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Abstract: Currently, over 100 nuclear power units globally have been in operation for more than
40 years. Hindered by the limitations of computer technology at the time, these nuclear facilities
lack detailed electronic drawings. Activities such as equipment replacement and process circuit
system modifications during operation result in discrepancies between paper drawings and actual
conditions. Given the complexity and irreversibility of nuclear facility decommissioning activities,
virtual simulation technology is often employed before the decommissioning process begins to assist
in designing and validating decommissioning plans. Consequently, the creation of high-precision
3D models is crucial for subsequent decommissioning designs. Through innovatively utilizing
laser-scanning 3D model reconstruction technology in the reconstruction of the model of China’s
first heavy water research reactor undergoing decommissioning, this paper provides an overview
of the process of laser-scanning 3D model reconstruction and its application in reconstructing the
heavy water research reactor model. Using a 3D laser scanner, four decommissioning areas of
the heavy water research reactor, including the reactor building, secondary water pump room,
ventilation center, and low-level radioactive wastewater storage tank area, were subjected to 3D laser
scanning. The acquired point cloud data from 572 scanning stations were processed using point cloud
processing software for denoising, stitching, and triangulation. The triangulated model was then
imported into modeling software for 3D reconstruction, ultimately establishing a digitalized model
of the heavy water research reactor suitable for subsequent decommissioning simulation and design.

Keywords: decommissioning; 3D laser scanning; heavy water research reactor; model reconstruction

1. Introduction

As of July 2022, there are currently 194 nuclear power units globally in the decom-
missioning process or awaiting it, with projections indicating that the global nuclear
decommissioning market will continue to expand in the upcoming decade [1,2]. Notably,
at least 105 nuclear power units worldwide have been operational for over 40 years. Due
to immature developments in computer technology at the time, these reactors lack de-
tailed electronic drawings, and even comprehensive paper drawings are challenging to
preserve. Furthermore, over the decades of their operation, activities such as equipment
replacements, plant expansions, and process circuits modifications have inevitably led to
discrepancies between the paper drawings of nuclear facilities and the actual conditions [3].

For the final phase of a nuclear facility’s lifecycle, the decommissioning process,
an accurate assessment of the decommissioning site is crucial, especially considering the
complexity of underground process circuit systems and the industrial and radiation risks
involved [4]. Given the irreversibility, safety, and economic considerations of the decom-
missioning process, virtual simulation technology, empowered by the advancements in
computer technology, serves as a robust auxiliary tool for nuclear facility decommissioning.
It provides a supportive platform for tasks such as assisting in decommissioning plan de-
signs, validating and confirming implementation plans, process planning and optimization,
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as well as personnel training [5–7]. Given the pivotal role that virtual simulation technology
plays in the process of decommissioning nuclear facilities, the acquisition of highly accurate
3D reactor models becomes the primary task for simulating the decommissioning of nuclear
facilities [8,9].

The heavy water research reactor (HWRR) is the first reactor of its kind in China; it has
a tank-type structure with heavy water as the moderator and coolant and graphite as the
reflector layer, and the original design power is 7 MW. It achieved criticality for the first time
in 1958 and operated at full power in the same year. The HWRR was upgraded to a rated
power of 10 MW and an enhanced power of 15 MW after a major overhaul and modification
in 1980. In December 2007, the HWRR was permanently shut down and entered a phase of
secure closure. By the end of 2019, the HWRR had officially commenced its decommission-
ing process after a successful operational span of approximately 50 years, during which it
released a total cumulative energy of 50,500 MW·d [10,11]. The early reactor construction
date and the complexity of its process system equipment and pipelines, as well as the
major modifications and reconstruction conducted during the operational lifespan of the
HWRR, have resulted in the preservation of incomplete paper drawings, with no digitized
drawings available. Furthermore, the absence of detailed digitized drawings or 3D models
has presented challenges to decommissioning the HWRR, necessitating the adoption of
innovative technologies for the acquisition of its 3D model [12]. Presently, laser-scanning
3D model reconstruction technology has achieved maturity in applications within the
digital preservation of cultural heritage [13–15], building deformation monitoring [16,17],
surveying and mapping engineering [18,19], and related domains. However, in the field
of reconstructing decommissioning models for nuclear facilities, there are relatively few
applications that deal with the design and integration of scanning platforms and the opti-
mization of point cloud data processing methods, and detailed practical applications in
nuclear facility decommissioning projects are lacking [20–23].

