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Abstract: The explosive growth of malware targeting Android devices has resulted in the demand
for the acquisition and integration of comprehensive information to enable effective, robust, and
user-friendly malware detection. In response to this challenge, this paper introduces HertDroid, an
innovative Android malware detection method that leverages the hidden contextual information
within application entities. Specifically, we formulate a heterogeneous graph encapsulating rich
semantics of entities and their interactions to model the behavior of Android applications. To alleviate
computational burdens, a filter is implemented to identify nodes containing crucial information. The
Transformer architecture is then deployed for efficient information aggregation across diverse entities.
In our experiments, HertDroid demonstrates superior performance by achieving the highest F1 scores
when compared to baseline methods on a dataset comprising 10,361 benign and 11,043 malicious
apps. Notably, HertDroid excels in maintaining a lightweight profile, and its performance is achieved
without the necessity of manual meta-path configuration.

Keywords: Android malware detection; heterogeneous information network; graph neural net-
work; attention

1. Introduction

Android has the highest market share of 70.26% in 2023 among the various mobile
operating systems available on the market [1]. While attracting widespread attention, its
open-source nature and popularity also make it a target of mobile malware. Statistical data
indicate the interception of 6301 new instances of Android malware every day, signifying
the detection of over four novel Android malware specimens per minute [2]. In addition,
while Google proposes a permission mechanism, attackers can still engage in malicious
behavior without obtaining permission [3]. To protect users’ privacy, there is an urgent
need for a user-friendly detection method that is effective enough to identify Android
malware.

While traditional Android malware detection methods primarily rely on signature-
based approaches and heuristic analysis, the methods incorporating neural networks (NNs)
surpass conventional models and can be divided into static analysis, dynamic analysis,
and hybrid analysis methods that mix the above two methods [4]. Both of the latter
two methods need program execution, which raises concerns about the computational
cost and the risks of sandbox escape [5]. In contrast, static analysis, which examines
code without execution, circumvents the drawbacks of dynamic analysis and attracts
abundant studies to explore its potential. Researchers leverage techniques such as code
analysis, permission mapping, and behavior modeling to uncover malicious patterns within
Android applications. However, these detection methods usually use only one or a few
static features, such as permission [6–8], frequency of API (i.e., Application Programming
Interface) [9,10], and opcode sequence [11,12]. They are not designed to detect malware
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based on interactions between these features; therefore, it is relatively easy to evade these
models using techniques of code obfuscation, such as the substitution of semantically
equivalent commands for the original ones.

As highlighted by [13], a graph neural network (GNN) is a specialized NN architecture
adept at leveraging the inherent structural information of graphs. For example, each node
in the graph in a graph convolutional network (GCN) [14] updates its embedding until
the final balance due to the influence of neighbors and further nodes via a Laplace matrix.
The closer the relationship between the neighbors, the greater the influence. This ability to
adjust node embedding according to connected nodes is proof of exploiting graph topology
to improve node classification of GNN. Further, similar to the principles elucidated in the
works of Wu et al. [15] and Zhang et al. [16], we recognize the intrinsic heterogeneity of our
data in the domain of Android malware detection, which drives us to employ the capability
of the heterogeneous graph to improve the performance of our model. The introduced
semantics in this paper can be illustrated briefly in Figure 1, depicting the process of
identifying Android malware using three distinct models. The detection method based on
general NNs treats the components of applications as a group of features of the same type.
In contrast, the homogeneous GNN-based method not only regards these components as a
group of features but also incorporates the network structure. Addressing the limitations of
both, the heterogeneous GNN-based method effectively manages applications with multi-
type features and the associated network structure. By encoding these relationships within
the graph, we aim to enhance the discriminative power of our malware detection model,
enabling it to identify subtle patterns and abnormal behaviors indicative of malicious
software. Specifically, considering the large number of entities involved in an Android
application, we only combine the crucial entities into our graph.
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Figure 1. Example illustrating the differences among three structured approaches. NN: neural
network. Android application in blue, red and black: benign application, malicious application and
uncategorized application, respectively. Nodes and relations in multiple colors: multiple types of
nodes and relations.

