
Citation: Guo, J.; Zhang, X.; Liang, K.;

Zhang, G. Memory-Enhanced

Knowledge Reasoning with

Reinforcement Learning. Appl. Sci.

2024, 14, 3133. https://doi.org/

10.3390/app14073133

Academic Editor: Tobias Meisen

Received: 11 March 2024

Revised: 2 April 2024

Accepted: 5 April 2024

Published: 8 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Memory-Enhanced Knowledge Reasoning with
Reinforcement Learning
Jinhui Guo, Xiaoli Zhang *, Kun Liang and Guoqiang Zhang

The College of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin 300457, China;
guowudi@mail.tust.edu.cn (J.G.); liangkun@tust.edu.cn (K.L.); zhangguoqiang@mail.tust.edu.cn (G.Z.)
* Correspondence: zhangxiaoli@tust.edu.cn

Abstract: In recent years, the emergence of large-scale language models, such as ChatGPT, has
presented significant challenges to research on knowledge graphs and knowledge-based reasoning.
As a result, the direction of research on knowledge reasoning has shifted. Two critical issues in
knowledge reasoning research are the algorithm of the model itself and the selection of paths. Most
studies utilize LSTM as the path encoder and memory module. However, when processing long
sequence data, LSTM models may encounter the problem of long-term dependencies, where memory
units of the model may decay gradually with an increase in time steps, leading to forgetting earlier
input information. This can result in a decline in the performance of the LSTM model in long
sequence data. Additionally, as the data volume and network depth increase, there is a risk of
gradient disappearance. This study improved and optimized the LSTM model to effectively address
the problems of gradient explosion and gradient disappearance. An attention layer was employed
to alleviate the issue of long-term dependencies, and ConvR embedding was used to guide path
selection and action pruning in the reinforcement learning inference model. The overall model
achieved excellent reasoning results.

Keywords: knowledge reasoning; knowledge graph completion; reinforcement learning; LSTM

1. Introduction

A knowledge graph (KG) [1] is a network of concepts where the fundamental element
is a triple in the form of (entity, relationship, entity). Many knowledge graphs, including
WordNet [2], NELL [3], and Freebase [4], have been developed and successfully applied in
intelligent service areas like information retrieval, recommendation systems, and question
answering systems. Since these large-scale knowledge graphs are often incomplete and re-
quire constant supplementation, knowledge reasoning [5,6] involves deducing new entities
or relationships from existing data, thus continually enhancing the knowledge graph. As a
result, knowledge reasoning has emerged as a hot topic in the field of knowledge graph
research in recent years.

Currently, studies on KG reasoning can be broadly categorized into three types:
embedding-based reasoning, logic-based multi-hop reasoning, and path-based multi-hop
reasoning, as illustrated in Figure 1. Multi-hop refers to the process of going from one
node to another node in a graph network through multiple intermediate nodes. Multi-
hop knowledge graph inference starts from one entity, goes through multiple entities
and relationships, and finally reaches the target entity, focusing on learning the logical
rules between semantics from the relational path of the knowledge graph. One popular
approach for knowledge reasoning is to use neural networks to learn entity and relation
embeddings [7–9]. These methods represent entities and relations as low-dimensional
dense vectors and use the similarity between vectors to reason about relationships between
entities or determine the truth of a given triplet, thus completing the KG. However, their
capacity to capture multi-hop path relationships is limited since they rely on the triplet
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representation of the KG, making them less applicable for more complex reasoning tasks.
As a result, another solution is to combine multi-hop path information between entity pairs
for knowledge reasoning. The Path Ranking Algorithm (PRA) [10] uses a random walk
based on a restart inference mechanism to perform multiple bounded depth-first searches
and utilizes supervised learning to choose more reasonable paths, thereby mitigating the
aforementioned issue. Recently, multi-hop reasoning has been formulated as a Markov
decision process (MDP) [11] due to its interpretability and excellent performance. Reinforce-
ment learning (RL) [12,13] has been used to conduct efficient path search. DeepPath [14] is
the first multi-hop reasoning method to transfer RL to KGs, wherein entities are mapped to
states and relations to actions. The goal is to use RL to sample relationships and expand
the path. These methods present new research directions for KG reasoning.
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However, using RL for path search in actual knowledge reasoning tasks is inefficient. 
Firstly, most RL methods fail to embed entities and relations effectively when constructing 
the KG environment, resulting in a low success rate for the agent’s path search. Secondly, 
the KG has many invalid paths. For example, given the triplets Person A, Field, knowledge 
graph; Person B, Teacher, Person A; Person B, Field, knowledge graph; Person B, Collabo-
rate, Person C; Person C, Teacher, Person D; and Person D, Field, knowledge graph, it is 
possible to infer Person C, Field, knowledge graph, as depicted in Figure 2. 
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However, using RL for path search in actual knowledge reasoning tasks is inefficient.
Firstly, most RL methods fail to embed entities and relations effectively when constructing
the KG environment, resulting in a low success rate for the agent’s path search. Secondly,
the KG has many invalid paths. For example, given the triplets Person A, Field, knowledge
graph; Person B, Teacher, Person A; Person B, Field, knowledge graph; Person B, Collabo-
rate, Person C; Person C, Teacher, Person D; and Person D, Field, knowledge graph, it is
possible to infer Person C, Field, knowledge graph, as depicted in Figure 2.
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During the reasoning process, the relationship “Field” plays a critical role, and the
gray dots represent invalid actions due to the inability of gray entities to serve as the subject
or object of “Field”. When the agent selects an invalid action during the traversal process,
it retraces its steps and makes a new selection. However, there is a possibility that the agent
might repeatedly choose the same invalid action, leading to inefficiency. Similarly, there
may be instances where the agent selects the same valid path repeatedly, resulting in a loop.