This study utilizes 3D laser-scanning technology for non-contact measurements in
radioactive environments, acquiring a significant amount of point cloud data, which
subsequently undergo denoising and registration processes. Upon validating the accuracy
of the scanning equipment and the precision of point cloud registration, the point cloud
model can be exported to 3D modeling software, which facilitates the efficient modeling of
the decommissioning area of the HWRR.

2. A Brief Introduction to Laser-Scanning 3D Model Reconstruction Technology

The process of reconstructing a 3D model of an object into a mathematical model that
can be suitable for computer processing is commonly known as 3D reconstruction. Cur-
rently, two primary approaches exist for acquiring 3D models of objects. The first method
entails the direct generation of a 3D model using specialized 3D modeling software [24].
The second method involves the acquisition of 3D information about the object’s surface
through dedicated equipment, followed by the reconstruction of the object’s 3D model [25].
While the first method is well established, its application to nuclear facilities, characterized
by complex systems and numerous pieces of equipment, presents significant challenges and
demands substantial labor. Moreover, utilizing outdated paper drawings for modeling may
exhibit certain deviations between the created models and the actual objects. In the second
method, laser-scanning 3D model reconstruction technology is the prevailing technique,
which entails utilizing a laser scanner to capture surface data of the object, encompassing
spatial coordinates, reflection intensity, and color information. The precise point cloud data
acquired through this method prove instrumental in 3D modeling. The comparisons of
laser-scanning 3D model reconstruction and 3D software modeling technology are shown
in Table 1.
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Table 1. Comparisons of laser-scanning 3D model reconstruction and 3D software modeling technology.

No. Index Laser-Scanning 3D Model
Reconstruction Technology 3D Software Modeling Technology

1 Costs
The economic cost of the 3D

laser-scanning equipment is relatively
high, but at the same time it saves time.

The economic cost is relatively low, while
the time cost of decommissioning

is increased.

2 Skilled manpower The variety and level of skilled
manpower required is high.

The skilled manpower required are
relatively homogeneous.

3 Model accuracy High precision with multiple
presentation of results.

General, not applicable to the modeling
of complex objects.

4 Data acquisition 3D coordinates and reflectivity of
modeled entities.

Drawings containing dimensional data of
modeled entities.

5 Workloads

The data acquisition and modeling
workload is small, but the workload

required for processing the point cloud
data is large.

The data acquisition and modeling
workload is large.

The above table compares the traditional 3D software modeling technology with
laser-scanning 3D model reconstruction technology, and the results show that the laser-
scanning 3D model reconstruction technology requires relatively high economic costs and
skilled manpower, but it spares us the time cost of acquiring the HWRR plant model,
improving the accuracy of the model. From a long-term perspective, this provides us with
the equipment base and human resources to subsequently undertake other nuclear facility
model reconstruction projects.

In addition, the drawings retained during the construction of the nuclear facilities
in the 1960s were incomplete, and the overhaul and replacement of equipment during
their operation caused changes in the paper drawings, and the parts involved in the
entire nuclear facility amounted to at least tens of thousands, so it is difficult to complete
the model construction of the huge nuclear facility project by relying on the traditional
modeling method alone. The use of laser-scanning 3D model reconstruction technology is
suitable for the construction of complex models, which can effectively establish a complete
model and compensate for the shortcomings of traditional modeling methods.

Laser-scanning 3D model reconstruction technology facilitates the precise and compre-
hensive acquisition of point cloud data for decommissioned nuclear facility components in
a non-contact manner, thereby preserving digital assets. The heightened automation in the
subsequent stages of the modeling process ensures efficiency. Given the intricate and ra-
dioactive nature of decommissioning environments within nuclear facilities, laser-scanning
3D model reconstruction technology assumes a pivotal role as an essential auxiliary method
for the reconstruction of decommissioning models. Its benefits include rapid data collection,
elevated measurement accuracy, and non-contact capabilities [26]. The subsequent section
offers a concise overview of the operational principles of a 3D laser scanner and the process
involved in laser-scanning 3D model reconstruction.