In this paper, we present an Android malware detection system, named HertDroid,
based on a heterogeneous graph with a crucial node filter and a customized Android
Transformer. It is capable of modeling the abundant semantics of multi-type components
of Android applications as a heterogeneous graph and summarizing it into numerical
representations to identify whether an Android application is malicious or not. Specifically,
the first step in this method is to extract the entities in Android applications, including API
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calls, permissions, shared object files, intents, Apps, and features, and the relations among
them in Android application packages as a structured heterogeneous graph. HertDroid
employs a module called Android APK (Android Application Package) Transformer to
differentiate between benign and malicious applications. To address the issue of the
redundancy of APIs, the Android APK Transformer performs a targeted API dropout
on the heterogeneous graph based on a series of centralities, which not only improves
the performance of detection but also reduces resource consumption. The processed
heterogeneous graph is fed into a multi-component self-attention module to embed the
nodes in the graph into the same embedding space. Finally, a Multilayer Perceptron (MLP)
will be trained to detect malicious Android applications deploying these node embeddings.

The contributions we make to Android malware detection in this paper can be encap-
sulated as follows:

Efficient method. The method we proposed outperforms the baselines by 9.25% on
our dataset dated from 2018 to 2022.

User-friendly method. The method we proposed can identify malicious behavior
based on the heterogeneous graph without manually designing meta paths.

Lightweight method. The method we propose has a relatively small number of
parameters, making it capable of handling larger-scale data under limited resources.

2. Related Work

Over the last few years, the detection of Android malware has been considered a crucial
research field, prompting numerous teams to propose various methods and techniques to
address the increasing number of malware-related issues. In this section, we specifically
focus on malware detection using GNNs, which is relevant to the approach presented in
this paper.

GNNs have been successfully employed in various fields, including malware detection.
GNNs are well-suited for capturing complex relationships and patterns between entities
represented as nodes in a graph. By leveraging the attributes and connections of nodes,
GNNs can effectively detect and classify malicious behavior in Android applications. Be-
jaGNN [17] is a revolutionary Java malware detection method employing a GNN including
a GCN [14], graph attention network (GAT) [18], and graph isomorphism network (GIN) to
create a control flow graph inherent in Java program files, and then refine them to maintain
the precision of the graph. Another method for classifying families of Android malware
is GDroid [19], which utilizes GCNs. It involves constructing a heterogeneous network
with two types of relations, processed by the GCN model to generate node representations
that consider both topological structure and node properties. The first work to combine
Android malware detection with heterogeneous graphs is the Hindroid [20]. It first creates
a heterogeneous network outlining the connections between APIs and Apps as well as their
internal relationships. It then isolates feature matrices from decompiled APKs and uses a
multiple kernel SVM (support vector machines) classifier to categorize them. Hawk [21],
with its description of Android entities and behavioral links as a heterogeneous information
network, is a malware detection framework for applications on the Android operating sys-
tem. Additionally, to address dynamically appearing applications, an incremental learning
model is developed rather than the entire heterogeneous graph and subsequent embed-
ding model. The method proposed by [22] captures the behaviors of applications through
runtime executions and constructs a heterogeneous graph to produce node representations.

Due to the success of malware detection methods based on GNNs, we drew inspiration
from the heterogeneous graph transformer [23], which has been proven effective on large
academic heterogeneous graphs, and developed a customized Android APK Transformer
module specifically for Android malware detection tasks.

3. Preliminary

Heterogeneous graph (HG): The HG [24] (i.e., heterogeneous information network)
can be defined as G = (V, E, T, R) where V and E denote the collection of nodes and edges,
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respectively. For each node v ∈ V, the node type of v belongs to the set of node types T.
Similarly, for any e ∈ E, the type of e belongs to the set of edge types R. When the elements
of T or R are greater than 1, the graph is called a heterogeneous information network.

Meta-path: A meta-path [25] is a sequence of relations associating a source node type
with a target node. Walking by a meta-path is a way to obtain graph structure. Formally,

a meta-path can be represented as n1
e1→ n2

e2→ · · · er−1→ nr, which can be abbreviated as
n1n2 · · · nr, where ni represents a type of node and ei represents a type of edge.