Presently, the latest research progress on reinforcement learning is as follows. Hilde-
brandt et al. [15] proposed a knowledge graph reasoning method based on the dynamics
of discussion, which defines a tuple classification task as a game between two opposing
reinforcement learning agents. In this method, a searcher iteratively completes the model’s
training by searching for parameters that can persuade the discriminator to accept its
position. The downside of this method might be that it could require extensive iterations
and interactions, which can be computationally expensive, and it may be difficult to find a
global optimum due to getting stuck in local optima. In response to the issue of multiple
semantics for entities or relations in the multi-hop inference process, Wan et al. [16] pro-
posed the RLH model that includes a hierarchical decision-making process. In this model,
the high-level strategy learns from historical information, while the low-level strategy
is responsible for learning specific sub-actions and the division of the action space. The
limitation of this method could be the coordination and efficiency between the high-level
and low-level strategies, as well as the acquisition and application of historical information
in complex environments. To address the problem of sparse reward signals in knowl-
edge reasoning, the RuleGuider [17] model uses high-quality rules generated by symbolic
reasoning methods to provide reward supervision for a walk-based agent. This model
combines a symbolic logic rule generation model and a walk-based rule guide inference
model, enhancing the interpretability of the inference paths. However, this model’s flaw
might be the difficulty of generating high-quality rules and the reliance on the quality of
the rules, which may not cover all inference paths sufficiently. The DacKGR [18] model,
targeting the problem of multi-hop reasoning on sparse graphs, utilizes embedding models
to predict the current state’s action space and dynamically adds additional reliable actions
to the path search space to alleviate sparsity issues in multi-hop reasoning. However,
this approach may lead to an overly large state space due to the dynamic addition of
actions, increasing the complexity of the search. Fu et al. [19] proposed the CPL model for
open-domain knowledge graph reasoning tasks, which jointly trains a multi-hop reasoning
agent and a fact extraction agent, using facts extracted from external data to assist the path
reasoning process. The downside of this approach might lie in its dependency on external
data and the challenge of effectively integrating external data to ensure the consistency
of the information. At the same time, the LSTM model is used in all of the above meth-
ods. Typically, reinforcement learning with LSTM networks is used for knowledge graph
reasoning, storing the agent’s historical actions. However, the LSTM model is prone to
overfitting and struggles to capture long-term dependencies in long sequence data, which
can result in a performance decline on new data. All of these issues lead to a reduction in
the accuracy of path selection and may make it challenging for the agent to obtain rewards
from the policy network during the initial traversal stage. Typically, reinforcement learning
with LSTM networks is used for knowledge graph reasoning, storing the agent’s historical
actions. However, the LSTM model is prone to overfitting and struggles to capture long-
term dependencies in long sequence data, which can result in a performance decline on
new data. All of these issues lead to a reduction in the accuracy of path selection and may
make it challenging for the agent to obtain rewards from the policy network during the
initial traversal stage.

The problems of the low efficiency and accuracy issues in path selection can actually
be solved through “Strong memory ability”. “Strong memory” refers to the ability to
effectively retain and retrieve information across multiple iterations or steps of the learning
process. This ability is critical for tasks that involve understanding long-term relationships
or making inferences across multiple steps. Existing methods may lack this capability
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due to limitations in information representation or model architecture. Therefore, in
our work, we propose a fusion of representation learning and reinforcement learning,
combining ConvR embeddings and reinforcement learning to form a knowledge graph
reasoning method with strong memory ability, named ConvR-based reinforcement learning
knowledge graph reasoning with “Strong memory ability” (ConvRL-KGM). The proposed
model transforms the path selection problem into a sequence decision problem and makes
three key contributions.

1. Using ConvR embeddings to generate vector representations of entities and relation-
ships in the knowledge graph, the intelligent agent can accurately search for paths
during its interaction with the knowledge graph environment, thus enhancing the
efficiency of the reasoning method.

2. To address the problem of invalid actions, random dropout operations are performed
on actions to reduce their interference with the intelligent agent. This enables the
agent to receive comprehensive training and enhances the model’s generalization
ability by encouraging the policy network to select different relationships.

3. To overcome the limitations of the LSTM model, this paper proposes an improved
SLSTM (SELU-activated LSTM) model that uses SLSTM to store the agent’s historical
actions and introduces self-attention to force the agent to choose different actions
and avoid constant pauses on the same entity node. This approach also prevents
overfitting to the training data and helps the model find higher success rate paths for
reasoning tasks during the training process, thereby improving the model’s “Strong
memory ability”.

2. Related Work

Our work mainly uses the combination of knowledge graph embedding and reinforce-
ment learning and improves the memory module for knowledge reasoning, so this chapter
will summarize the current work in this order.

2.1. Embedded Model-Based Reasoning

Embedding-based reasoning is a technique that maps entities and relations to a vector
space, enabling reasoning by computing similarity between vectors. Several methods exist
for embedding-based reasoning, including (1) translation-based models, which aim to learn
embeddings by translating relations from the head entity to the tail entity, (2) bilinear mod-
els, which apply bilinear transformations to entities and relations, (3) factorization models,
which represent the model as a tensor decomposition of a three-way tensor, and (4) neural
network-based models, which employ fully connected neural networks, convolutional
neural networks, and graph convolutional neural networks to encode semantic information.
The most classical model among these is the Trans series model, illustrated in Figure 3.