2.1. Principle of 3D Laser-Scanning Technology

The operational principle of 3D laser-scanning technology is depicted in Figure 1.
The XY plane signifies the lateral scanning plane of the 3D laser scanner, and the Z-axis
is perpendicular to the lateral scanning plane. During the scanning process, the laser
emitter and laser receiver located in the middle of the scanner rotate rapidly around the
Y-axis to achieve longitudinal scanning. Simultaneously, the entire scanner rotates around
the Z-axis to achieve lateral scanning. In theory, the longitudinal scanning angle range
and the lateral scanning angle range are both within 0◦ to 360◦. However, due to the
presence of the support structure of the 3D laser scanner, there is a conical blind spot
region beneath the scanner. In practical situations, the point cloud data in the blind spot
region can be supplemented by employing a multi-station scanning approach. Through the
observation of the distance measurement value S from the laser scanner’s center point to
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the target object, the longitudinal scanning angle θ, and the lateral scanning angle α, the
3D coordinates (Xo, Yo, Zo) of the target object’s spatial position can be computed, which
result in the acquisition of point cloud data for the target object. The relationship between
parameters S, θ, and α is demonstrated in Equation (1). The parameter S is determined by
calculating the time difference between the laser emission and reflection (∆T), multiplied
by the speed of laser propagation in air (C). Laser scanners are generally driven by servo
motors; the two parameters α and θ can be measured according to the motor rotation angle
and are usually recorded with the angle encoder that comes with the scanner.

Xo = S × cos θ cos α
Yo = S × cos θ sin α
Zo = S × sin θ

S = C × ∆T
2

(1)
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Figure 1. Schematic diagram of the working principle of a 3D laser scanner. 
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tives, extensive point cloud data with spatial coordinate information can be acquired. This 
facilitates the derivation of comprehensive point cloud data that encompass spatial details 
regarding the shapes and dimensions of internal equipment and pipes within the nuclear 

Figure 1. Schematic diagram of the working principle of a 3D laser scanner.

The interiors within the HWRR plant exhibit a diverse array of equipment and pipes
with varying shapes. These components can be viewed as assemblies of numerous points,
and the clarity of the equipment and pipe contours improves with an increased number of
captured points. Through 3D scans performed from different positions and perspectives,
extensive point cloud data with spatial coordinate information can be acquired. This
facilitates the derivation of comprehensive point cloud data that encompass spatial details
regarding the shapes and dimensions of internal equipment and pipes within the nuclear
facility [27]. To mitigate the prolonged exposure of on-site personnel or unnecessary
movements within the nuclear facility, it is imperative to proactively plan the scanning
positions and routes of the laser scanner.

2.2. A Brief Description of the Laser-Scanning 3D Model Reconstruction Process

The process of laser-scanning 3D model reconstruction is intricate and involves nu-
merous details, encompassing on-site preparation, point cloud data acquisition, point
cloud data processing, and model reconstruction as four general key aspects, as depicted
in Figure 2. On-site preparation involves delineating the area intended for laser scan-
ning and establishing control points through on-site reconnaissance and data reviews,



Appl. Sci. 2024, 14, 3135 5 of 21

and calibrating and charging the instruments to be utilized. The point cloud data acqui-
sition process includes multiple scans of the nuclear facility buildings and their internals
using mobile scanning devices to obtain raw point cloud data. Point cloud data processing
entails the use of specialized software to streamline, denoise, and register the point cloud
data. Ultimately, the processed point cloud data are imported into 3D modeling software
for the model reconstruction.
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2.2.1. On-Site Preparation

Before initiating the scanning process, it is crucial to conduct on-site reconnaissance
and review relevant documentation to preliminarily plan the positions of scanning stations
on the drawings. It is noteworthy that the point cloud data acquired with the 3D laser
scanner are based on relative coordinates. This implies that data from different scanning
stations exist in distinct coordinate systems, resulting in errors during the merging of
point cloud data from adjacent stations. Multiple-station alignments can introduce error
propagation and accumulation. To ensure the subsequent alignment of point cloud data
in a unified coordinate system and to minimize error accumulation, establishing a control
network for coordinate transformation and error control is imperative [28]. Common
control networks include the national control network or a locally established regional
control network. Due to the extensive control area and the relatively sparse distribution of
control points within the national control network, this can potentially result in substantial
absolute errors. Consequently, to guarantee the accuracy of the point cloud and minimize
subsequent modeling errors, a locally established regional control network is typically
employed for precise control of the point clouds. The principle of a locally established
regional control network involves using a total station to measure the coordinates of each
control point and target point in the coordinate system of the control network. The control
points and target points are strategically positioned to form a coordinate control network,
effectively managing the overall scanned point cloud coordinates within the scanning area
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and unifying the coordinate system. A schematic diagram illustrating the principle of the
regional control network is presented in Figure 3.
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In the establishment of a regional control network, it is crucial to uniformly distribute
control points considering the range of the scanning area and on-site conditions. These con-
trol points should be positioned at elevated locations, providing a fixed and unobstructed
line of sight, and secured using bolted connections. This methodology ensures optimal
visibility during measurement tasks and assures stability, with the points remaining se-
curely in place for over five years without detachment. The strategic positioning of control
points not only improves point cloud accuracy but also establishes a robust foundation for
subsequent tasks, including the supplementation and adjustments of the point cloud data.