4. HertDroid Model
4.1. Architecture

We propose an Android malware detection framework called HertDroid which can
not only model the rich behavior patterns of malicious applications but can also incorporate
complex structures of graphs and heterogeneous node features to identify malware without
manually setting the meta-paths. Figure 2 illustrates the structure of HertDroid, which
includes Heterogeneous Graph Constructor (i.e., HG Constructor) and Android APK
Transformer (i.e., AndroAT) modules. In particular, HG constructor decompiles and extracts
six types of entities and six types of relations with Androguard [26] respectively through
Entity Extraction and Relation Extraction sub-modules to obtain APK Heterogeneous
Graph (i.e., APK HG). The APK HG will be processed by AndroAT, which is in charge
of fitting APK HG into an embedding generating module and determining whether the
involved applications are malicious or not.
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Figure 2. Architecture of HertDroid. Android application in blue, red and black: benign appli-
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AndroAT: Android APK Transformer. DropAPI: the DropAPI module. HMA: Heterogeneous Multi-
component Attention.

4.2. Heterogeneous Graph Constructor

The present study employs the APK, which contains all of the necessary components
for installing Android applications, as the input. To structure the abundant components in
APKs, we introduce two sub-modules to build the HG.

The first sub-module is Entity Extraction. Table 1 displays the six types of nodes
extracted from APKs based on domain knowledge. The node type called App represents
the application analyzed by our method, while API, Feature, Permission, So, and Intent
represent internal components of the APK. We extract these entities using Androguard
and store them in Neo4j [27], a graph database management system capable of efficiently
storing nodes, edges, and their properties, executing query statements, and providing
query results. It is important to note that the name of a node is unique. Consequently, a
new node is generated only if the entity is not present in the database during our analysis
of each entity. This uniqueness feature ensures that two App nodes that share an entity are
indirectly connected to each other. Additionally, to generate the features of these entities,
we initialize the features of these types of nodes through One-hot encoding or Bag-of-words
based on their names or properties.
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Table 1. Node types defined in HertDroid.

Name Entities Feature Coding Mode

App Application One-hot code
API Application Programming Interface Bag-of-words of names

Feature Feature Bag-of-words of names
Permission Permission Bag-of-words of names

So Shared library file Bag-of-words of names
Intent Intent Bag-of-words of types and actions

The second sub-module is Relation Extraction. Table 2 depicts the six types of relations
in the APK HG that we have chosen. The DECLARES, PASSES, USES, HAS, CALLS
type represent the appearance of a certain type of node in an Android application, while
INVOKES shows the usage relationships between two APIs. We store these relations in
Neo4j, similar to the process in Entity Extraction.

Table 2. Relation types defined in HertDroid.

Edge Type Related Entities

DECLARES App → Permission
PASSES App → Intent

USES App → Feature
HAS App → So

CALLS App → API
INVOKES API → API

To provide a clearer illustration, consider a simplified APK HG depicted in Figure 3. This
graph contains six types of nodes and six relations, namely node type ti ∈ {P, A, S, K, I}
and edge type ri ∈ {DECLARES, HAS, CALLS, INVOKES, PASSES}. The malware ap-
plication App1 declares a permission named READ_SMS, allowing it to access the content
of SMS messages. Additionally, it utilizes an intent with the action of SMS_RECEIVED to
inform the application that a new SMS message has been received by the device. Further-
more, the application employs a payment-related dynamic library file named libshunpay.so.
It is possible that the application is designed to engage in misleading payment behavior by
intercepting SMS verification codes. Although the benign application App2 also employs
an intent with the action SMS_RECEIVED, no malicious behavior is identified based on
other relationships associated with the application. Therefore, it can still be classified as
benign. Moreover, additional malicious behavior patterns can be identified by analyzing
influential API calls and features within the application.

4.3. Android APK Transformer

Android APK Transformer is designed to distinguish between benign applications
and malware based on the APK HG. The architecture of AndroAT is shown in Figure 4a.
AndroAT accepts node features and edge indices from the APK HG stored in the Neo4j
database as input. This input is then converted into a dataset in the PyTorch Geometric
(PyG) package [28] for subsequent processing. To improve the performance and reduce
source consumption, we first remove a portion of APIs through the DropAPI module. Then,
for each type of node, we apply a linear transformation and aggregate all features from
neighbors using the heterogeneous multi-component self-attention module. After that,
the embeddings of Apps are normalized and fed into a Multi-Layer Perceptron (MLP) to
determine if the application poses a threat or not.
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4.3.1. DropAPI

In order to increase the efficiency of HertDroid and reduce computational costs, we
have designed a mechanism called DropAPI, the process of which is shown in Figure 4b.
We first conduct a series of centrality calculations on the subgraph that includes both APP
and API nodes for each application. Then, we employ a decision-making method called
VIKOR [29] to rank API nodes according to their influence based on the centrality values
described above. We only retain Nk(API) API nodes for each subgraph, which are the most
important API nodes in subgraph. In other words, the less important API nodes will be
dropped from the APK HG. Finally, the remaining nodes will be recombined to process the
APK HG for use by later modules.

