectively [21–23].
pH was measured using a soil-to-water ratio of 2.5:1. Each indicator was replicated three
times, and the average was taken.

2.1.3. Data Preprocessing

In this study, data pre-processing was applied to ensure that the soil productivity eval-
uation model achieved excellent performance in terms of accuracy and stability. Specific
methods employed include the 3σ principle, box-and-line plot analysis, Z-score normaliza-
tion, outlier removal, and L2 feature selection. Outliers in the dataset were identified and
removed by the 3σ principle and box-and-line plot analysis to eliminate anomalous data
points that might be caused by measurement errors, data entry errors, or other reasons.
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In order to address the differences in different feature scales, a Z-score normalization
method was used to transform the data for each feature into a standard normal distribution
with mean 0 and standard deviation 1, ensuring that all features have equal weights in
the model.

In order to improve model performance, it is necessary to obtain important features
from a large number of input features. The benefit of reducing the feature dimension is
that it reduces the risk of overfitting while improving the model performance [24]. Among
multiple feature selection methods, we compare the advantages of different methods
and combine them with the characteristics of the data in this study; L1 feature selection,
L2 feature selection, and PCA dimensionality reduction are more effective. L1 feature
selection and L2 feature selection are regularization methods in machine learning; L1
feature selection tends to make the weight of some features zero through L1 regularization
(Lasso), achieving sparsity in feature selection. L2 feature selection, on the other hand, uses
L2 regularization (Ridge), which tends to smooth out the weights by penalizing the sum of
the squares of the model parameters, but does not make them zero. PCA dimensionality
reduction method maps the original features to a new low-dimensional space by finding
the principal components in the data. PCA differs from L1 and L2 in that it does not focus
exclusively on the target variable, but rather on selecting the principal components by
maximizing the data variance to select principal components. In the experimental results
L2 feature selection works best with the small dataset of this study. The advantage of L2
feature selection is that it is more robust to covariate data, helps to deal with the presence
of highly correlated features without being easily over-influenced by specific features, and
improves the stability and generalization ability of the model.

2.2. Topsoil Productivity Evaluation Model

In this section, we present detailed methods commonly used to estimate land produc-
tivity evaluation models, optimized for the location where the samples were collected for
this project; the focus will be on two specific models: the Modified Composite Index (MCI)
model, and the Modified Topsoil Productivity Index (MPI) model.

2.2.1. CI Model and Its Revisions

The CI model, namely the Comprehensive Index model, is a surface soil assessment
method established on the foundation of soil productivity coefficients proposed by Shuying
Leng et al. [5]. This method comprehensively considers multiple key factors, including the
content of organic matter, available nitrogen, available phosphorus, available potassium,
soil acidity and alkalinity, soil texture, erosion status, and topography, encompassing eight
aspects in total.

The content of organic matter, available nitrogen, available phosphorus, and available
potassium in the surface soil reflects the nutrient status of the soil, while soil acidity and
alkalinity, soil texture, erosion status, and topography involve the physical properties
and geographical environment of the soil. These eight factors are considered crucial
in influencing land productivity. By comprehensively considering them, the CI model
provides a holistic productivity assessment for the soil. The scores for each factor can be
obtained from relevant literature and expert experiences. The summation of these scores
constitutes the comprehensive index of the CI model, where higher scores indicate a greater
contribution to soil productivity (Table 1).

Surface soil productivity index is evaluated using the following indicators:

CI =
a

8
∑

i=1
XiYi

10
(1)
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Table 1. Soil impact factor score sheet.

Soil Impact Factor

Soil Score

0 1 2 3 4 5 6 7 8 9 10

soil texture gravel
Coarse
sandy

soil/clay

Fine
sandy
soil/

loamy
clay

Top
sandy
soil/

powdery
clay

sand
and silt sand sandy

clay loam

organic
material

/%
<1 1–1.5 1.5–2.5 2.5–3.5 >3.5

available nitrogen
/(mg/kg) <20 20–60 60–100 100–140 >140

available
phosphorus/(mg/kg) <5 5–10 10–20 >20

available potassium
/(mg/kg) <30 30–50 50–70 70–100 100–150 >150

pH <5.0 >8.5
5.0–6.0

or
7.5–8.5

6.0–6.5 6.5–7.5

erosion
degree keen dissociation moderately

mild
(symptoms,

etc.)