2.2.2. Point Cloud Data Acquisition

After the placement of control points is finalized, the distribution of 3D laser-scanning
stations can be strategically planned according to the site conditions, achieving a uniform
distribution of scanning stations and target points, as depicted in Figure 4. A 30% over-
lap between the scanning stations is recommended, and each scanning station should be
equipped with a minimum of four target points [29]. Additionally, adjacent scanning sta-
tions should share at least three target points with a noticeable height difference. In critical
scanning areas, scanning stations are positioned from various angles and locations to guar-
antee the completeness of the scanning point cloud data. Generally speaking, the greater
the distance between the scanner and the object being measured, the lower the scanning
accuracy [30,31]. When using a 3D laser scanner to scan a small volume of equipment,
pipes, valves, etc., the distance between the scanner and the measured item should be
reduced. For large areas such as corridors and open spaces, the scanning distance can be
appropriately increased to reduce the workload. When the density of points is increased,
the absolute error of points will be reduced and the accuracy will be higher. However,
the density of points is not as high as possible, which will increase the workload.

Throughout the 3D laser-scanning process, preserving detailed image data is fre-
quently essential to facilitate subsequent point cloud data processing or the reconstruction
of 3D models, which involves capturing on-site photographs of buildings, images of equip-
ment, installation drawings, and as-built drawings of the equipment.
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2.2.3. Point Cloud Data Processing

The substantial amount of raw point cloud data acquired from a 3D laser scanner
inevitably contains noise, necessitating the denoising of the original point cloud data for
nuclear facilities. Furthermore, the substantial amount of raw point cloud data introduces
redundant information, resulting in an increased computational burden; therefore, it be-
comes imperative to simplify this voluminous point cloud data. Following the denoising
and simplification processes, the point cloud data from various scan stations can be ac-
curately registered into a unified coordinate system within the comprehensive spatial
platform, which is a procedure commonly referred to as point cloud data registration. Most
3D laser scanners from different brands typically come with dedicated point cloud data
processing software for data processing and management [32].

Point cloud registration can rely on features points, features surfaces, and targets.
To enhance the accuracy and efficiency of point cloud data processing, registration is com-
monly achieved through the alignment of target spheres [33,34]. The registration process of
point cloud data based on target spheres is shown in Figure 5, and the fundamental concept
of point cloud registration using target spheres entails positioning three or more target
spheres in the overlapping area of two scan stations during scanning, and matching the co-
ordinates of the corresponding target spheres subsequently. The coordinate transformation
relationship for two corresponding target spheres is represented by Equation (2). When
the rotation matrix R (λ, ω, κ) and translation matrix T (∆X, ∆Y, ∆Z) are calculated, this
enables coordinate transformation and achieves the registration of point clouds obtained
from adjacent scan stations [17]. ∣∣∣∣∣∣

X
Y
Z

∣∣∣∣∣∣ = R

∣∣∣∣∣∣
x
y
z

∣∣∣∣∣∣+ T (2)

where (X, Y, Z) and (x, y, z) denote the coordinates of corresponding target spheres in two
coordinate systems.

The point cloud registration process typically begins with the initial step of conducting
local registration of the point cloud data, which facilitates easy verification, adjustment,
and modification until the accuracy requirements are satisfied. Subsequently, after com-
pleting local point cloud registration, it becomes possible to directly perform overall point
cloud registration across numerous localized regions, thereby obtaining a comprehensive
dataset of the nuclear facility point cloud.
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2.2.4. Model Reconstruction

The purpose of utilizing point cloud data for 3D model reconstruction is to restore
the organizational structure and 3D model of the original object from unorganized point
cloud data. However, the extensive amount of point cloud data, serving as foundational
information, cannot be directly employed for 3D reconstruction applications; consequently,
further processing of the point cloud data is necessary. The most prevalent method for
model reconstruction involves creating numerous triangles based on the topological re-
lationships within the point cloud data, resulting in a triangular mesh model [35]. This
triangular mesh model can be directly imported into industrial design software, allowing
for topological modeling based on the triangular mesh data. Subsequently, tasks such as
design, simulation, and demonstration can be conducted according to specific professional
requirements.