Centrality analysis allows for the evaluation of node influence or importance in a
network. In this paper, we consider the flowing aspects to measure the influence of
API nodes.
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Betweenness Centrality (BC): The BC of a node i represents the number of times that
node i lies on the shortest path between any two pairs of nodes in the graph:

BC(Vi) =
1

(N − 1)(N − 2)∑s ̸=t ̸=i
σst(i)

σst
(1)

where N represents the number of nodes in the giant component, σst represents the number
of shortest distances from node s to node t, and σst(i) represents the number of shortest
paths from node s to node t that pass through node i.

Initially, we attempted to compute the betweenness centrality algorithm exactly. How-
ever, its computation time exceeded our tolerance threshold. For instance, when we applied
an exact betweenness centrality computation to a test subgraph containing 712,687 nodes
and 1,263,320 edges, it took more than 10 h to compute. Consequently, we turned to the
approximate computation method proposed by Riondato and Kornaropoulos [30], imple-
mented through Networkit [31]. This method employs random sampling of shortest paths
to achieve an approximate betweenness centrality computation. Importantly, it provides
theoretical probabilistic guarantees on the quality of the estimation.

Degree Centrality (DC): DC is calculated as the number of neighboring nodes divided
by the total number of nodes in the network. In a directed graph, two nodes connected
by an edge are considered neighbors of each other regardless of the direction of the edge,
while in an undirected graph, they are considered neighbors if there is an edge between
them. The formula for undirected graphs is as follows.

DC(Vi) =
1

N − 1∑N
j=1,i ̸=j aij (2)

where aij is the ith row and jth column element of the adjacency matrix A; the value is
the weight for weighted graphs and 1 for unweighted graphs. Node i and j are therefore
required to be unequal in order to avoid the effect of self-loop on DC.

Harmonic Centrality (HC): HC indicates how close a node is to other nodes in the
graph. A higher HC value indicates that the sum of distances from a node to other nodes
in the graph is shorter:

HC(Vi) =
1

N − 1∑N
j=1,i ̸=j

1
Dij

(3)

where N represents the number of nodes in the giant component, and Dij represents the
shortest distance from node i to node j.

PageRank (PR): PR represents the importance of a node based on both the incoming
edges and the importance of the source nodes:

PR(Vi) = (1 − α) + α

(
PR(X1)

C(X1)
+ · · ·+ PR(Xm)

C(Xm)

)
(4)

where α represents a damping factor of [0, 1], {X1, X2, . . . , Xm} represents a node pointing
to node i, a subset of the set V of graph nodes, and C(A) represents the out-degree of A.

In order to identify the most influential API nodes based on a series of centrality
values, we conduct an algorithm called VIKOR. In VIKOR,

(
xij
)

m×n describes the centrality
values of API nodes in a subgraph of an application, where i denotes the ith API node and
j denotes the jth centrality value. The J1 and J2 are collections of positive and negative
centrality, respectively. Then, W represents the weight of each centrality value generated
by the coefficient of variation method, while v is a coefficient between 0 and 1. The output
of VIKOR is Qi, which denotes the importance score of these API nodes. Subsequently, we
rank the API nodes based on their Qi, with nodes having smaller Q values ranked higher
in importance. Finally, APK HG retains only the top Nk(API) API nodes in this subgraph.

Technically, considering the relatively large size of the graph, we implemented a
strategy where, for each calculation, only a subset of connected components (consisting
solely of APP nodes and API nodes) with a total node count of less than half a million and
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an edge count of less than one million were loaded. After completing the computation, only
the important nodes are retained and stored in the database. Additionally, all unimportant
API nodes are discarded before loading the complete graph.

4.3.2. Heterogeneous Multi-Component Attention

To handle the heterogeneity of APK HG, we build a heterogeneous multi-component
attention (HMA) module to generate the embedding of APKs. The architecture of HMA is
illustrated in Figure 4c.