TransE, proposed by Bordes et al. [8] in 2013, which regards the relationship as a certain
translation between entity pairs, performs well when dealing with simple relationships,
but when faced with 1-N, N-1, N-N, etc., there will be errors in complex relationships.
TransH, proposed by Wang et al. [20], solves the limitations of TransE in dealing with
complex relationships by setting a relationship hyperplane so that entities under different
relationships have different representations. TransD, proposed by Ji et al. [21], considers the
diversity of entities and relationships at the same time. By setting two projection matrices
to project the head and tail entities into the relationship space, the model is more flexible.
The TransE-KC model, proposed by Jincheng Xu et al. [22], learns triplets at the same
time as information; the network structure characteristics and semantic information of
the knowledge graph are also considered to enhance the representation effect of triples.
ComplEx [23] was proposed by Trouillon et al., and the model is a machine learning model
used for processing text similarity tasks. It is mainly used for learning text representation,
especially for complex texts with multiple entities and relationships. The ComplEx model
improves its performance in handling complex entities and relationships by combining
word embeddings and entity relationship embeddings to learn the representation of text.
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TuckER [24], proposed by Balažević, represents the knowledge map as a third-order binary
tensor, and each element corresponds to a triplet, which has a strong ability to learn features.
ConvE [9], proposed by T Dettmers et al., takes the form of convolution, defined by a single
convolution layer, a projection layer with embedding dimensions, and an inner product
layer, which can capture complex information.
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2.2. Inference Based on Reinforcement Learning

The reasoning method based on reinforcement learning considers the path walk
between entities as a Markov decision process and uses a policy-based agent to search
for the reasoning path. Xiong et al. proposed the first reinforcement learning method,
DeepPath [14], which considers the learning path in the knowledge map, as shown in
Figure 4.
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MINERVA, proposed by Das et al. [25], is an end-to-end model for multi-hop KG query
answering using reinforcement learning training. M-Walk, proposed by Shen et al. [26], is
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an agent comprising an RNN and a Monte Carlo tree. It is used to encode the state of the
path and generate valid paths. DIVINE, proposed by Li et al. [27], is a framework based on
generative adversarial learning, which enhances RL-based reasoning in knowledge graphs
by learning reasoning strategies and reward functions. Meilicke et al. [28] proposed a rule-
based multi-hop inference model and introduced reinforcement learning to guide the rule
sampling process, which helps to obtain more valuable rules. The RuleGuider proposed
by Lei et al. [17] is an approach that leverages top-quality rules created by symbol-based
methods to offer reward supervision for agents. TransPath, proposed by Cui Yuanning
et al. [29], improved the success rate of path selection by adding a single-step walk to select
the source task of effective actions in addition to the target task. Wan et al. [30]. proposed
that human-like reasoning decomposes the entire reasoning process into a two-level policy
hierarchy for the encoding of historical information and the learning of structured action
spaces, improving multiple semantic issues.

2.3. Memory Module

Most of the memory modules that encode historical information in reinforcement
learning knowledge reasoning use the LSTM model, as shown in Figure 5.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 23 
 

+ +

Sigmoid Sigmoid

× ×

Tanh

Tanh

Xt

Ht-1

Ct-1 Ct

Ht;

Cell

Hidden

Forget 
gateFt Candidate 

cells

Output 
gateOt

Sigmoid

Input gateIt

 
Figure 5. LSTM model. 

The LSTM model typically requires a substantial amount of training data and com-
puting resources to train, particularly when the model scales up. As the model size in-
creases, training time and computing costs rise sharply, and overfitting becomes more 
likely, leading to poor performance on new data. Gers et al. [31] proposed a coupled for-
getting mechanism in 2000 that merged the forget gate and input gate. They added the 
concept of Peephole Connection in 2001 and a cell state signal to each gate’s input. Chung 
et al. [32] proposed the GRU model, which only has two gates, the reset gate and the up-
date gate, removing the output gate in LSTM. GRU has fewer parameters, trains faster, 
and requires relatively fewer samples but is not suitable for large-sample training. Shi et 
al. [33]. proposed ConvLSTM to build a spatio-temporal sequence prediction model that 
captures both temporal and spatial information. The fully connected weight in LSTM is 
replaced by convolution, and each gate in the LSTM unit performs convolution opera-
tions, capturing underlying spatial features. Shen et al. [34]. designed ON-LSTM, a unique 
LSTM structure that encodes the hierarchical structure of sentences, thus improving 
LSTM’s expressive ability. 

Few methods combine embedding models and reinforcement learning, and rein-
forcement learning does not fully utilize an agent’s historical path information during 
reasoning. To address these issues, in our work, we use the embedding ConvR method, 
which embeds entities and relationships in a low dimension to create the knowledge map 
environment. The information line is encoded to prune the agent’s output path, and the 
SLSTM network is introduced as a memory component to store historical paths. Addition-
ally, the self-attention mechanism is used to enhance path selection efficiency. 

3. Reinforcement Learning Framework Algorithm Based on ConvR Embedding 
The goal of knowledge reasoning is to predict the reliable path between entity pairs. 

Therefore, in order to improve the overall quality and efficiency of prediction, in our work, 
we propose a knowledge reasoning method ConvRL-KGM (ConvR-based Reinforcement 
Learning Knowledge Graph Reasoning with Strong Memory) based on reinforcement 
learning of ConvR embedding, which will find the path between entity pairs. Possible 
relationships and path information are transformed into sequential decision-making 
problems for reinforcement learning. The model is shown in Figure 6. 

Figure 5. LSTM model.

The LSTM model typically requires a substantial amount of training data and comput-
ing resources to train, particularly when the model scales up. As the model size increases,
training time and computing costs rise sharply, and overfitting becomes more likely, leading
to poor performance on new data. Gers et al. [31] proposed a coupled forgetting mechanism
in 2000 that merged the forget gate and input gate. They added the concept of Peephole
Connection in 2001 and a cell state signal to each gate’s input. Chung et al. [32] proposed
the GRU model, which only has two gates, the reset gate and the update gate, removing the
output gate in LSTM. GRU has fewer parameters, trains faster, and requires relatively fewer
samples but is not suitable for large-sample training. Shi et al. [33]. proposed ConvLSTM
to build a spatio-temporal sequence prediction model that captures both temporal and
spatial information. The fully connected weight in LSTM is replaced by convolution, and
each gate in the LSTM unit performs convolution operations, capturing underlying spatial
features. Shen et al. [34]. designed ON-LSTM, a unique LSTM structure that encodes the
hierarchical structure of sentences, thus improving LSTM’s expressive ability.