3. Application in the Reconstruction of the HWRR Decommissioning Model
3.1. Main Technical Parameters

Due to the direct impact of point cloud data accuracy on the subsequent quality of 3D
model reconstruction, ensuring the precision of laser-scanning data is crucial for achieving
high-precision reconstruction of nuclear facilities. Taking various factors into account,
including the decommissioning simulation requirements, the workload associated with
scanning the HWRR decommissioning area, computer hardware capabilities, the model
retrieval speed, and point cloud data management, laser scanning over a large spatial
range was selected for the HWRR decommissioning area. To expedite the process, it is
imperative to enhance the efficiency of data acquisition, thereby reducing the scanning
time. The obtained raw point cloud data, serving as valuable and reusable digital assets,
should encompass color information on the surfaces of buildings and equipment within
the HWRR decommissioning area. In summary, considering the specific requirements for
acquiring point cloud data in a nuclear facility, the following technical parameters for laser
scanning are specified: the 3D laser-scanning range covers the entire decommissioning area,
approximately 140 m × 90 m × 40 m; the single-station point cloud data acquisition error
is less than 0.5 mm; and the point cloud data should include color information, with an
efficiency of no less than 200,000 points per second.

After acquiring the point cloud data, the data can be processed to generate a 3D model
of the HWRR. Due to limited system resources and to ensure smooth platform opera-
tion without extensive computations, low-precision modeling is applied to the buildings,
various floor corridors, offices, doors, windows, and ground within the HWRR decom-
missioning area. The reconstruction error for feature surfaces is maintained below 5 mm.
For internal equipment within buildings, high-precision modeling is utilized, with a recon-
struction error for feature surfaces below 2 mm. The reconstructed 3D model is compatible
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with simulation software such as ANSYS (https://www.ansys.com/zh-cn (accessed on
24 February 2024) and DELMIA (https://www.3ds.com/zh-hans/products/delmia (ac-
cessed on 24 February 2024)). To maximize resource utilization, temporary and movable
equipment is generally not required to undergo modeling.

3.2. Equipment and Main Parameters

The key equipment and parameters required for modeling the HWRR using laser-
scanning 3D reconstruction techniques are shown in Table 2.

Table 2. Key equipment and specifications used in the laser-scanning 3D model reconstruction
process.

No. Equipment Brand Specifications Quantity

1 3D laser scanner
FARO FocusS 350

(FARO, Lake Mary,
FL, USA)

Maximum measure speed:
976,000 pts/s;

Angle accuracy: 0.00527◦;
Distance accuracy: ±1 mm;

1

2 Total station TCRP 1201 (Leica,
Wetzlar, Germany)

Angle accuracy: 0.00027◦;
Distance accuracy:
1 mm + 1.5 ppm;

Display resolution: 0.1 mm

1

3 Camera A7R2 (Sony,
Tokyo, Japan)

Effective pixels:
42.4 million;

Maximum shutter speed:
1/8000 s

1

4 Target spheres FARO (Lake Mary,
FL, USA) 14.5 cm in diameter 10

5 PC workstation T-7920 (Dell, Austin,
TX, USA)

Intel Xeon Gold 6248R CPU
@ 3.00 GHz;
128 G RAM

4

In addition to the key equipment listed in Table 2, we used 3D modeling software and
point cloud management software.

3.3. On-Site Preparation for the HWRR Decommissioning Area

The total area of the HWRR decommissioning area is approximately 13,550 m2, with
a total building area of around 11,562 m2. Given the large size of the HWRR decommis-
sioning area, and following on-site reconnaissance and data reviews, the entire plant area
is categorized into four regions: the reactor main building, the secondary water pump
room, the ventilation center, and the low-level radioactive wastewater storage tank area.
The building areas for each region are detailed in Table 3. It is crucial to highlight that the
current scope of work does not encompass the acquisition of point cloud data for internals
within the HWRR core, which are scheduled to be dismantled in 2025. Currently, the reactor
core is closed, and due to the high radiation dose, compact structure, and the fixation of
certain internals inside the reactor core, conducting 3D laser scanning of the reactor’s
internals is not feasible at this stage. CAD modeling has been performed based on detailed
drawings of the HWRR core. To update the existing CAD model, there is a consideration to
conduct 3D laser scanning of the internals during the subsequent dismantling process of
the reactor core.

According to the high accuracy requirements for the input HWRR decommission-
ing model in the later decommissioning simulation process, it is necessary to divide the
entire HWRR plant into four independent yet interconnected regions through controlled
measurements. For the reactor main building, which consists of a multi-story structure
with four aboveground floors and two underground floors, it is essential to partition the
space on each floor into different units. Additionally, each floor space is further divided
into numerous rooms serving different purposes: for example, the basement floor of the
HWRR main building has more than 50 process rooms. To ensure modeling accuracy and

https://www.ansys.com/zh-cn
https://www.3ds.com/zh-hans/products/delmia
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completeness, it is required to further subdivide the process rooms on each floor space into
different groups.