No
visible
erosion

In the formula, CI represents the Soil Productivity Index, where i takes values from
1 to 8, representing the eight considered factors. Xi denotes the weights assigned to the
eight selected factors, and Yi represents the scores for these eight factors. The topographical
factor ‘a’ is not considered in the formula due to the uniformity of maize soil sampling
within the same farm.

Taking into account the importance of soil physicochemical indicators in the produc-
tion of maize crops in Northeast Black Soil and the accessibility of relevant data, we have
chosen the indicators of Soil Alkaline Nitrogen (A), Available Phosphorus (B), Available
Potassium (C), Suitability Index for pH value (D), Moisture Content (E), and Soil Bulk
Density (F) for the original surface soil assessment model. The weights assigned to these
indicators in the original model are 10%, 10%, 10%, 20%, 20%, and 20%, respectively.

The analyses yielded a ration of A:B:C:D:E:F = 1:1:1:2:2:2 for these indicators, high-
lighting their equal importance in the overall soil productivity assessment. Considering
that these assessments were carried out on the same farm, we ignored possible climatic
influences from different regions. As a result, the resulting Modified Composite Index
(MCI) model was obtained as follows:

MCI =
(A + B + C + 2 × D + 2 × E + 2 × F)

9
(2)

This allocation strategy reflects the importance of each of the selected indicators, taking
into account their joint influence in the overall soil productivity assessment of the black
soil zone in northeastern China.

2.2.2. PI Model and Its Revisions

The PI model was first proposed by Neill [6] in 1979 to assess the effect of soil properties
on crop yield. It has been modified by some researchers in the past [25–27]. On the basis of
Duan Xingwu’s improved PI model, the special case of organic matter and soil bulk density
in the black soil area of Northeast China was considered, and the growth of maize was
taken as an example [28]. The optimized PI model was established by dividing the soil
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depth of 200 cm into 20 layers and selecting the soil physicochemical indicators [6] The soil
physico-chemical indexes were selected to establish PI model:

PI =
n

∑
i=1

(Ai × Bi × Ci × Di × Ei × WFi) (3)

In the formula, PI represents the Soil Productivity Index, where i denotes different
soil layers. As this study focuses on the surface soil productivity assessment method,
deeper soil layers are not considered. Nevertheless, it is essential to understand that, in the
formula, A represents the Suitability Index of soil available water content for root growth, B
represents the Suitability Index of soil aeration for root growth, C represents the Suitability
Index of soil bulk density for root growth, D represents the Suitability Index of soil pH for
root growth, E represents the Suitability Index of soil electrical conductivity for root growth,
and WF represents the root weight factor of the soil. Each suitability index is standardized
to a numerical value between 0.000 and 1.000, with values closer to 0 indicating inhibition
of crop growth and values closer to 1 indicating suitability for crop growth.

Referring to the research by Pierce [26], three key indicators were selected, namely the
Suitability Index of soil available water content (A), Suitability Index of soil bulk density
(C), and Suitability Index of soil pH (D).

The calculation formula for the Suitability Index of soil available water content refers
to the research findings of scholars such as Grossman [29], providing an improvement to
the surface soil evaluation:

A = 0, AWC ≤ 3%
A = 5 × AWC, 3% < AWC ≤ 20%
A = 1, AWC > 20%

(4)

In the equation, A represents the Suitability Index of soil available water content,
where AWC represents the soil’s available water content expressed in volume percentage.
The calculation is based on field capacity and wilting point humidity.

The Suitability Index of soil pH (D) refers to the calculation formula proposed by
Pierce [26], with improvements made for surface soil assessment:

D = 0, pH ≤ 2.9
D = −1.31 + 0.446 × pH, 2.9 < pH ≤ 5.0
D = 0.12 + 0.16 × pH, 5.0 < pH ≤ 5.5
D = 1, 5.5 < pH ≤ 6.5
D = 2.086 − 0.167 × pH, 6.5 < pH ≤ 8.0
D = 0.75, pH > 8.0

(5)

The soil bulk density calculation method is consistent with the approach used in Duan
Xingwu’s modified PI model [27].

