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Featured Application: This application mainly detects the visual attention content and handles
operation information in the students’ IVR video and visualizes the detection information after
the detection is completed. Visualization can be displayed in the following three forms: carousel,
bar chart, and pie chart. Each carousel information includes six types of information, as follows:
object name, occurrence frame rate, disappearance frame rate, occurrence time, disappearance time,
and duration. Bar charts and pie charts can select visual objects for more targeted statistics, thereby
promoting the development of educational technology toward intelligence and personalization.

Abstract: The 20th National Congress of the Communist Party of China and the 14th Five Year Plan
for Education Informatization focus on digital technology and intelligent learning and implement
innovation-driven education environment reform. An immersive virtual reality (IVR) environment
has both immersive and interactive characteristics, which are an important way of virtual learning
and are also one of the important ways in which to promote the development of smart education.
Based on the above background, this article proposes an intelligent analysis system for Teaching and
Learning Cognitive engagement in an IVR environment based on computer vision. By automatically
analyzing the cognitive investment of students in the IVR environment, it is possible to better
understand their learning status, provide personalized guidance to improve learning quality, and
thereby promote the development of smart education. This system uses Vue (developed by Evan You,
located in Wuxi, China) and ECharts (Developed by Baidu, located in Beijing, China) for visual display,
and the algorithm uses the Pytorch framework (Developed by Facebook, located in Silicon Valley,
CA, USA), YOLOv5 (Developed by Ultralytics, located in Washington, DC, USA), and the CRNN
model (Convolutional Recurrent Neural Network) to monitor and analyze the visual attention and
behavioral actions of students. Through this system, a more accurate analysis of learners’ cognitive
states and personalized teaching support can be provided for the education field, providing certain
technical support for the development of smart education.

Keywords: teaching and learning cognitive engagement; computer vision; immersive virtual reality
environment; intelligent analysis

1. Introduction

The report of the 20th National Congress of the Communist Party of China highlighted
the important strategic position of education and digital technology in socialist modern-
ization construction. The 14th Five Year Plan for Education Informatization focuses on
“intelligent learning” and implements innovation-driven educational environment reform,
of which virtual learning experience is an important part [1]. With the development of
technology, immersive virtual reality (IVR) has rapidly developed and gradually been
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applied in various fields [2], particularly in the area of education [3], which has received
widespread attention from researchers. The immersive and interactive features of immer-
sive virtual reality provide necessary technical and environmental support for learners’
deep learning [4]. The immersive features of virtual reality can provide learners with multi-
spatial perspectives and situational experiences, which helps to enhance their learning
effectiveness. The interactive features of virtual reality can provide learners with an immer-
sive feeling and personalized learning experience, improve learning effect and memory,
and provide practice and experiment opportunities through environmental interaction [5].
In addition, the IVR environment can also be used to complete experimental tasks that are
difficult to complete in traditional teaching, thereby improving learning effectiveness. IVR
technology is a new educational tool. In this environment, the learners’ degree of learning
engagement is closely related to the learning effect. Therefore, how to accurately and
objectively use computer vision to evaluate learners’ learning engagement in immersive
virtual reality environments has become a highly concerning issue. Research on intelligent
analysis systems for Teaching and Learning Cognitive engagement in immersive virtual
reality environments based on computer vision is a new and prospective field. At present,
most research on cognitive engagement in learning adopts a combination of subjective
self-reporting and cognitive testing for analysis. Some studies used physiological indicators
for analysis and evaluation [6] and some used computer vision to detect learners’ emotions
and behavioral performance for automated analysis, etc. In recent years, researchers have
been developing systems that can monitor learners’ attention, emotion, cognitive load, and
other cognitive states in real time, to provide personalized learning support and assess-
ment. However, there is still little discussion on the intelligent assessment of cognitive
engagement in learning.