Table 3. The building areas for each region in the HWRR plant.

No. Region Building Area/m2 Number of Floors

1 Reactor main building 8690 6
2 Ventilation center 300 1

3 Low-level radioactive
wastewater storage tank area 2083 1

4 Secondary water pump room 489 1
Total 11,562 -

To accomplish coordinate transformation of the point cloud data for each decommis-
sioning region, unit, and group within the HWRR, and to enhance the accuracy of the point
cloud data stitching, it is crucial to deploy control points based on the field situation, estab-
lishing a regional coordinate control network in the HWRR plant. To ensure the control
points are not oxidized over an extended period and exhibit excellent resistance to acid
and alkali corrosion, the control points in the HWRR decommissioning area are fabricated
using electro-galvanized cast iron and undergo surface heat treatment. A total of 20 control
points are strategically placed within the HWRR plant, and a coordinate control network
is established using the Leica TCRP 1201 high-precision total station (as indicated by the
red spheres in Figure 6). These 20 control points can function as permanent monitoring
points, providing a robust foundation for subsequent data supplementation, adjustments,
and related tasks.
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3.4. Point Cloud Data Acquisition for the HWRR Decommissioning Area

According to the point cloud accuracy and model precision requirements of the
HWRR, we have opted for the widely used large-space laser-scanning device, the FARO
Laser Scanner FocusS 350, for acquiring point cloud data in the HWRR plant. This device
has a maximum scanning speed of 976,000 pts/s, a measurement range of 0.6 m to 350 m,
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and a longitudinal scanning angle θ ranging from 0 to 300 degrees, coupled with a lateral
scanning angle α ranging from 0 to 360 degrees. Throughout the 3D laser-scanning process,
a white target sphere with a diameter of 145 mm serves as the registration basis for data
from two adjacent scanning stations, with a minimum of four staggered white target
spheres placed around each scanning station.

Given the complexity and specificity of the HWRR decommissioning area, particularly
the large number of process rooms on the basement floor of the main building area and
the confined spaces with numerous components such as equipment, pipes, and valves,
the scanning task is challenging. Nevertheless, to ensure the integrity and accuracy of
information, meticulous scanning of each decommissioning region is imperative, ensuring
that the designated scanning stations are rational and effective. Initially, a reconnaissance is
conducted on the scanning units in each HWRR region, determining the placement points
for the scanner and the deployment points for the target spheres. The objective is to achieve
maximum coverage with the minimum number of scanning stations, thereby reducing the
number of point cloud stitching operations. While maintaining the point cloud acquisition
rate, the effective point cloud overlap between adjacent scanning stations should not
be less than 30%, and in challenging areas, it should not be less than 15%. After on-site
installation of the FARO Laser Scanner FocusS 350, multiple target spheres are securely fixed
in suitable positions within the scanning area. Considering the particularity of nuclear
facilities, the target spheres are preferably positioned on the main structural elements
of the buildings rather than on equipment or pipes within the buildings. Additionally,
target spheres should be strategically placed to avoid obstructing critical scanning areas.
The HWRR plant is then systematically scanned station by station, and the scanning
approach is dynamically adjusted based on factors such as physical characteristics and on-
site conditions. For instance, in areas with large equipment or compact spaces, additional
stations are established to capture comprehensive point cloud data, thereby minimizing
errors. Following the station-by-station and region-by-region scanning of each building
and equipment in the HWRR plant, an on-site confirmation of the scanning results is
conducted. If there are missing or abnormal point cloud data, supplementary scans are
promptly carried out on-site. If the scanned point cloud data are complete and meet the
requirements, they are promptly saved and imported into the corresponding point cloud
processing software for subsequent data processing.

When scanning the HWRR plant, the scanning resolution for the FARO Laser Scanner
FocusS 350 was set to 1/4 in most scenes, and the scan quality was set to 3×. The operation
of the FARO Laser Scanner FocusS 350 combines the principles of laser measurement
and photogrammetry; therefore, the obtained point cloud data include three-dimensional
coordinates (XYZ), laser reflection intensity (I), and color information (RGB). We aimed
to use a positive viewing angle as much as possible to acquire point cloud data within
the HWRR plant. A single-station scan took approximately 6.5 min, and approximately
30 scanning stations could be completed within a working day. In the 3D laser-scanning
work within the HWRR plant, a total of 1186 white target spheres were employed as
auxiliary controls, taking 28 working days to complete the 3D laser scanning for 572 stations.
Throughout the laser-scanning process in the HWRR plant, approximately 14.3 billion
points of point cloud data were acquired, resulting in a total raw point cloud data size of
97.6 GB.