Considering the critical nature of soil physicochemical property indicators in maize
crop production in Keshan Farm, this study was revised based on the PI model. In order
to assess the surface condition of the soil more accurately, we evaluated only the top soil
layer of the ploughed soil. On the basis of retaining the original soil pH suitability index D,
water content A and soil bulk weight C, we added the total nitrogen index B, quick-acting
phosphorus index E, and quick-acting potassium index F, and constructed a modified PI
model (MPI) applicable to the evaluation of topsoil:

MPI = A × B × C × D × E × F (6)

Multiple parameters of the soil have a differential effect on the overall fertility level,
and the measured values of each parameter have significant differences in magnitude, mak-
ing a simple summation calculation impossible. To overcome this problem, a standardized
approach is used in this paper.
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When the measured value of a parameter belongs to the “poor” grade, i.e., P ≤ Xa:

E =
P

Xa
(E ≤ 1) (7)

When the measured value of a parameter falls within the “qualified” grade, i.e.,
Xa < P ≤ Xb:

E = 1 +
P − Xa

Xb − Xa
(1<E ≤ 2) (8)

When the measured value of a parameter belongs to the “medium” grade, i.e., Xb < P ≤ Xc:

E = 2 +
P − Xb
Xc − Xb

(2<E ≤ 3) (9)

When the measured value of a parameter belongs to the “good” grade, i.e., Xc < P ≤ Xd:

E = 3 +
P − Xc

Xd − Xc
(3<E ≤ 4) (10)

When the measured value of a parameter belongs to the “excellent” grade, i.e., Xd < P:

E = 4 (11)

In the above formulae, E represents the quality index of available phosphorus (P)
in the soil, P denotes the measured value of soil available phosphorus, and Xa, Xb, Xc,
and Xd are the grading standard values. By employing this standardization method, the
single quality indexes of the same level attribute become more comparable, enhancing
comparability. When the measured value (P) exceeds the optimal standard (Xd), the single
quality index (E) no longer increases, reflecting that the crop (corn) does not necessarily
benefit from higher soil attribute values. In other words, after reaching a certain optimal
level of nutrient content, further fertilization to increase content does not contribute to
increased crop yield.

Based on this, the optimized evaluation formula for the soil available phosphorus
quality index E in this experiment is as follows:

E = 3 +
P − 10

10
, P > 10

E = 2 +
P − 5

5
, 5 < P ≤ 10

E = 1 +
P − 3

2
, 3 ≤ P ≤ 5

E =
P
3

, P < 3

(12)

Based on the soil evaluation score formulated by Leng Shuying [15], we further
subdivided the total nitrogen quality index and available potassium quality index in the
soil to ensure that the actual scores fall within the range of 0 to 1, in accordance with the
requirements of the PI model. In the end, we obtained the calculation formulas for the total
nitrogen index (B) and available potassium index (F):

B = 1, N > 0.20

B =
N − 0.10

0.1
, 0.10 < N ≤ 0.20

B = 0, N ≤ 0.10

(13)

F = 1, K > 200

F =
K − 100

100
, 100 < K ≤ 200

F = 0, K < 100

(14)
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The subdivision and standardization methods contribute to a more accurate quantifica-
tion of the impact of total nitrogen and available potassium on soil nutrient conditions. This
optimization of surface soil assessment aligns with the design principles of the PI model.

2.3. Machine Learning Model Selection and Its Optimization

In this section, the selection of machine learning models will be illustrated, and then
the details of the three machine learning models selected for soil productivity evaluation
in this paper will be presented: a support vector machine regression model based on
simulated annealing algorithm (SA-SVR), a Gaussian process regression (GPR), and a
multilayer perceptron combined with random forest regression (MLP-RFR), where SA-
SVR and MLP-RFR will be compared with their classical models SVR and RFR to show
their optimization justification in Section 3.2 (Performance Analysis of Machine Learning
Models), where a comparison of results with their classical models, SVR and RFR, will be
made to show the reasonableness of their optimization. Each technique will be explained.
This includes their respective characteristics in the context of yield prediction, describing
the operation of training and optimizing each model using the dataset.

2.3.1. Machine Learning Model Selection

With the development of machine learning algorithms applied to agricultural predic-
tion models with increasing accuracy, Extreme Gradient Boosting (XGboost), decision tree
regression, Long Short-Term Memory (LSTM) regression, SVR, GPR, and random forest
regression (RFR) are the methods that have been proven to be more effective [30–33].