This research aims to design and utilize a system for ally, analyzing learners’ cognitive
engagement in the learning process using computer vision technology combined with an
immersive virtual reality environment. This research is of great significance. In recent years,
domestic and foreign academic circles have been relatively active in the study of learning
engagement and a certain number of published articles have been accumulated [7]. This
article mainly studies the intelligent analysis system of Teaching and Learning Cognitive
engagement, which deepens the research on the intelligent evaluation of Teaching and
Learning Cognitive engagement based on previous research, promotes the development of
related research, and provides a certain theoretical basis for future research. Through this
study, learners’ cognitive investment in learning in the virtual environment can be analyzed
to help students deeply appreciate the learning state in the learning process and to self-
regulate accordingly, to enhance the learning effect. Furthermore, the system can optimize
the effect and attractiveness of virtual reality education [8], promoting the development of
educational technology towards intelligence and personalization, introducing advanced
technological means and methods for smart education, and promoting the development of
intelligence education [9], further promoting the training of talents and, ultimately, boosting
the innovative development of the country. Therefore, the application of an intelligent
analysis system for Teaching and Learning Cognitive engagement in an immersive virtual
reality environment based on computer vision is of great significance.

2. Related Work
2.1. IVR Environment Learning Investment Analysis Method and System

The immersive virtual reality environment has both immersive and interactive fea-
tures, so it has more advantages than other learning methods. Immersive virtual reality
environments can enhance learners’ self-efficacy. Self-efficacy was a concept proposed
by psychologist Albert Bandera in the 1970s and is often described as an individual’s
perception of their competence in a particular field or task. For example, Makransky et al.
proved that learners learning in an immersive virtual reality environment could stimulate
learning interest and self-efficacy more effectively than video learning [10]. Researchers
such as Michelle [11], Wang [12], Ali [13], Li [14], and others [15] had confirmed that learn-
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ers learned better in immersive virtual reality environments than in traditional learning
methods. Some foreign scholars have also confirmed that the immersive virtual reality
environment was more immersive and realistic than the virtual environment that simply
replicated the real world [16]. In summary, immersive virtual reality environments have
more advantages compared to other traditional learning methods.

Learning engagement refers to the energy, time, and attention a person puts into the
learning process. It includes motivation, concentration, and effort, as well as the depth
and breadth of learning [17]. Learning engagement was divided into two, three, and four
dimensions. Among them, more people recognize the investment in three-dimensional
learning, including cognitive investment, emotional investment, and behavioral investment.
Cognitive engagement refers to the cognitive effort that learners put into the learning pro-
cess, such as understanding, memorizing, analyzing, and solving problems [18]; emotional
engagement refers to the emotional experience produced by learners, such as interest,
enthusiasm, frustration, and satisfaction [19]; behavioral engagement refers to the actual
actions shown by learners, such as class participation, group discussion, extracurricular
research, and so on [20].

Learning engagement directly affects the learning effect and outcome of learners
in an IVR environment. For example, Essoe et al. found that the stronger the sense of
experience in an IVR environment, the longer the memory and the better the learning
effect [21]. Parong found that high emotional and cognitive engagement contributed to
student learning outcomes [22]. Chunghwan et al. developed a facial muscle and eye
motion capture system for IVR environments, which has been tested to perform well [23].
To sum up, the learning effect is largely influenced by learning engagement. Generally
speaking, the learning effect is proportional to the learning engagement, which provides
theoretical support for future research. This study aimed to develop an automated analysis
system to detect learning engagement, in order to provide better advice to learners.

2.2. IVR Environment Computer Vision Detection Method

Computer vision refers to the ability to process and analyze images or videos using
computer technology to simulate the human visual system [24]. Computer vision has
outstanding advantages in object detection and recognition, image segmentation, feature
extraction, image classification, and video analysis. Through these technologies, computer
vision systems can automate image and video processing, thus playing an important role
in a variety of fields. Computer vision technology has been proven to be an effective way
to detect learning engagement in online learning environments [25]. Chung et al. used a
3D-CNN (3D Convolutional Neural Network) to evaluate and analyze students’ behavioral
engagement in classroom learning [26]; Qi et al. used visual technology to assess the
study engagement via facial gesture recognition and action recognition [27]. Nan et al.
used VGG16, ResNet-101, and Mediapipe (developed by Google, located in Mountain
View) methods to identify students’ facial expressions, head movements, and estimate
facial coordinates for eye–mouth behavior, thereby detecting students’ classroom participa-
tion [28]. Ling developed a classroom behavior analysis system based on computer vision
facial recognition technology to analyze students’ head attention and eye state [29]. Anh
et al. developed an automated system using visual technology to capture and summarize
students’ classroom behaviors [30]. These provide support for intelligent recognition of
learner behavior detection in IVR environments.