Due to the irreversibility of decommissioning, to preserve valuable digital images of
the nuclear facility before decommissioning and provide auxiliary data for subsequent
point cloud processing, we simultaneously used a camera for on-site photo collection
during the 3D laser scanning of the HWRR plant. During the shooting process, efforts were
made to maintain a horizontal orientation to capture frontal images. We took a certain
number of overall and detailed photos of buildings, equipment, and pipes within each
decommissioning region from different directions. The overlap between adjacent pairs
of images should not be less than 30%. A total of 34 GB of image photos were collected,
comprising a total of 2537 high-definition photos.
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3.5. Point Cloud Data Processing for the HWRR Decommissioning Area

The acquired point cloud data underwent processing through the dedicated point
cloud management software SCENE (https://www.faro.com/zh-cn/Products/Software/
SCENE-Software (accessed on 24 February 2024)), encompassing essential tasks such
as point cloud filtering, registration, coloring, and optimization [32]. Upon importing
the single-station point cloud data into the SCENE software, once the data are loaded,
the software autonomously eliminates impractical noise points. Furthermore, the software
offers a manual option for the removal of noisy point cloud data arising from factors such
as pedestrians, sundries, and other elements encountered during the scanning process.
Notably, the software exhibits the capability to automatically recognize and pinpoint target
spheres, achieving the automatic registration of point cloud data originating from two
adjacent scanning stations.

The registration of point cloud data for the 572 scanning stations in the HWRR plant
is based on target spheres between adjacent scanning stations. These target spheres are
adjusted in 3D point cloud processing software to meet the required project accuracy before
registration. The combination of control point data and target point data enables automated
real-coordinate transformations, and the use of the least-squares method enhances the
accuracy of large-scale data stitching. The scanner’s integrated image capture system
facilitates automatic colorization of the point cloud, resulting in a colored and measurable
panoramic point cloud. The point cloud model for the HWRR plant is illustrated in Figure 7.
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3.6. Accuracy Verification

The raw point cloud data serve as the foundation, and all subsequent post-processing
tasks revolve around the point cloud data obtained from the initial scans. Ensuring the
accuracy of the raw point cloud data acquisition is crucial. Therefore, precision calibration
of the scanner is necessary to confirm the accuracy of the point cloud data obtained from
the scanning equipment [36,37].

When calibrating the accuracy of the FARO Laser Scanner FocusS 350, the calibrated
instrument used was a 35 mm dual-frequency laser interferometer standard device with
higher accuracy than the scanner, which was verified through metrological calibration.
The FARO Laser Scanner FocusS 350 scanned six target spheres evenly distributed at
approximately 5, 10, 15, 20, 25, and 30 m under the highest resolution, as illustrated in
Figure 8. The calibration test was conducted under environmental conditions with a
temperature of 19.9 ◦C and a relative humidity of 59%. The calibration results for the
FARO Laser Scanner FocusS 350 are presented in Table 4. Comparing the measured values
from the scanner with the reference values from the laser interferometer, the error is

https://www.faro.com/zh-cn/Products/Software/SCENE-Software
https://www.faro.com/zh-cn/Products/Software/SCENE-Software
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within ±0.1 mm for scanning distances less than 15 m, and the maximum error is 0.3 mm
for scanning distances exceeding 15 m. Furthermore, the calculated uncertainty for this
scanner is 0.1 mm. From the results of the calibration, the scanner meets the requirement
of an error less than 0.5 mm for single-station point cloud data acquisition in the HWRR
decommissioning area.
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Table 4. Result of the FARO Laser Scanner FocusS 350 calibration test.

No. Measured Value/mm Reference Value/mm Error/mm

1 4999.8 4999.9 −0.1
2 9999.7 9999.8 −0.1
3 15,000.5 15,000.2 0.3
4 20,000.0 19,999.9 0.1
5 25,000.5 25,000.3 0.2
6 30,000.5 30,000.2 0.3

After verifying that the acquired point cloud data are reliable, it is imperative to register
and stitch the raw point cloud data due to the numerous scanning stations within the HWRR
plant. To guarantee that the point cloud registration accuracy meets the requirements for
subsequent 3D model reconstruction, a thorough analysis of the point cloud registration
error should be conducted.