XGboost is a gradient boosting algorithm that is highly flexible and accurate, performs
well with large-scale data and complex features, is able to handle nonlinear relationships,
and is robust to missing values. Decision Tree is an intuitive and easy to explain algorithm
with a strong ability to fit non-linear relationships between features, and is computationally
fast compared to other algorithms. LSTM model is a deep learning model for time series
data that captures long-term dependencies in time series and performs well for datasets
with memory properties. However, XGboost, Decision Tree and LSTM models are sensitive
to the overfitting problem on small datasets, and their performance on small datasets is
unstable, where Decision Tree is susceptible to the effects of noise and local features in the
data, and the LSTM model usually requires a large amount of data for training, which is a
long training time compared with traditional machine learning algorithms.

The three methods, SVR, GPR and RFR, have some advantages in targeting the small
dataset containing soil physicochemical properties and yield in this experiment. SVM
is able to deal with high dimensional data and non-linear relationships, has a strong
generalization ability for small sample datasets and has some advantages in controlling
model complexity. GPR is a non-parametric model that can flexibly adapt to the data and
provides an estimate of prediction uncertainty, which is advantageous for modelling small
data sets. Random Forest is an integrated learning algorithm that performs well for noisy
data and datasets with complex relationships. It is also relatively robust to feature selection
and missing values.

For this study, the three methods of SVR, GPR and RFR are more suitable for construct-
ing accurate prediction models, which can effectively control the complexity of the model
when dealing with small datasets, and have better stability and generalization ability.

2.3.2. Support Vector Machine (SVM) Model and Its Optimization

SVM is a powerful machine learning model for regression and classification tasks.
In this study, we propose a regression prediction model based on a simulated annealing
algorithm to optimize the hyperparameters of the support vector machine, as well as the
type of kernel function: the SA-SVM (Figure 2).

The traditional SVM model constructs several different types of kernel functions
based on non-linear sample datasets. It involves training samples with input features
and iteratively adjusting parameters until optimal performance is achieved. The selection
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of an appropriate kernel function is a crucial step in SVM model development. In our
approach, we use the Radial Basis Function (RBF) kernel. To prevent overfitting and balance
the model’s fit and complexity, we introduce a regularization parameter C. However, the
traditional SVM model is time-consuming during parameter tuning, and the obtained
result may be a local optimum. Additionally, different kernel function types can impact
parameter settings, influencing the performance of the kernel function. After exploring
various optimization algorithms, we opted for the Simulated Annealing (SA) algorithm to
optimize SVM model parameters. SA is a global optimization algorithm that searches for the
optimal combination of hyperparameters, kernel function parameters, and regularization
parameter C in the parameter space to enhance the model’s performance. The optimization
objective of the SA algorithm is to minimize the loss function, representing the error
between the model-predicted yield and the actual yield.
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2.3.3. Gaussian Process Regression (GPR) Model

The GPR model is a powerful non-parametric Bayesian regression method. The model
is based on a Gaussian process that maps the input space to the output space and expresses
the prediction uncertainty in the form of a probability distribution. The core idea is to infer
the output values of new data points and their uncertainty by modelling the similarity
between training data points. The mean function is usually assumed to be zero or learnt
from the data. The covariance function defines the relationship and correlation between
different input points. Given the mean and covariance functions, GPR models the objective
function as a Gaussian distribution. When new input points are predicted, GPR provides a
predicted posterior distribution of possible function values, including the predicted mean
and variance for each point [30]. For the small dataset of this study, the number of iterations
was set to 100. One of the strengths of the GPR model is its flexibility and versatility to
adapt to a variety of complex nonlinear relationships. Due to the nonparametric nature of
the Gaussian process, the model does not require a pre-specified functional form, performs
well with small samples of data, and is suitable for the experimental design of this topic.