In recent years, more and more scholars have been studying computer vision technol-
ogy to evaluate learners’ learning engagement in immersive virtual reality environments.
For example, Dubovi used facial expression recognition algorithms in computer vision to
detect learners’ emotional engagement in an IVR environment in real-time [31]; Liming et al.
adopted the improved DeepID (Deep Identity Representation) network model to carry out
facial expression classification tasks and the accuracy rate reached 97.2% [32]; Zhihui et al.
developed a new system based on a lightweight convolutional neural network, MobileNet
V2, to recognize facial expressions in an IVR environment [33]. To sum up, existing studies
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have proven the effectiveness of computer vision detection in immersive virtual reality
environments. Due to the recessive nature of learning engagement, there are few studies
on the real-time tracking and intelligent assessment of Teaching and Learning Cognitive
engagement in immersive virtual reality environments based on computer vision.

2.3. IVR Learning Engagement Measurement and Cognitive Representation Methods

Learning engagement is a key indicator for measuring learning quality, which de-
scribes the time, effort, and attention that learners invest in the learning process. There
are many methods for measuring learning engagement, including the self-report method—
using a questionnaire survey to understand the level of learner engagement in the learning
process, including information on learning motivation, learning strategies, learning beliefs
and other aspects. Chen et al. adopted the subjective reporting method to measure the
contribution of IVR environment to students’ learning engagement [34]. The self-report
method is a simple and easy method to implement, so many studies have adopted this
method, but this method cannot record learners’ various experiences in time and has a
strong subjectivity, so there is a certain deviation from the real situation. The cognitive
testing method—the cognitive test is used to evaluate the degree of learners’ learning en-
gagement, including the measurement of attention, memory and thinking ability, etc. This
method is widely used to measure the learning effectiveness of learners. Ruixue and other
researchers used both a pre-test and a post-test to measure students’ learning effect [35].
The physiological indicator method—used to evaluate the level of learning engagement of
learners by measuring physiological indicators, including measurements of heart rate, skin
resistance, EEG, etc. By using certain devices to detect corresponding indicators during
the learning process of learners, it can reflect their learning status. Parong et al. used
a combination of electroencephalogram (EEG) signals and self-reporting to characterize
learners’ learning engagement and used structural equation modeling to conclude that
high arousal and cognitive engagement of learners positively predicted their final scientific
knowledge retention scores [36]. This measurement method can accurately obtain real feed-
back on the learners’ physical state, but its relationship with the learning state needs to be
further verified. At the same time, the physiological indicator method requires professional
equipment, so it is difficult to implement in the teaching process. Later, researchers used
emotional expressions to characterize learners’ cognitive engagement. For example, Dubovi
used facial expression recognition to represent emotional expression and, thus, cognitive
engagement. However, due to the fact that emotional engagement is also relatively implicit
and there are significant differences in emotional performance among different individuals,
there are certain shortcomings.

According to the information processing theory, learning is a process of internal
transformation and processing when learners are faced with external stimuli. In an IVR
environment, learners will receive visual, auditory, and tactile stimuli [37]. Compared
with an ordinary learning environment, visual attention stimulation will be more obvious.
Visual attention stimuli can be characterized by attention breadth, stability, allocation, and
transfer. The breadth of attention refers to what is observed at the same time; the stability
of attention refers to the duration of the observed object; allocation refers to the allocation
of attention to multiple objects; transfer is when an individual transfers attention from one
object to another [37]. Because visual attention is the basis of information processing, this
also provides a certain theoretical basis for the follow-up research.

The embodied cognitive theory suggests that the closer the connection between physi-
cal movement and visual processes, the better the learning effect [38]. Robb et al. founded
that the clearer the connection between the physical movement process and visual attention,
the better the learning effect [38]. Hu et al. used interactive and visual data to compre-
hensively characterize student focus in an IVR environment and the study confirmed that
the higher the level of focus, the better the learning effect [39]. In the IVR environment,
students can interact through the handle and receive an embodied experience, which facili-
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tates information processing and improves learning results. Therefore, student cognitive
engagement can be indirectly demonstrated through interactive behavior.