Few methods combine embedding models and reinforcement learning, and reinforce-
ment learning does not fully utilize an agent’s historical path information during reasoning.
To address these issues, in our work, we use the embedding ConvR method, which embeds
entities and relationships in a low dimension to create the knowledge map environment.
The information line is encoded to prune the agent’s output path, and the SLSTM net-
work is introduced as a memory component to store historical paths. Additionally, the
self-attention mechanism is used to enhance path selection efficiency.
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3. Reinforcement Learning Framework Algorithm Based on ConvR Embedding

The goal of knowledge reasoning is to predict the reliable path between entity pairs.
Therefore, in order to improve the overall quality and efficiency of prediction, in our work,
we propose a knowledge reasoning method ConvRL-KGM (ConvR-based Reinforcement
Learning Knowledge Graph Reasoning with Strong Memory) based on reinforcement
learning of ConvR embedding, which will find the path between entity pairs. Possible rela-
tionships and path information are transformed into sequential decision-making problems
for reinforcement learning. The model is shown in Figure 6.
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First, we use ConvR embedding to map entities and relationships into vectors con-
taining triplet semantic information and score the path corresponding to each entity. Then,
we use the continuous vectorized representation of entities and relationships obtained by
ConvR embedding as a neural network based on reinforcement learning. The input of
the network enables the model to make full use of the existing triplet information of the
knowledge graph, and the RL agent trains the strategy network during the walking process.
Finally, action pruning and SLSTM+self-attention are used to control the path selection
search and path and take effective actions in the reinforcement learning strategy to improve
the overall performance of the model.

3.1. SLSTM

The core idea of the LSTM model is to use the “cell state” Ct. The “cell state” acts like
a conveyor belt that runs directly throughout the entire chain, with only a small amount
of linear interaction. Information flowing through it can easily be kept unchanged. LSTM
removes or adds information to the cell state using a carefully designed structure called
“gates”. A gate is a way of selectively allowing information to pass through, and it consists
of a sigmoid neural network layer and a pointwise multiplication operation. Three gate
functions are introduced in LSTM: the input gate, forget gate, and output gate, which are
used to control input values, memory values, and output values, respectively.

However, the LSTM model may face the problem of long-term dependencies when
processing long sequence data, where earlier inputs have less impact on subsequent pre-
dictions. This is because the memory unit of the LSTM model may gradually decay as the
time step increases, causing it to gradually forget earlier input information. This may lead
to a decrease in the performance of the LSTM model in long sequence data. Moreover, as
the amount of data increases and the network deepens, there is a risk of gradient vanishing.
Therefore, in our work, we propose an improved LSTM algorithm—the SELU-activated
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LSTM (SLSTM) algorithm—to address the problems of long-term dependencies, gradient
vanishing, and exploding. The model is shown in Figure 5.

Based on the latest research results on activation functions, the improved LSTM
model makes the state ht and ct enter an activation function during the gate computation
process, and the output end also needs to go through an activation function. The activation
function selected is the SELU function [35], which ensures that the gradient of each layer is
transmitted in a stable manner during the optimization process, and the SELU function has
the function of automatically converging the activation values of neurons to zero mean and
unit variance, achieving the purpose of self-normalization. In addition, the normalization
of SELU restricts the range of variance and also ensures robustness in multi-level training,
effectively avoiding the problem of gradient vanishing and exploding during the training
process. The function is presented in Eq. (1) as follows:

selu(x) = λ

{
x i f x > 0

α(ex − 1) i f x < 0
(1)

where x refers to the value entered into the activation function; both λ and α are hyper-
parameters, and their values are obtained by proof rather than training. λ in formula 1 is
the scaling coefficient, α is the scaling parameter, and the values of λ and α are derived
mathematically, where λ is usually chosen as 1.0507 and α is usually chosen as 1.6733.

Then, the input gate is removed and combined with the forget gate, and the addition
of new information and the retention of the old state are set as complementary values
(with a sum of 1). That is, we only forget when new information needs to be added, and
we only add new information when forgetting is necessary. For knowledge reasoning,
in order to ensure the accuracy of reasoning, long-term effective memory is required.
Therefore, combined with the “peephole connections” proposed by Gers and Schmidhuber,
2000 [36], the hidden gate is connected to the state of the previous unit, and the output gate
is connected to the current unit. Status connection is established. The overall improved
SLSTM model is shown in Figure 7.
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3.1.1. Input Preprocessing

The SELU function has the function that the excitation value of neurons automatically
converges to zero mean and unit variance so as to achieve the purpose of self-normalization,
and the normalization of SELU limits the range of variance, which can also ensure it in
multi-level training. It maintains robustness, thereby effectively avoiding the problem of
gradient disappearance and explosion during training. First, we use SELU to preprocess
the input, and the process is shown in Figure 8.

ht−1 = SELU(Ht−1) (2)

ct−1 = SELU(Ct−1) (3)
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3.1.2. Hidden Gate

This step is performed to decide how much information in the cell state to keep and to
selectively forget the information in the cell state in the previous step. The achieved effect
is the same as the forget gate in LSTM. For example, if you want the model to obtain a new
subject, it will automatically hide the old subject. For example, “She works so hard, so I. . .”,
and when the model starts to deal with “I”, it will hide the previous subject “she”.

Implementation method: The sigmoid layer ht−1 in the previous step and Xt in this
step are used as inputs, and then a value between 0 and 1 is output for each number in Ct−1,
which is recorded as Ft, indicating how much information to keep (1 means completely
retained, 0 means completely discarded). The process is shown in Figure 9.

Ft = σ(WF·[ct−1, ht−1, Xt] + bF) (4)

where ct−1 is the cell state at the previous time, ht−1 is the hidden state at the previous time,
Xt is the value of the input sequence at the current time, WF and bF are the weights and
biases, respectively, and σ represents the sigmoid function.
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3.1.3. Memory Merge

This step decides what to store in the cell state and selectively records new information
in the cell state. For example, we want to add new subject categories to the cell state to
replace old subjects that need to be forgotten. For example, “She works so hard, so I. . .”, and
when the model starts processing “I”, it will update the subject “I” into the cell.

Implementation method: The model uses the result obtained by the hidden gate to
negate so as to determine the update value. The probability is expressed as 1− Ft, and the
tanh layer creates a vector of candidate values C̃t that will be added to the cell state, which
is then combined to update the cell state. The process is shown in Figure 10.