2.3.4. Random Forest Regression (RFR) Model and Its Optimization

The RFR model is a popular machine learning algorithm that allows higher accuracy
results in various fields, including crop yield prediction [34,35]. The RFR model improves
the prediction performance by constructing the integration of multiple decision trees to
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effectively mitigate the overfitting problem. Each tree is trained on the basis of random
subsamples and random features, and finally the results of each tree are integrated through
a voting mechanism, which improves the generalization ability of the model and robust-
ness to outliers. Multilayer Perceptron with Random Forest Regression (MLP-RFR) is an
innovative model that has received much research attention in recent years [36]. As a
flexible neural network model, the multilayer perceptron (MLP) improves the performance
of the model by adjusting the number of layers and nodes in the hidden layer, and select-
ing appropriate activation functions (e.g., sigmoid, tanh, Relu, etc.) and loss functions
(e.g., mean-square error, cross-entropy, etc.). The MLP-RFR model combines the multilayer
perceptron’s (MLP’s) non-linear modeling ability and the Random Forest. The integrated
learning mechanism of the MLP overcomes the dependence of traditional neural networks
on a large amount of labelled data by embedding the MLP into a Random Forest, and
performs well in small sample data scenarios.

These methods were applied to a comprehensive dataset containing 87 sets of data.
This dataset covered 10 physical and chemical properties of the soil (specific physical and
chemical properties can be found in Table 2) and 87 sets of actual values of maize yield.
The 10 physicochemical properties of the dataset were used as variables (x) and the actual
yields were used as target variables (y). For effective model training and performance
evaluation, these data were divided into an 80% training set and a 20% test set, with the
random number set to 42 [37]. The trained model was applied on the test set, and the error
between the model predicted yield and the actual yield was calculated.

Table 2. Raw data section table.

Serial
Number

Total
Nitrogen
(mg/kg)

Total
Carbon
(mg/kg)

Total
Phospho-

rus
(mg/kg)

Total
Potas-
sium

(mg/kg)

Effective
Nitrogen
(mg/kg)

Rapid
Available

Phosphorus
(mg/kg)

Rapidly
Available
Potassium

(mg/kg)

pH
Moisture
Content

/%

Volume
Weight of

Soil
(g/cm3)

Output

1 0.198 2.057 0.749 22.508 135.912 8.264 228.981 6.347 0.268 1.088 951.241
2 0.182 1.911 0.649 22.940 113.677 7.325 144.621 6.117 0.239 0.992 824.873
3 0.197 1.971 0.686 23.131 140.839 9.131 188.493 6.187 0.289 1.098 975.272
4 0.197 1.923 0.697 25.238 120.430 12.263 219.960 6.023 0.272 1.090 953.982
5 0.216 2.233 0.831 24.603 154.821 16.497 327.576 6.193 0.282 1.107 669.798
6 0.212 1.979 0.655 26.200 129.953 8.645 276.984 5.920 0.244 1.249 971.868
7 0.192 1.832 0.666 22.626 114.735 11.070 298.185 6.073 0.313 1.038 940.098
8 0.200 1.943 0.714 24.635 126.036 10.680 249.857 6.157 0.294 0.938 1016.751

2.4. Model Evaluation Criteria

In order to comprehensively assess the performance of the various classical models
and their improved models, the following statistics were used to evaluate the prediction
results: Mean Square Error (MSE), Mean Absolute Error (MAE), and the Coefficient of
Determination (R2) were used as performance indicators to validate the accuracy and
adaptability of the models.

Mean Squared Error (MSE) is a commonly used metric to gauge the performance of
the model in predicting corn yields. This metric calculates the average squared deviation
between the model’s predicted values and the actual yields. By squaring the prediction
errors for each data point and then averaging them, MSE provides an overall measure of
the model’s prediction errors across all data points. A smaller MSE value indicates that the
model’s predictions are closer to the actual values, signifying better predictive performance.

Mean Absolute Error (MAE) is another key metric used to measure the predictive
accuracy of the model. In this study, MAE calculates the average absolute error between
the actual and predicted corn yields for each data point, offering an overall assessment of
the model’s accuracy in yield prediction.

Coefficient of Determination (R2) is an indicator of model explanatory power, rep-
resenting the proportion of the target variable’s variance that the model can explain. A
higher R2 value indicates that the model can better fit the predicted values of corn yield to
the actual yields.
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3. Results and Analysis
3.1. Performance Analysis of MCI Model and MPI Model

In order to explore the effect of different nutrient factors on soil fertility, the results of
MCI and MPI models were used to carry out the study of land productivity index. MCI
and MPI models are mainly used to process the different nutrient values of soil samples in
a dimensionless and standardized way, and then the data can be calculated by using the
two productivity evaluation models (Equations (2) and (6)) to obtain the soil productivity
index of each sample. Part of the original data, as shown in Table 2 for the eight sampling
points of 10 soil physical and chemical indicators and the actual yield of corn, correspond
to the MCI model calculation results. As shown in Table 3, the MCI model shown in the
calculation of the results varied from 0.778 to 0.878; the average of all the MCI model
calculations of the results in 0.827, corresponding to Table 2 of the MPI model calculations
of the results of the MPI model. As shown in Table 4, MPI model calculated results vary
from 0.225 to 0.912, and the average of all MPI model calculations is 0.651.