In summary, this study mainly uses computer vision technology to analyze the learning
and cognitive engagement of visual attention span, attention stability, and embodied interac-
tion behavior. In our previous studies with Captial Normal University, the effectiveness of
this learning framework has been preliminarily validated using IVR teaching video data and
we have published the learning and cognitive engagement model in Chinese journals.

3. System Design

The main purpose of the system is to detect objects and text OCR through students’
IVR learning videos and students’ operation videos in the IVR environment, to find out
which learning objectives in the videos students have learned and how many times they
have interacted with the controller and visualized them to then achieve the impact of
Teaching and Learning Cognitive engagement analysis.

The overall design architecture of the system is shown in Figure 1. The system was
mainly divided into five modules, which were the video frame cutting module, YOLOv5
detection module, text OCR detection module, intelligent analysis module, and visual
display module.
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4. Detection Method

In this study, deep learning technology was used for object detection and text recogni-
tion. YOLOv5 was used for the object detection model and the CRNN model was mainly
used for text recognition.

4.1. Data Preprocessing

Data preprocessing was mainly used to carry out rectangular reasoning on the picture,
which was convenient for subsequent detection and improved the detection effect and
efficiency. As shown in Figure 2, data preprocessing mainly consisted of two main steps,
as follows: first, select the long edge of the image to scale to 640 pixels and then scale the
short edge of the image to the same proportion. Then, fill the short edges of the image as a
multiple of 32, as shown in Figure 3. Due to the need for five times downsampling in the
subsequent detection process, the stride for each downsampling was 2, which was a total
of 32 times. In order to reduce redundant information or lost parts of the images in the
subsequent detection process, the width and height of the image were set to a multiple of
32 in the image preprocessing process and a portion of gray information was filled in for
short edges. The image effect is shown in Figure 4.
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4.2. YOLOv5 Network Architecture

The pre-processed images were detected using the YOLOv5 model. The YOLOv5
network architecture is shown in Figure 5. The YOLOv5 model mainly had three network
blocks, as follows: Backbone, Neck, and Output.
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The Backbone block was mainly used for feature extraction and continuously shrinks
the feature map, with the main structures including the Conv module, C3 module, and
SPP module.

The Conv module was an important component of the object detection algorithm
YOLOv5, which mainly consisted of Conv2d, BatchNorm2d, and SiLU. The Conv module
could help the model effectively extract features and organize the feature maps, providing
useful information for subsequent processing steps. The Conv2d layer was one of the most
basic operations in convolutional neural networks, which could extract features and scale
the feature map (halving width and height). In YOLOv5, the Conv2d layer was widely used
at different layers of the network to extract features at different scales. Unlike traditional
convolution operations, the Conv2d layer of YOLOv5 typically used small convolution ker-
nels (3 × 3 or 1 × 1), which could reduce the number of parameters and, thus, optimize the
operation speed. YOLOv5 also employed some optimization techniques, such as depthwise
separable convolution to enhance efficiency. The BatchNorm2d layer was a normalization
layer that could normalize each batch of data, thereby accelerating the training process of
the network, while also alleviating the problems of gradient disappearance and explosion
and improving the robustness and generalization ability of the model. In YOLOv5, the
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BatchNorm2d layer was usually applied after the Conv2d layer to normalize the feature
maps, to further enhance the performance of the model. As shown in Formulas (1) and (2),
SiLU was a new type of activation function, which was a linear combination of Sigmoid
weighting. It could increase the nonlinear characteristics of the network, thus improving
the expressiveness and accuracy of the model. Different from the traditional activation
function, SiLU had the characteristics of symmetry and smoothness, and the SiLU function
was differentiable everywhere and continuously smooth, which could effectively alleviate
the problems of gradient disappearance and explosion and enhance the training speed
and convergence of the model. In YOLOv5, the SiLU activation function was widely
used in different levels of the Conv module to improve feature expression ability and
detection accuracy.