The integrated point cloud, derived from stitching, lays the groundwork for subse-
quent 3D model reconstruction. Theoretically, a smaller point cloud stitching accuracy
corresponds to a higher quality in the reconstructed 3D model. The outcome of the point
cloud registration from the 572 scanning stations within the HWRR plant is illustrated in
Figure 9, with the average point distance error being 1.9 mm and a substantial 91.6% of the
1186 target spheres being of high quality, thus meeting the precision criteria for subsequent
3D model reconstruction of the HWRR plant.
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3.7. Model Reconstruction for the HWRR Plant

After processing the point cloud data and confirming the point cloud registration
error is within an acceptable range, the subsequent step is the 3D model reconstruction
of the HWRR plant. Since point cloud data cannot be directly utilized for modeling, it
is necessary to convert the 3D point cloud data into a triangulated digital model, which
can be directly exportable for reverse modeling within CATIA software (https://www.
3ds.com/products/catia (accessed on 24 February 2024)). Additionally, considering the
diverse point cloud density across various scanning stations, it is essential to ensure the
uniformity of the point cloud to facilitate subsequent triangulation processing. Following
the completion of the 3D model reconstruction, verification is performed to ensure that the
model meets the requirements for subsequent simulation.

Using the HWRR hall as an example, the process of 3D model reconstruction and
model verification is illustrated as follows. Initially, we extract the universal point cloud
data of the reactor hall and triangulate the point cloud data, establishing a triangular mesh
model that is exported to design software. Subsequently, topological modeling is performed
based on the triangular mesh model, as depicted in Figure 10a. Through virtual assembly
analysis with a high-precision triangular mesh model, any components of the topological
model not meeting the accuracy requirements are refined or modified, as depicted in
Figure 10b. The refined reactor hall model undergoes accuracy testing, as depicted in
Figure 10c. Considering that the HWRR hall primarily encompasses elements like stairs,
corridors, and walls, and taking into account computer hardware capabilities, the model
retrieval speed, and point cloud data management, the error of model reconstruction can be
less than 5 mm. This meets the criteria for subsequent decommissioning simulations and
enables us to export the HWRR hall model in a universal format, as depicted in Figure 10d.

https://www.3ds.com/products/catia
https://www.3ds.com/products/catia
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Figure 10. The model reconstruction process for the HWRR hall. (a) Triangulation model of the
HWRR hall. (b) Virtual assembly diagram of the HWRR hall topology model and triangulation
model. (c) Accuracy verification results of the 3D model of the HWRR hall. (d) The model of the
HWRR hall.

The point cloud model and reconstruction model of a typical system in the HWRR are
obtained using laser-scanning 3D reconstruction technology. Figures 11 and 12 show the
point cloud images and 3D reconstruction model of the helium system in the HWRR.
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Figure 12. Reconstruction model of the helium system in the HWRR.

After individually verifying the reconstruction models for each region within the
HWRR plant, the final 3D model of the HWRR plant is established, illustrated in Figure 13,
assembling with the models for each region within the HWRR plant.
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Figure 13. 3D reconstruction model of the HWRR plant.

3.8. Scheduling

The 3D model reconstruction of the HWRR main building area, secondary water
pump house, ventilation center, and low-level radioactive wastewater storage tank area
was conducted using laser scanning. The project took a total of 70 working days, with
28 working days being dedicated to point cloud data acquisition and 49 working days
dedicated to point cloud data processing and 3D model reconstruction. Some tasks, such as
point cloud data acquisition, processing, and 3D model reconstruction, had overlapping
timelines. The specific project schedule is outlined in Table 5.

Table 5. The project schedule of the HWRR model reconstruction.

No. Tasks Duration Working Time

1 Preparation Work 2 working days 23/3–24/3/2022
2 Control survey 5 working days 25/3–31/3/2022
3 Three-dimensional laser scan 21 working days 1/4–29/4/2022
4 Point cloud data processing 9 working days 20/4–2/5/2022
5 Model Reconstruction 40 working days 28/4–22/6/2022
6 Data accuracy check 15 working days 8/6–28/6/2022
7 Result arrangement 3 working days 28/6–30/6/2022

4. Conclusions

Due to the urgent need for the decommissioning of nuclear facilities, considering
the radiation risks and industrial risks associated with nuclear facilities, the use of digital
simulation technology can provide support for the development of decommissioning plans
for nuclear facilities from the perspectives of safety and cost-effectiveness. Considering
that accurate digital models are the foundation for subsequent simulations, laser-scanning
3D model reconstruction technology was adopted to obtain a 3D model of the HWRR plant.
By setting up 20 control points, conducting on-site 3D scanning at 572 stations, processing
the obtained 1.43 million units of raw point cloud data, and model reconstructing, the 3D
model of the HWRR plant was obtained. The research roadmap for this project is illustrated
in Figure 14.
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