Table 3. MCI model data processing part of the table.

Serial
Number

Effective
Nitrogen

(10%)

Rapid
Available

Phosphorus
(10%)

Rapidly
Available
Potassium

(10%)

pH
(20%)

Moisture
Content

(20%)

Volume
Weight of

Soil
(20%)

MCI Score

1 0.700 0.300 1.000 0.700 1.000 1.000 0.822
2 0.700 0.300 0.700 0.700 1.000 1.000 0.789
3 1.000 0.300 1.000 0.700 1.000 1.000 0.856
4 0.700 0.500 1.000 0.700 1.000 1.000 0.844
5 1.000 0.500 1.000 0.700 1.000 1.000 0.878
6 0.700 0.300 1.000 0.500 1.000 1.000 0.778
7 0.700 0.500 1.000 0.700 1.000 1.000 0.844
8 0.700 0.500 1.000 0.700 1.000 1.000 0.844

Table 4. MPI model data processing part of the table.

Serial
Number

Moisture
Content

Score

Volume
Weight of
Soil Score

pH Score
Total

Nitrogen
Score

Rapid
Available

Phosphorus
Score

Rapidly
Available
Potassium

Score

MPI Score

1 1.000 1.000 1.000 0.977 0.663 1.000 0.648
2 1.000 1.000 1.000 0.817 0.446 0.898 0.225
3 1.000 1.000 1.000 0.967 0.707 0.885 0.604
4 1.000 1.000 1.000 0.973 0.807 1.000 0.785
5 1.000 1.000 1.000 1.000 0.912 1.000 0.912
6 1.000 1.000 1.000 1.000 0.682 1.000 0.682
7 1.000 1.000 1.000 0.917 0.777 1.000 0.712
8 1.000 1.000 1.000 1.000 0.767 1.000 0.767

The land productivity evaluation index obtained in this study is positively correlated
with maize yield, and the larger interval of variation of the productivity index obtained
from the calculation indicates that it is more reflective of the difference in actual yields,
which indicates the high accuracy of the corresponding results, suggesting that the study
has a certain degree of rationality.

In order to deeply study the rationality of maize land productivity evaluation indices
on different sampling points, maize yields on different sampling points were collected in
the study, and the productivity indices of MCI and MPI models were analyzed by linear
regression with the maize yields obtained from the surveys. The results of MCI are shown
in Figure 3a, and the results of MPI are shown in Figure 3b; the coefficient of determination
of the MPI model, which was improved and applied to topsoil evaluation, reached 0.38 and
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MSE was 1146.29; the coefficient of determination of the MCI model was 0.23, and MSE was
3589.19. The results showed that both had good linear correlation. The MPI model achieved
a coefficient of determination of 0.38 with an MSE of 1146.29, while the MCI model had a
coefficient of determination of 0.23 with an MSE of 3589.19. The results showed that both
of them had a good linear correlation. Compared with the CI model, which mainly relies
on the experience of experts, the improved PI model (MPI) in this experiment has better R2

and MSE indexes, which better reflect the relationship between soil and crop.
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3.2. Performance Analysis of Machine Learning Models