SiLU(x) = x × Sigmoid(x) (1)

Sigmoid(x) =
1

1 + exp(−x)
(2)

The C3 module mainly consisted of three Conv modules and one Bottleneck module,
as shown in Figure 6. This module mainly undertook the more important feature extraction
function. The three Conv modules in this module were all 1 × 1 convolutions, which
mainly controlled the size of the feature map and had almost no feature extraction function.
The Bottleneck, here, used residual connections, as shown in Figure 7, which include two
Convs, the first of which was 1 × 1 convolution, and reduce the number of channels to half
of the original. The second one was a 3 × 3 convolution, doubling the number of channels,
and, finally, added the input and output using a residual structure.
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The design of the SPP module was based on the idea of pyramid pooling. It divided
the input feature map into multiple scales and each scale with maximum pooling operation.
The pooled results were spliced together to form a unified scale, as shown in Figure 8. The
output size of the SPP module was not limited by the input size, which could adapt to
different sizes of targets and improved the generalization ability of the network, so as to
enhance the detection accuracy.

In object detection tasks, features of different scales have different importance for
targets of different sizes and shapes. Therefore, in order to better deal with multi-scale
targets, the target detection model usually introduces the Neck module. YOLOv5 used the
Neck module to determine multi-scale feature fusion, which fused features from different
layers of the Backbone network to optimize the accuracy of object detection. A feature of
this module was that it used a top-down path aggregation approach, which could make full
use of the semantic information of high-level features, while retaining the details of low-
level features and improving the robustness and generalization ability of target detection.
In addition, the Neck module could effectively handle objects of different sizes and shapes,
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improving the adaptability and flexibility of the model. YOLOv5 used three different scales
of feature maps in the Output module, which could achieve good prediction accuracy for
both large and small targets.
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The design of the SPP module was based on the idea of pyramid pooling. It divided 
the input feature map into multiple scales and each scale with maximum pooling 
operation. The pooled results were spliced together to form a unified scale, as shown in 
Figure 8. The output size of the SPP module was not limited by the input size, which could 
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4.3. NMS (Non-Maximum Suppression)

In the process of object detection, a large number of candidate boxes could be generated
in the same object and these candidate boxes could overlap with each other, so the model
adopted the NMS (non-maximum suppression) method to find the best object detection box
and remove redundant boundary boxes to achieve the best effect. This algorithm mainly
has three steps. Firstly, it sorted the confidence of all candidate boxes in descending order.
Then, it selected the candidate box with the highest confidence, calculated the IOU between
other candidate boxes and this candidate box, as shown in Figure 9, and deleted candidate
boxes with an IOU threshold greater than 0.6. The algorithm repeated the above operation
in the remaining candidate boxes, until all candidate boxes were processed, and obtained
the best prediction box. After the detection was completed, there were three candidate
boxes for red blood cells on the left of Figure 10. The best candidate box was finally obtained
through NMS (non-maximum suppression), as shown on the right of Figure 10.
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4.4. Text OCR Layer

The text OCR layer mainly performed text recognition on objects with YOLOv5 de-
tection results as learning targets, so as to identify specific learning objects. The main
steps are shown in Figure 11. The text OCR layer of this system used the CRNN model.
The architecture of the CRNN model consisted of the following three parts: a Convolu-
tional Layer (CNN), a Recurrent Layer (RNN), and a Fully Connected Layer. As shown
in Figure 12, features were extracted using CNN first, followed by classification using
recurrent neural networks and SoftMax to obtain output, before, finally, being combined
with CTC to determine the characters.
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In OCR training, the CTC loss function was used for backpropagation. As shown in
Formulas (3) and (4), the CTC loss function was the sum of the probabilities of all possible
paths with a result of l, given input x, where pi represented the path equal to l after being
changed by B. Because the CTC loss function could compare sequences of different lengths,
the input sequence could be mapped to the output sequence, while allowing a certain
sequence alignment error, thus improving the robustness and generalization performance
of the model.
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As shown in Figure 13, the model clipped the image containing word objects, according
to the boundary box. The clipping result was shown on the left of Figure 14. Then, the text
information in the image was recognized according to the learned features. The recognition
result was shown on the right of Figure 14, where the string represents the recognized text
content and the corresponding probability. By following the above steps, the corresponding
target object could be accurately identified.
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5. Function Implementation and Analysis
5.1. Video Frame Cutting Module