C̃t = tanh(WC·[ht−1, Xt] + bC) (5)

Ct = Ft × ct−1 + (1− Ft)× C̃t (6)
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3.1.4. Output Gate

This step determines what kind of predictions to make.
Implementation method: The model utilizes a sigmoid layer to determine which parts

of the output cell state Ct are significant. Subsequently, the cell state is passed through a
tanh layer to ensure the values range between −1 and 1. The final output Ht is obtained by
multiplying the output of the sigmoid layer with the output of the tanh layer. The process
can be represented mathematically as follows:

Output gate calculation

outt = Wo·[ct−1, ht−1, Xt] + bo (7)

Final output calculation
Ht = outt × tanh(Ct) (8)

outt is the output gate activation vector, Wo and bo are the weights and bias for the
output gate, ct−1 and ht−1 are the previous cell state and hidden state, respectively, Xt is
the current input, Ht is the final output at the time step, and Ct is the current cell state. The
process is shown in Figure 11.
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3.1.5. The Final Memory of the Current Time Step

In order to ensure the consistency of input and output, therefore, the final output
memory also needs to be processed as follows:

Hout
t = SELU(Ht) (9)

3.2. ConvR Embedding Model

The ConvE model is insufficient to comprehensively capture the interactions between
input entities and relations, as it models interactions in the region of matrix adjacency of
input entities and relations. In order to maximize the interaction between entities and
relations, Jiang [37] et al. proposed the ConvR model, which continues the framework of
ConvE. The difference is that the relation is used as the convolution kernel. The essence lies
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in adaptively building the relation embedding into a convolution kernel and interacting
with the entity embedding so that each convolution is 100% interactive. The overall model
is shown in Figure 12.
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Firstly, after being given a triplet, the relational representation should be split and
reshaped into a set of filters. Next, the relational representation of the head entity should be
reshaped and used as the input for the convolutional layer. Then, the filter should be applied
to the input to capture interactions between filters (part of the relational representation)
and different regions of the input (entity representation). Finally, the convolutional features
are projected and matched to the representation of the tail entity. In comparison to ConvE,
which utilizes a global filter, ConvR employs an adaptive filter that is constructed from a
relational representation and uses the relation as a convolution kernel.

In order to use the relation as the convolution kernel, the relation embedding is first
divided into several small blocks r1 . . . rn of the same size. This process is called “Split”. At
the same time, because 2D convolution is used, each small block r𝓁 ∈ Rdr/c, is reshaped
into a height h, width w, and convolution kernel R𝓁 ∈ Rh∗w, dr = chw.

During convolution, the relational specialized convolution kernel R𝓁 is used for
operations, and the mathematical expression of the convolution process is as follows:

c𝓁m,n = f

(
∑
i,j

sm+i−1,n+j−1 × r𝓁i,j

)
(10)

where c𝓁m,n represents the response of the l-th filter at position (m, n) on the convolved
feature map. The function f is an activation function, such as ReLU, etc. sm+i−1,n+j−1 is a
part of the input entity embedding, and r𝓁i,j is the value at position (i, j) in the l-th filter. The
entire summation process is the convolution operation, which calculates the dot product of
the filter with the entity embedding at each position.

For instance, when training on the FB15K-237 dataset, the data that participate in
the convolution primarily include entity embeddings and relation embeddings. Entity
embeddings are representations of entities obtained through pre-training of the model,
while relation embeddings are a series of convolutional filters obtained through split-
ting and reshaping the relational representations. These embeddings are updated along
with the model parameters during the training process to ultimately capture the complex
interactions between entities.

3.3. Reasoning Framework Algorithm

ConvRL-KGM is a method of transforming simple reasoning tasks into Markov deci-
sion problems, where the state transitions and action selection of the agent are all performed
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within a knowledge graph environment. This section mainly focuses on how to convert
knowledge graphs into decision problems for intelligent agents.

3.3.1. State

The relationship selection strategy is not only dependent on the current entity infor-
mation but also on the queried relationship. At time step t, the state st is composed of the
source entity es, the queried relationship rq, and the current entity et. Its representation is
as follows:

st =
(
es, rq, et

)
(11)

Given a pair of entity relationships
(
es, rq, etarget

)
, the initial state is represented as(

es, rq, es
)
, and the agent starts its traversal from the source entity es.

3.3.2. Action Space

Let Ot denote all the relationships in the knowledge graph G that are associated with
the current entity et at state st.

Ot = {r|et, (et, r, e′)} (12)

where e′ represents the tail entity. To select the action ot from Ot based on the policy π, a
fixed time step limit is imposed for the search process to facilitate a comprehensive search.

3.3.3. State Transition

State transition refers to the process by which an agent moves from the current state to
the next state based on the action taken. Specifically, the agent, in the current state, selects
an action, and the transition to the next state is determined by the interaction with the
environment, represented by the knowledge graph G. The state transition probability P is
denoted as follows:

P : S×O→ S (13)

P = (St−1 = s′|St = s, Ot = o) (14)

3.3.4. Construction of Reward Function Based on Knowledge Embeddings

In the previous reinforcement learning strategy, the agent only received binary rewards
based on the observed answers in G.

R(st)

{
1, i f et = etarget

0, else
(15)

However, G is inherently incomplete, and this approach assigns the same reward to
negative outcomes as positive outcomes. To address this, we adopt the ConvR embedding
approach and set soft rewards for result entities whose correctness are unknown. Formally,
the embedding model maps entities E and relations R into a vector space and uses the
ConvR composite function to estimate the likelihood of each fact. Therefore, we shape the
policy with the following reward function:

R(sT) = R(st) + (1− R(st))ConvR(et, r, e′) (16)

The environment returns intermediate rewards R(st) for subsequent reward estima-
tion. If the agent reaches the target entity, a reward of 1 is returned at the current time
step; otherwise, a penalty less than 1 is returned. To evaluate the reliability of the predicted
triplet (et, r, e′), we utilize the pre-trained embedding model ConvR to score it.
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3.3.5. Policy

1. Dynamic policy space pruning

Due to the fact that invalid paths are often more numerous than correct paths and are
easier to detect, the burden of path search is increased, especially when the KG grows with
the increase in path length, resulting in an exponential increase in action space and thus
increasing the search burden. This phenomenon is even more severe for entities with large
outdegrees (i.e., entities with many connecting relations). Enumerating all possible relation
paths between entity pairs on a large-scale knowledge graph is infeasible, so conducting
effective path exploration and identifying reasoning paths is particularly important.