Multiple machine learning models were selected for optimal training for regression
prediction and compared, including the SVR model (Figure 4a), SA-SVR model (Figure 4b),
GPR model (Figure 5), RFR model (Figure 6a), and MLP-RFR model (Figure 6b).
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Figure 4a shows that the coefficient of determination R2 of the SVR model is 0.47,
which is an improvement compared to the MPI model, but the MSE reaches 1743.24,
which indicates that there is a large error when applying it to the test set to predict some
of the yields; Figure 4b shows that the coefficient of determination R2 of the SA-SVR
model, which combines the SA algorithm, is 0.70, and the MSE decreases to 967.84. The SA
algorithm optimizes the minimization loss function which, in this experiment, is specifically
shown to effectively reduce the error between the predicted and actual yields in the
prediction model. The SA algorithm optimizes the minimization loss function which, in
this experiment, effectively reduces the error between the predicted yield and the actual
yield in the prediction model; Figure 5 shows that the coefficient of determination R2 of
the GPR model is 0.71, and the MSE is 932.19, which is excellent for the small dataset of
the experiment due to the nonparametric nature of the GPR model that does not require
the function to be pre-specified; and Figure 6a shows that the coefficient of determination
R2 of the RFR model is 0.71, and the MSE is 932.19. The coefficient of determination R2 of
the RFR model is 0.57, and the MSE is 1391.06, which is also good for the small dataset
with complex relationships in this experiment, and the prediction is more reliable than
that of the MPI model; Figure 6b shows that the RFR model combined with the MLP can
reduce the error by choosing the appropriate activation function and the loss function, and
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it is applied to the small dataset of the present experiment with the performance of MLP.
The coefficient of determination R2 of the RFR model is 0.62, which is improved compared
with the RFR model, and the MSE is reduced from 1391.06 to 1234.58 compared with the
RFR model.

3.3. Comparison of Model Performance

By comparing the MCI model, the MPI model, the SVR model, the SA-SVR model,
the GPR model, the RFR model, and the MLP-RFR model, it is possible to derive specific
results regarding the performance of these models (Table 5).

Table 5. Table of evaluation indicators for linear regression analysis.

Evaluation Index MCI MPI SVR SA-SVR GPR RFR MLF-RFR

MAE 32.84 24.46 24.28 33.79 31.78
MAPE 0.04 0.03 0.03 0.04 0.04
MSE 3589.19 1146.29 1743.24 967.84 932.19 1391.06 1234.58

RMSE 59.91 33.86 41.75 31.11 30.53 37.30 35.14
R2 0.23 0.38 0.47 0.70 0.71 0.57 0.62

The results show that the machine learning models trained through multiple selection
and optimization have significant advantages over MCI and MPI models for data processing
and prediction in land productivity evaluation. Specifically, we can see that the coefficients
of determination (R2) of the machine learning models for yield prediction are higher than
that of the MPI model (0.38), especially for the GPR model (0.71), followed by the SA-
SVM model (0.70), and the MLP-RFR (0.62), which indicates that the prediction models
are more reliable in practical applications, and that the Mean Squared Error (MSE) and
Mean Absolute Error (MAE) of the machine learning models are higher than those of the
MPI model (0.38). MSE and Mean Absolute Error (MAE) were also significantly improved
compared to the MPI model, with the MSE of the GPR model decreasing to 932.19 compared
to the MPI model’s 1146.29, and the MSE of the SA-SVR model decreasing to 967.84
compared to the MPI model’s 1146.29. It is clear from these data that the machine learning
model has a good performance with multiple soil physicochemical properties as multi-
feature inputs, can better handle nonlinear relationships, and can improve the accuracy
of yield prediction. At the same time, the limitations of MCI and MPI modeling, which
inevitably have subjectivity, were overcome. Moreover, the machine learning algorithm can
achieve better soil productivity evaluation results by selecting data and adjusting model
parameters in practical applications [38].

4. Discussion

In this paper, we take the black soil area in Northeast China as a case study for
land productivity evaluation methodology. In this study, we have thoroughly investi-
gated the performance of different soil productivity evaluation models, including the
MCI model, the MPI model, and a variety of classical machine learning models and their
optimization models.

The MCI model, after data pre-processing such as 3σ principle, box-and-line diagram
and Z-score, can provide a preliminary soil productivity estimation, applicable to the
situation of limited data, but cannot deal with the non-linear relationship, and is not
sensitive enough to high-dimensional data and complex features. The performance of the
MPI model has been improved in relation to the traditional PI model, which can more
comprehensively take into account the nature of the soil and the environmental factors,
and has a better performance in yield prediction relative to the MCI model (Figure 3), and
a more comprehensive performance on complex relationship between soil and crops. The
MPI model is more suitable for multifactorial soil productivity evaluation. However, the
MPI model is still unable to deal with non-linear relationships and high-dimensional data.
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The data in Table 5 indicate that the machine learning models have advantages over
the MCI model, as well as the MPI model, in terms of feature selection and model opti-
mization. Based on the results of model performance analysis, SA optimization was chosen
to effectively solve the problems of SVM model regarding computational resources and
tuning time, and the SVM model searches for the optimal hyperparameters by combining
the SA algorithm [38]; the MLP-RFR model effectively mitigates the overfitting problem of
complex data patterns and has better robustness to outliers by combining the advantages of
MLP and RF. These models can better capture the complex relationship between nonlinear
soils and crops.