Using the OpenCV library is a common technique in IVR teaching video processing
and analysis. In this module, the OpenCV library was used to segment IVR videos and
convert each frame into an image. Since the YOLOv5 network does not require the size
of the input image, the image after frame cutting can be directly processed in the next
module. During this process, a single IVR learning video was selected for video frame
cutting, generating a total of 24,123 frames of images, as shown on the left in Figure 15.
The first frame, 10,001st frame, and last frame images are shown on the right side of
Figures 15 and 16. On the left side of Figure 15, there is a folder corresponding to the image
and the Chinese text is mainly related to the folder. The Chinese names in the remaining
images mainly indicate the beginning and end of IVR learning videos.
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5.2. YOLOv5 Detection Module

In the processing and analysis of the IVR teaching video, the YOLOv5 module received
the cut frame image from the previous module and detected the target of the image based
on the pre-trained weight value. As shown in Figures 17 and 18, this module divided the
detection objects into learning objects (words) and gesture objects (gesture). After detection,
information such as the window coordinates, predicted category, and confidence levels
of each target could be obtained. Then, the YOLOv5 detection module will transfer the
detected target to the next module for processing.
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Figure 18. YOLOv5 module detection results. The Chinese word in the picture says “vesica”.

In this process, the module function received the input image and a threshold pa-
rameter. Firstly, the input image was pre-processed, then the target detection result was
predicted, the model performed non-maximum suppression on the prediction result to
achieve the purpose of filtering the overlapping boundary box, and filtered this according
to the confidence threshold.



Appl. Sci. 2024, 14, 3149 13 of 20

5.3. Text OCR Detection Module

Text OCR detection is an important task in IVR teaching video processing analysis,
which can be used to identify text information in the video. This module further identified
the learning target objects (words), which were divided into 18 learning target objects, con-
taining red blood cells, white blood cells, platelets, cell membranes, water, oxygen, glucose,
microfilaments, intermediate fibers, microtubules, kinesin, nucleus, nuclear membrane
pores, deoxyribonucleic acid, ribosomes, vesicles, mitochondria, etc. To achieve this task,
the CRNN model can be used. The CRNN model is a deep learning model that can be
trained on convolutional neural networks and recurrent neural networks simultaneously
to complete text recognition tasks. The model identified the text information in the image,
according to the learned features, and output a string as the detection result, combining
the detection result with the target box, as shown in Figure 19. This string represented the
recognized text content and the corresponding probability, such as the name of a learning
target and the probability of being predicted as that learning target.
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5.4. Intelligent Analysis of Learning Engagement

This module mainly integrates and intelligently analyzes the testing data. The inte-
gration process of detection data is shown in Figure 20. Due to the constantly changing
perspective of IVR videos, this may lead to recognition errors in object detection or text OCR
detection. This model designed a fuzzy algorithm for target detection and tracking and
set up a detection target pool during the detection process. When an object was detected
in a certain frame of an image and confirmed as a target through OCR detection, it was
added to the target pool. If an object with the same name already existed in the target pool,
the object was merged and refreshed. When the continuous frame rate exceeded the set
threshold, but no object was detected, segmentation was performed. The segmented object
needed to be reviewed by the decision layer to determine whether it was within the frame
rate range in the target pool and whether the ratio of object detection times to the length of
the frame rate range exceeded the set threshold. If it exceeds the set threshold, it would
be added to the result pool; otherwise, it would be deleted. After the video frame cutting
detection was completed, all detection objects are submitted to the decision layer for review
and the legitimate data is written into the result pool. Finally, the data in the result pool
were formatted and saved to a CSV file.