Therefore, we leverage the advantage of ConvR embedding to obtain, in the action
space, all tail entities that are connected to the corresponding head entity and relation.
Specifically, for the current entity and selected relation, we compute the probability of all
entities becoming the tail entity and then select the top K entities as our action space, where
K is predetermined for each dataset. A large K value may lead to information confusion,
while a small K value may lead to insufficient information. Therefore, we can refine the
action space to enable the goal to reach the target entity.

2. Policy network

Each entity and relation in the knowledge graph (KG) are represented by a low-
dimensional dense vector with semantic information through ConvR embeddings. In order
to construct a search sequence more effectively, the agent needs to not only understand
the current information but also the past events that have occurred. Therefore, we utilize
the SLSTM algorithm proposed in this paper to encode the historical information of the
search history (es, r1, e1, r2, . . . et) into a hidden state denoted as ht, representing the his-
torical information at time step t. The output of the historical information is then passed
through a self-attention layer. Assuming the initial state is h0 = 0, the search history
ht = (es, r1, e1, r2, . . . et) is composed of the action sequence taken from step 1 to step t.

h0 = SLSTM(0, r0) (17)

ht = SLSTM((ht−1, ct−1), ot−1) (18)

In the self-attention layer, we first set up a linear function fs, which should be twice
the size of ht due to the use of bidirectional SLSTM in reinforcement learning knowledge
reasoning.

fs = f (ht ∗ ht, 1) (19)

Then, we calculate the attention weights using the SoftMax function.

as = so f tmax( fs) (20)

Finally, we obtain the final output ht by multiplying the attention weights with the
linear function fs.

ht = as· fs (21)

The reinforcement learning policy π, which maps state st to action space Ot, can be
represented as π : st → Ot , where Ot ∈ R|Ot |×d1 and d1 is the embedding dimension.

πθ(ot|st) = σ
(
Ot ×W2ReLU

(
W1
[
et; rq; ht

]))
(22)

where σ represents the SoftMax function, “;” denotes the concatenation operation,
W1 ∈ R(d1+d2+d3)×d4 , W2 ∈ Rd1×d4 , and d2 is the entity dimension, d3 is the dimension
of historical hidden states, and d4 is the number of hidden units in the fully connected
layer. Then, a dropout method is added to make the process more random. The upgraded
strategy is expressed as follows:

π̃θ(ot|st) = πθ(ot|st)·m + ε (23)
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where m is sampled from a Bernoulli distribution, which randomly masks some options in
its action space. ε is a very small value when m = 0.

3. Optimization of the Policy Function

The model employs the REINFORCE gradient policy method to optimize the parame-
ters θ of the policy network πθ following the formula

J(θ) = E(eh ,r,et)ϵG [Eo1,...,oT∼πθ
Reward(sT |(es, r))] (24)

where J(θ) represents the batch reward and E denotes the expectation over different triplets
in the training set. The REINFORCE gradient policy method utilizes a series of historical
trajectories (iterating over all triplets in G) generated by the current policy to estimate the
stochastic gradient, which is then used to update the parameters as follows:

∇θ J(θ) ≈ ∇θ ∑
t

Reward(sT |(es, r))logπθ(ot|st) (25)

The training process of the model is shown in Algorithm 1

Algorithm 1: Policy Network

Initialize st ← 0 , time step T ← 0
Initialize the policy network πθ

Encode historical information ht using SLSTM+self-attention
for n← 1 to Epoch num do

for t← 1 to Time step do
Initialize st
Generate action space ot = πθ(ot|st)
Update hidden state ht
Obtain reward R

end for
Optimize parameters θ

end for

4. Experiment Settings
4.1. Dataset

In this work, we conducted experiments using three datasets: (1) the NELL-995 dataset,
which was generated from the 995th dump of the “Never Ending Language Learning”
project and (2) the FB15K-237 dataset, which is a subset of FB15K with reverse relations
removed. It is a knowledge base where all entities are linked to the Wikipedia database. It
contains facts related to real-world entities, such as movies, actors, awards, sports, etc. It
has rich relationship types and is suitable for tasks such as reasoning and link prediction
in knowledge graphs. (3) We also used the Kinship dataset, which is a knowledge graph
dataset representing kinship relations among family members. The dataset is shown in
Table 1.

Table 1. The specific format of the datasets.

Dataset #Ent #Rel #Fac #Meandegree

FB15K-237% 14,505 237 310,116 21.38
NELL-995 75,492 200 154,213 4.07

Kinship 104 25 8544 85.15

These three datasets are publicly available in the field of knowledge graph research.
They have different scales, domains, and task characteristics, making them suitable for
different research needs and having high application value in relevant fields.
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FB15K-237 (https://www.microsoft.com/en-us/download/details.aspx?id=52312)
(accessed on 10 March 2024): This dataset contains facts about real-world entities and is
suitable for studying tasks such as reasoning and link prediction in knowledge graphs.

NELL-995 (https://download.csdn.net/download/guotong1988/10313268?utm_
source=bbsseo) (accessed on 10 March 2024): The NELL-995 dataset contains basic semantic
relationships between data, such as city, company, emotion, and sports team. It also covers
multiple domains, including characters, locations, organizations, time, events, etc. The
NELL-995 dataset has a rich set of entities and relationship types, making it suitable for
diverse research in the field of knowledge graph.