To get the embedding H′(i) of target node i, formally, HMA can be expressed as below:

H′(i) = ατ(i)W
A
τ(i)

(
mish

(
∑j∈N(i) ATT(i, j) · MES(i, j)

))
+
(

1 − ατ(i)

)
H(i) (5)

where N(i) denotes the source nodes of i, and H(i) is the feature of i. The activation
function mish [32] is applied to the expression involving attention mechanism ATT and
neighborhood aggregation MES. Moreover, τ(i) denotes the node type of i, and both the
trainable parameter α and learnable matrix WA are specific to τ(i).

The ATT calculates the weight of importance between pairs of nodes based on the
associated node and edge types:

Kj = WK
τ(j)H(j) (6)

Qi = WQ
τ(i)H(i) (7)

AttHeadp(i, j) =
(

Kp
j WATT

ϕ(j→i)

(
Qp

i

)⊺)
· 1√

C
(8)

ATT(i, j) = so f tmax
j∈N(i)

(
∥

p∈[1,h]
AttHeadp(i, j)

)
(9)

where C is the dimension of nodes and ∥ denotes stacking. HMA employs a multi-head
attention mechanism containing h heads to calculate the weight ATT(i, j) of source node j.
Each attention head captures hidden relationships between target node i and source node j.
It is worth noting that two different trainable transforms (i.e., WK and WQ) are specific to
node type, and a projection matrix WATT is specific to edge type ϕ(j → i).

Similar to ATT, the message passing operator MES also involves a multi-head mecha-
nism, which can be expressed formally as below.

MES(i, j) = ∥
p∈[1,h]

MesHeadp(i, j) (10)

MesHeadp(i, j) = WM,p
τ(j) H(j)WMSG

ϕ(j→i) (11)

where WM and WMSG are projection matrices.

5. Experiments
5.1. Datasets

To evaluate the effectiveness of our proposed method, we downloaded more than
25,000 APKs and removed the samples that cannot be analyzed by Androguard. Our final
dataset consists of 20,297 APKs, with 10,361 classified as benign and 11,043 as malicious,
spanning the years 2018 to 2022, as shown in Table 3. The benign samples were obtained
from Google Play Store and AppChina with the assistance of Androzoo [33], while the
malicious samples were acquired from VirusShare [34]. Specifically, we consider APKs
from Androzoo as benign only if fewer than five antivirus engines from VirusTotal detected
them as malware. The distribution of samples across each year is approximately equal,
considering cases where APKs failed to be analyzed by Androguard or APKTool [35]. The
dataset is partitioned into three subsets for training, validation, and testing, with a ratio
of 8:1:1, respectively. It is worth noting that, due to memory constraints, experiments
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were conducted on datasets of varying sizes, all of which are subsets of the larger dataset
containing 21,404 APKs.

Table 3. Statistics of the datasets.

Datasets Number of Apps Sources Years

Benign set 10,361 Google Play Store, AppChina 2018–2022
Malicious set 11,043 VirusShare 2018–2022

For our proposed model and the baselines based on GNNs, we begin by extracting six
node types and six edge types using Androguard to construct a heterogeneous graph for
our dataset. The graph is then stored in a Neo4j database for further use. Our constructed
graph comprises over 178,000 nodes and 1.36 million edges based on our dataset. As for
other baselines, the dataset is decompiled into Smali code using APKTool and prepared to
be fed into these models.

5.2. Baselines and Evaluation Criteria

To validate the effectiveness of HertDroid, we compare it with the following state-of-
the-art baselines using the evaluation criteria shown in Table 4. In the table, TP (i.e., True
Positive) and FP (i.e., False Positive) represent the number of applications predicted to be
malicious accurately and inaccurately, respectively, while TN (i.e., True Negative) and FN
(i.e., False Negative) represent the number of applications predicted to be benign accurately
and inaccurately, respectively.

Table 4. Measurements of HertDroid and baselines.

Measurement Description

Params Number of parameters in a model
Accuracy (TP + TN)/(TP + TN + FP + FN)
Precision TP/(TP + FP)

Recall TP/(TP + FN)
F1 2 × Precison × Recall/(Precision + Recall)

To test the effectiveness of AndroAT, we employ several generic GNNs as our baselines,
including:

1. GCN [14] aggregates graph structure and node features through graph convolutions
for homogeneous graphs to generate node embeddings;

2. GAT [18] treats all nodes as nodes of the same type and computes attention for each
node’s neighbor node.

3. GATv2 [36] is an improvement of GAT that replaces the static attention mechanism
with dynamic attention. This means that GATv2 is capable of changing the ranking of
attention weights based on the query node.