By comparing the objects automatically recognized by the system (red blood cells,
white blood cells, platelets, cell membranes, water, oxygen, glucose, microfilaments, inter-
mediate fibers, microtubules, kinesin, nucleus, nuclear membrane pores, deoxyribonucleic
acid, ribosomes, vesicles, mitochondria, and handle objects) with manually annotated
objects, the accuracy rate of the system’s intelligent recognition was determined. Figure 21
shows the total number of frames detected for various learning target objects and the
controller interaction object in a single IVR learning video, as well as the total number of
frames that actually appear. It can be seen that the system has a high intelligence recogni-
tion accuracy. Figure 22 is a graph of accuracy for each object. The average accuracy was
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around 98%. The research showed that this method can effectively identify the learning
target objects and the handle interaction objects in IVR learning.
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5.5. Visualization of Cognitive Situations

The module mainly used Vue and ECharts for visual display. Vue was used to build
pages and views and ECharts was used to create various interactive icons, as well as to
display and analyze various data. This module mainly displayed the students’ learning
content videos, operation videos, and test results in the IVR environment. The main page,
shown in Figure 23, was mainly divided into four areas, two of which are used to display
student learning videos and operation videos in the IVR environment. The other two areas
were used to visualize the detection results of the video. You could select the corresponding
video file to display on the page, as shown in Figure 24. The module selected the operation
detection result file corresponding to the video and performed a round-robin display,



Appl. Sci. 2024, 14, 3149 15 of 20

displaying nine pieces of information each time and the display was playing in a loop. Each
piece of information had an operation name, occurrence frame rate, disappearance frame
rate, occurrence time, disappearance time, and duration, which could visually display the
handle operation information. One part of the Chinese content in Figures 23 and 24 is the
system display content, “Automatic Analysis Visualization Platform, Learning Cognitive
Input Automatic Analysis System Visualization, System Corresponding Time”; the other
part was the “Select File” information for visualization.
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Selecting the detection learning target object result file corresponding to the video
could be visualized in three forms, as follows: carousel, bar chart, and pie chart. Among
them, a carousel was used to display the specific situation of the learning target object.
Eight pieces of information were displayed each time in chronological order. Each piece of
information included six pieces of information, including object name, occurrence frame
rate, disappearance frame rate, occurrence time, disappearance time, and duration. The
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display of bar charts and pie charts could select visualization objects, which could increase
or decrease the number of statistical objects. On the left of Figure 25, four objects, including
oxygen, water, glucose, and microfilaments, were selected for visual display. The bar chart
was used to display the total number of frames of corresponding objects in the IVR video
and the pie chart showed the proportion of corresponding objects. In the figure, the Chinese
information is mainly displayed in the system title and table header.
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Through this system, students and teachers could more intuitively observe students’
cognitive engagement in learning and teachers could choose designated learning target ob-
jects for statistics through interaction, promoting the development of intelligent education.

6. Analysis of Experimental Results
6.1. Experimental Environment

The computer hardware conditions used in the experiment in this paper are Intel Core
i5-10200H CPU (Intel, Santa Clara, CA, USA), NVIDIA 4G graphics memory 1650GPU and
8G RAM (NVIDIA, Santa Clara, CA, USA). Some experiments were completed on NVIDIA
Tesla graphics cards, with Windows 10 (developed by Microsoft, located in Washington, DC,
USA) operating system, Python version 3.8 (developed by Python Software Foundation,
located in Portland, OR, USA), and CUDA (developed by Nvidia Corporation, located in
Shenzhen, China) version CUDA11. This system page was mainly completed using Vue
(developed by Evan You, located in Wuxi, China) and Echarts (developed by Baidu, located
in Beijing, China). The algorithm mainly used the Python framework and, in Python, the
NumPy 1.23.5 (developed by Python Software Foundation, located in Portland, OR, USA),
Sklearn (developed by Scikit-learn’s open source project team, located in Paris, France)
0.11.2, Matplotlib (developed by John D. Hunter, located in Tennessee) 3.7.2, Seaborn (de-
veloped by Michael Waskom, located in San Francisco, CA, USA) 0.11.2, Pandas (developed
by Wes McKinney, located in New York, NY, USA) 2.0.3, and OpenCV (developed by Intel,
located in California) 4.5.1 libraries were mainly used.

6.2. Experimental Process

This article constructs the YOLOv5 network structure for object detection in images,
which is divided into learning target objects and handle interaction objects. Industry
conventions were strictly followed in this study, with special attention being paid to
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privacy and security issues of videos and images. The experimental process is shown in
Figure 26 and the main operating procedures are described as follows:

(1) Cut the video frames to obtain image data and filter it, use Labelme software v1.0 to
manually annotate the images, and obtain training and testing sets.