Previous studies on land productivity evaluation often used machine learning algo-
rithms to build predictive models, mainly by combining a large number of remote sensing
data and public historical datasets [32,39–42], which has the advantage that a large amount
of data can be applied to train a predictive model with a high degree of accuracy, but
these predictive models generally have regional limitations [11]. The land productivity
evaluation method studied in this paper still performs well when applied to a small dataset
containing only soil physicochemical properties, with significant improvements in R2, MSE,
and other indicators compared to the MCI model as well as the MPI model; as an example,
in Table 5 of this study, the SVR model, SA-SVR model, GPR model, RFR model, and the
MLP-RFR model studied have improved R2 compared to the MPI model with an improved
R2, indicating that soil variables are closely related to yield and can effectively predict
yield. Despite the investment of significant manpower in collecting samples from the field
and determining their specific soil physicochemical properties in the laboratory for this
dataset, our research on land productivity evaluation, using black soil in Northeast China
as a case study and based on the field scale, has demonstrated the effectiveness of this
research method through its prediction accuracy when applied to small datasets. When
applied to other regional farmlands, it is only necessary to obtain a small dataset containing
the specific physical and chemical properties of the soil and the corresponding yield, and
then we can go to a more accurate prediction of the yield of the block of farmland, to
verify that the modelling method studied in this experiment for the linkage of the complex
relationship between the soil and the crop and, at the same time, we can also evaluate the
nutrient deficiencies of the regional soils. Incorporating this research approach into soil
management practices and land productivity assessment has great potential to improve
agricultural outcomes, promote sustainable development and optimize resource use.

This paper also has some limitations in the study of land productivity evaluation
methods; for example, in front of an experienced expert who has studied soil in a region
for decades, the land productivity estimation method given by the region will be more
accurate [28], which cannot be achieved by using only a small dataset of trained models.
Alternatively, the method of this study did not consider the climatic factors due to the block,
and although the slope and elevation are guaranteed to be similar when obtaining the
physicochemical properties of agricultural soils, it may be necessary to take into account
factors such as elevation slope when applying to other regions such as the block size at
the county level, which this study does not do at the present time. Although the research
on land productivity evaluation methods in this paper is limited, our method of studying
soil–crop relationships based on small datasets at the field scale is generalizable and can be
tried to be applied to soil–crop relationship problems in other regions [13].

5. Conclusions

This paper focuses on land productivity evaluation methods using black soil farmland
blocks in northeast China as a case study, even in the common case where the available
dataset is small. The method is applied and validated in the specific case of maize cul-
tivation. The application of the CI model as well as the PI model for soil productivity
evaluation was optimized and improved to the MCI model as well as the MPI model by
field conditions. The machine learning algorithms were selected with full consideration
and optimization of small datasets, including SVM model, SA-SVM model, GPR model,
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RFR model, and MLP-RFR model, in order to study the accuracy and adaptability of soil
productivity evaluation. Based on 10 basic factors such as soil parameters and their nutrient
contents, a series of prediction models were established, which used soil physicochemical
properties as characteristic inputs and predicted corn yield. From the model performance
comparison in Table 5, we can see that the various models can better represent the correla-
tion between soil and crop, which verifies the validity of the methodology of this study.
The same research idea can be attempted whenever small datasets are available and the
models need to be optimized to improve the accuracy of prediction.

Despite the progress made in this study, there is still room for further exploration.
Future research can further improve the accuracy and reliability of soil productivity evalua-
tion by deeply investigating other machine learning methods and deep learning models.
Meanwhile, factors not covered in this study such as altitude climate, soil erodibility and
other conditions can also be attempted as feature inputs combined with machine learning
algorithms for productivity evaluation methodology to enhance the generalizability of the
research methodology and further improve the model performance.
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