Kingship (https://gitcode.com/Colinasda/KGdatasets/overview?utm_source=csdn_
github_accelerator) (accessed on 10 March 2024): The Kinship dataset primarily includes
familial relationships between family members, such as parents, children, siblings, grand-
parents, great grandparents, etc. It is used for research and analysis in fields such as familial
relationships, family structure, sociology, anthropology, etc., including social network
analysis, family history research, population studies, and more.

4.2. Compare Models

We compared ConvRL-KGM with existing knowledge graph reasoning methods,
including DeepPath, MINERVA, and multi-hop KG, as well as two recent reinforcement
learning-based models, TuckRL and RLH, for multi-hop reasoning.

DeepPath (https://github.com/xwhan/DeepPath) (accessed on 10 March 2024): A
study that initially applies reinforcement learning for knowledge graph reasoning.

MINERVA (https://github.com/shehzaadzd/MINERVA) (accessed on 10 March
2024): An end-to-end model trained with reinforcement learning for answering multi-hop
KG queries.

Multi-hop KG (https://github.com/JiapengWu/MultiHopKG?tab=readme-ov-file)
(accessed on 10 March 2024): Proposed pre-training supervision to estimate unseen rewards
and introduced a random masked edge mechanism to explore more diverse paths.

TuckRL (http://www.c-s-a.org.cn/html/2022/9/8681.html) (accessed on 10 March
2024): Utilizes TuckER embeddings to encode states and trains the entire policy network
using MDP.

RLH (https://opus.lib.uts.edu.au/bitstream/10453/157768/2/0267.pdf) (accessed on
10 March 2024): Adopts a hierarchical reinforcement learning approach, where knowledge
reasoning is separated into two parts, actions, and relations, with no mutual influence.

4.3. Evaluation Index

1. Hits@K metric

The Hits@K metric, where K represents a specific value, such as 1, 3, or 10, is used to
measure the performance of knowledge graph reasoning algorithms. Hits@K calculates
the proportion of correctly predicted triples that are ranked within the top K positions
after scoring. It is computed as the cumulative sum of correctly predicted triples ranked
within the top K positions divided by the total number of triples in the test set, resulting in
a value between 0 and 1. “ranki” refers to the ordering of a pair of relations and entities by
replacing the head or tail entity with any other entity (n-1 in total, leaving the other entity
and the relationship unchanged, changing only one of the entities), thus obtaining (n-1), a
new triplet of relations. Then, the entity relation distance is calculated for these triples, and
the n-1 triples are arranged in order of distance from smallest to largest. A higher Hits@K
value indicates better performance of the reasoning algorithm. The formula for calculating
Hits@K is as follows:

Hits@K = ∑
i

(ranki)<K
N (26)

2. Mean Reciprocal Rank (MRR)

The Mean Reciprocal Rank (MRR) is a metric that reflects the overall ranking of
correct triples in the candidate list after scoring by the model’s scoring function. The MRR

https://www.microsoft.com/en-us/download/details.aspx?id=52312
https://download.csdn.net/download/guotong1988/10313268?utm_source=bbsseo
https://download.csdn.net/download/guotong1988/10313268?utm_source=bbsseo
https://gitcode.com/Colinasda/KGdatasets/overview?utm_source=csdn_github_accelerator
https://gitcode.com/Colinasda/KGdatasets/overview?utm_source=csdn_github_accelerator
https://github.com/xwhan/DeepPath
https://github.com/shehzaadzd/MINERVA
https://github.com/JiapengWu/MultiHopKG?tab=readme-ov-file
http://www.c-s-a.org.cn/html/2022/9/8681.html
https://opus.lib.uts.edu.au/bitstream/10453/157768/2/0267.pdf
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calculates the average reciprocal rank of correctly predicted triples based on their ranking
in the list of candidates according to their scores. The reciprocal rank is obtained by taking
the inverse of the rank so that higher ranks have smaller reciprocal ranks. The MRR is
computed as the average of reciprocal ranks of correctly predicted triples, resulting in a
value between 0 and 1. A higher MRR value closer to 1 indicates better performance of the
model. The formula for calculating MRR is as follows:

MRR = 1
N ∑

i

1
ranki (27)

5. Experimental Results and Analysis

In this section, a series of experiments were conducted to validate the effectiveness of
the proposed framework for multi-hop knowledge graph reasoning. Firstly, the proposed
framework was evaluated on four benchmark datasets and compared with state-of-the-art
models. Secondly, ablation studies were conducted on the proposed model to demonstrate
the necessity of each module. Thirdly, our framework was evaluated based on different
relationship types and unseen queries. Finally, we investigated how different embedding
dimensions and maximum path lengths affect the performance of our framework.

5.1. Model Comparison

We compare the proposed ConvRL-KGM with the baseline models set in Section 4.2,
and the results are presented in Table 2.

Table 2. Experimental comparison results.

Model
NELL-995 FB15K-237 KINSHIP

@1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10 MRR

DeepPath 52.6 61.5 77.3 63.8 16.9 24.8 35.7 22.7 - - - -
MINERVA 66.3 77.3 83.1 72.5 21.7 32.9 45.6 29.3 60.5 - 92.4 72

Mulithop KG 65.6 79.2 84.4 72.7 34.6 44.3 58.1 42.1 78.9 92.7 98.0 86.5
TuckRL 65.8 78.5 83.5 73.1 36.9 46.3 59.1 42.6 - - - -

RLH 69.2 - 87.3 72.3 - - - - - - - -
Ours 69.9 81.6 86.9 75.1 36.5 45.8 59.5 42.7 79.2 92.6 98.2 86.9

According to Table 2, it can be seen that our proposed model, ConvRL-KGM, out-
performs most of the models. Although the embedding-based model is relatively simple,
its overall performance on multiple datasets is very significant. The reason may be that
the embedding-based method can map each triple of the KG to the embedding space,
thereby encoding the connectivity of the entire graph. ConvRL-KGM also takes advan-
tage of this feature of the embedding model and achieves good experimental results. It
shows significant improvements on the NELL-995 and KINSHIP datasets compared to
other methods, especially the FB15K-237 dataset, where the correct rate of action selection
is low in other models due to the long path length between entities. In ConvRL-KGM,
using ConvR embedding actions for action pruning and SLSTM encoding paths effectively
avoids selecting invalid actions. Furthermore, on the large-scale NELL-995 dataset, our
proposed method shows significant improvement compared to multi-hop KG using ConvE,
as ConvR directly removes the convolution kernel and uses the relationship directly as the
convolution kernel, making each convolution 100% interactive and improving the accuracy
by enhancing the role of the relationship.