(2) Designed and built YOLOv5 image target detection model and continuously opti-
mized parameters to complete the adjustment of network structure parameters.

(3) Load the pre-processed training set for network iterative training until the accuracy
of the loss rate of the network model becomes stable, then the training ends.

(4) Save the wordsDet.pt model file generated by the final training for calling the test set
image data.

(5) Analyze the experimental results to verify the effectiveness and accuracy of the
algorithm proposed in this paper.
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6.3. Analysis of Experimental Results

To evaluate the detection accuracy, we collected the dataset with 216 IVR videos
for biology teaching. The dataset has 2 splits and contains 216 RGB video data taken of
54 individuals, performing 2 experiments, twice, learnt in a Biology class. The dataset has
18 object classes with 24,123 frames of annotated data. Among them, 2/3 are used for the
training set and the other third is used for testing. The dataset is an expanding version on
the basis of the preliminary study on the evaluation of the cognitive engagement model
with Capital Normal University.

This article selects overall accuracy to evaluate the performance of the model, which
represents how many correctly predicted samples are identified as corresponding categories
and is commonly used to evaluate the performance of the model. NTP is enabled to
represent the number of objects that the model correctly recognizes as the target object;
NFP represent the number of non-objects recognized by the model as target objects; the
definition formula of the model evaluation indicator is as follows (5):

Precision =
∑ NTP

∑ NTP + ∑ NFP
(5)
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For comparison, we test the detection accuracy of visual learning objects. The overall
accuracy of our approach is about 98% on the dataset, while the method performed by
Liming et al. [34] is 97%, which indicates that our approach can effectively distinguish the
learning objects and the controller interaction objects.

Furthermore, we also evaluate the performance of the proposed approach on the
dataset in terms of learning effect. Due to the small sample size and the data not obeying
the normal distribution, the Spearman correlation analysis method is used in this study.
We first conduct statistics on visual coverage (the object is detected in the students’ view),
visual attention duration (the object is detected in a period of time from the students’ view)
of learning object, then make the correlation analysis between visual coverage, attention
duration, knowledge retention, and knowledge transfer. The results are shown in Table 1.

Table 1. Correlation analysis between visual coverage, attention duration, knowledge retention, and
knowledge transfer.

Statistics of Detected Visual
Learning Object Knowledge Retention Knowledge Transfer

visual coverage 0.62 0.90

visual attention duration 0.22 0.16

As shown in Table 1, it can be observed that the visual coverage of learning object (the
students noticing the learning object) is significantly correlated with students’ knowledge
retention scores, as well as with their knowledge transfer scores at the same level of
significance. However, the visual attention duration of the learning object does not exhibit a
significant correlation with the students’ knowledge retention scores or knowledge transfer
scores. The result suggests that in an IVR environment, whether students notice important
learning object or not will impact their final knowledge retention and knowledge transfer
scores, but the visual attention duration of the learning object does not significantly affect
their performance in knowledge retention and transfer.

7. Conclusions

In this study, computer vision technology was used to automatically evaluate students’
Teaching and Learning Cognitive engagement in an IVR environment. Combining infor-
mation processing theory and embodied cognition theory, this study aimed to monitor
and visualize visual attention and behavioral actions. After research, it was found that the
accuracy of the system was close to 98%, which can effectively monitor and analyze the
learners’ cognitive engagement in learning and visualize their learning status.

Although some achievements have been made in this research, there are still some
problems and challenges. Due to the small sample size, it is necessary to continuously
expand the sample size in the future, thereby further improving the algorithm and function
of the system and enhancing the evaluation and analysis ability of students’ cognitive
engagement in learning. This study only considered automatic analysis and evaluation
from the perspectives of visual attention and behavioral actions. In future research, learning
cognitive engagement can be evaluated from other perspectives. For example, cognitive
load and learning outcomes. At the same time, multiple models can be compared to
determine better models. In addition, the effectiveness and practicality of the system can
be further improved and optimized by combining user feedback evaluation.
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