5.2. Ablation Experiment

To verify the correctness and effectiveness of the added model, we conducted three
sets of experiments using a controlled variable method: (1) removing ConvR embedding
and using ConvE as the embedding model, (2) using LSTM as the memory module, and
(3) removing the self-attention layer. We compared their MRRs with the entire model on the
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development set, as shown in Table 3. In most datasets, deleting each component resulted
in a significant performance decrease. Generally, removing action dropout had a greater
impact, indicating that thorough exploration of the path space is crucial in the dataset.

Table 3. Results of ablation experiments.

Model
NELL-995 FB15K-237 KINSHIP

@1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10 MRR

ConvRL-KGM 69.9 81.6 86.9 75.1 36.5 45.8 59.5 42.7 79.2 92.6 98.2 86.9
ConvRL-KGM

(-ConvR) 65.6 79.2 84.4 72.7 34.6 44.3 58.1 42.1 78.9 92.7 98.0 84.5

ConvRL-KGM
(-SLSTM) 63.7 75.6 83.2 72.1 33.1 43.8 57.2 41.2 77.3 90.2 96.1 84.9

ConvRL-KGM
(self-attention) 68.9 80.2 84.5 74.1 34.8 44.3 58.3 41.6 78.9 91.9 97.2 86.2

5.3. Path Diversity Exploration

To compute the total number of unique paths explored by the agent during training and
visualize their changes, we include edge labels and intermediate entities when calculating
unique paths. This is shown in Figure 13.
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In Figure 13, it is observed that a large number of paths need to be explored by the agent
before reaching a good performance level across all datasets. As training progresses, the
speed of path discovery slows down. On the smaller G (KINSHIP), the rate of encountering
new paths decreases significantly after a certain number of epochs, and the development
set accuracy tends to stabilize accordingly. On larger Gs (FB15k-237 and NELL-995), there
is no clear slowdown before severe overfitting occurs and development set performance
begins to decrease. One possible reason is that larger Gs are more sparsely connected, so
the efficiency of obtaining generalizable knowledge from G by sampling and exploring a
limited proportion of the path space is lower.

Although removing some modules significantly reduces the effectiveness of path
exploration, removing the ConvR reward shaping slightly improves the paths accessed dur-
ing training across all datasets. This suggests that the correlation between explored paths
and development set performance is not strictly positive. Typically, the best-performing
model is not the one that explores the most paths.

Influence of maximum path length on prediction datasets
In the ConvRL-KGM framework, the maximum length of the pre-specified path is

provided for the agent to search. The influence of different maximum path lengths was
studied through experiments. The agent can traverse the graph in a shorter number of
steps for datasets with shorter path lengths, while larger datasets require longer steps.
Experiments were conducted on the maximum lengths of {2, 3, 4, 5} on NELL-995. The
results are shown in Figure 14.
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For larger datasets, the growth rate of performance slows down when the maximum
length of the path exceeds three. Although the agent does not need excessively long paths,
it can still use different strategies to reach the correct answer, showing strong flexibility.

6. Conclusions and Future Work

In this paper, we propose a knowledge graph inference model based on embedding-
based reinforcement learning, ConvRL-KGM. This method adopts a new path traversal
and reward strategy based on embedded reinforcement learning, which integrates ConvR’s
action pruning mechanism, SLSTM neural network, and self-attention mechanism into the
relationship selection and path traversal process of reinforcement learning agents.

The improved SLSTM model based on LSTM effectively solves the problem of constant
pauses at the same node in the process of knowledge reasoning and can more accurately
capture the complex dependence between entities and relations, which is very suitable for
complex relations and deep understanding tasks. Thanks to the self-attention mechanism,
the LSTM can be endowed with better sequence processing capabilities, so that the model
can better capture long-distance dependencies, thus achieving more accurate reasoning.
According to the existing technology, traditional LSTM tends to have the problem of
gradient disappearance and explosion when dealing with long sequences, resulting in
limited feature learning. The SLSTM proposed in this study effectively solves this problem,
which can better learn effective feature representations, and is more suitable for dynamically
changing knowledge graphs, such as real-time monitoring systems and social media
analysis. In addition, the SLSTM model can better deal with structured knowledge data
and unstructured text data and is suitable for the scenario of integrating multiple data types.
In addition, ConvRL-KGM, compared with the previous reinforcement learning methods,
is more conducive to the agent to effectively mine high-quality paths in the inference
process so as to complete the knowledge graph inference task. ConvR embedment is
introduced as a reward function so that the complex relationship between entities can
be fully learned in the inference process, which is of great importance in improving the
accuracy and efficiency of inference. Traditional multi-hop reasoning is not effective in
the face of complex reasoning because the interaction between entities cannot be fully
utilized. The ConvR embedding introduced in this study effectively solves the limitations
of traditional multi-hop reasoning.

Meanwhile, this method also has certain limitations. For example, it relies heavily
on data quality, as errors or incomplete data will affect the accuracy of reasoning, and
the generalization ability is limited, so it needs to be adjusted for specific tasks. In future
studies, it is necessary to explore the impact of different reinforcement learning methods
on reasoning, and the generalization ability of the model needs to be further improved to
make it adapt to more fields and tasks. It is considered to combine the improvements in
this study with other cutting-edge technologies, such as Variational Autoencoders (VAEs),
to explore new application scenarios and functions. At the same time, meta-learning can be
introduced to solve the inference problem of small sample data, which may bring better
inference performance.
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