4. GraphSAGE [37] learns node representations by aggregating information from the
node’s neighbors and recursively aggregates information from the node’s k-hop
neighbors until a fixed-depth is reached. Similar to GAT, it is also a node generation
method designed for homogeneous graphs.

5. HAN [38] is a heterogeneous graph network utilizing meta-paths and attention mech-
anism. It first performs attention computation on the connected nodes of the target
node and then performs attention computation on each meta-path after computing
all nodes.

6. Metapath2vec [39] is a node representation generation method for HG. Metapath2vec
first specifies a meta-path and follows that path to randomly wander, constructs the
heterogeneous neighborhood of each vertex, and finally computes the node embed-
ding using the Skip-Gram model.
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To further evaluate whether HertDroid performs well among the models based on
heterogeneous GNNs, we convert GAT and GraphSAGE into heterogeneous GNNs. This
involves duplicating the convolutional layers for each edge type and summing up the
results to form the output embeddings, following the method proposed by Schlichtkrull
et al. [40]. We refer to these two heterogeneous models as GAT-hete and GraphSAGE-hete.
To evaluate these baselines, we replace these neural networks with AndroAT.

The second type of baseline consists of the methods specific for the area of Android
malware detection, including:

1. HinDroid [20] utilizes API calls and three types of relations to construct heterogeneous
graphs and classify based on multi-kernel support vector machines.

2. DroidEvlover [41] extracts features based on API occurrence and determines whether
the application is benign or malicious by implementing a model pool such as Passive
Aggressive and Online Gradient Descent.

5.3. Experiment Setup

In our experiments, we implemented the baselines based on GNNs with Pyg, while
for DroidEvolver, we utilized the source codes provided in the original paper. Additionally,
we re-implemented HinDroid. These experiments were conducted in the environment
specified in Table 5. In addition, we utilized two-hop paths between nodes of different
types (e.g., Permission) in methods that required manual specification of meta-paths. It
is worth noting that for the generic baselines, we adopted a structure comprising two
convolutional layers and one linear layer in our experiments.

For our proposed framework, we configured the learning rate to be 0.01 and employed
the mini-batch technique with a batch size of 512. The weight decay of the optimizer was
set to 0.0005. Furthermore, we specified that all multi-headed attention or multi-headed
messaging should utilize eight heads, and we set the hidden channels to 128. For the
baselines, we set the hyperparameters according to the recommended parameters of each
baseline’s paper. In cases where the baseline papers did not explicitly specify certain
hyperparameters, we aligned them consistently with the configuration of HertDroid.

With regards to the training techniques, the experiments were optimized using the
AdamW optimizer [42]. To control the number of epochs, we implemented the early
stopping method based on the validation loss, with a maximum of 200 epochs and a
patience threshold set to 20 epochs. Furthermore, we employed the mini-batch technique
with a heterogeneous graph sampler [23] and a neighbor sampler [37] for heterogeneous
and homogeneous graphs, respectively. The number of input nodes for loaders was set to
128, and we sampled 512 nodes per iteration for four iterations. It is noteworthy that we
used different loaders for the training, validation, and testing sets. This ensures that the
application nodes in the testing set do not appear in the training or validation sets, thereby
preventing potential information leakage.

Table 5. Environment of evaluation.

Environment Version Environment Type

GPU NVIDIA RTX4090 Hardware
Python 3.8.10 Programming language

Androguard [26] 3.3.5 Decompiled tool
Pytorch [43] 1.12.1 Python package

Pytorch Geometric [28] 2.1.0.post1 Python package
Networkit [31] 10.1 Python package

Pandas [44] 1.5.2 Python package
Matplotlib [45] 3.5.2 Python package

Neo4j [27] 4.4.17 Database
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5.4. Experiment Results and Discussion

We trained each baseline and our proposed method five times and selected the training
with the median F1 scores; the experimental results are presented below.

5.4.1. Comparison with Domain-Specific Baselines

The comparative experimental results of methods dedicated to Android malware
detection are presented in Table 6. Our approach surpasses the performance of these two
baseline methods, with average improvements of 2.42% and 5.78%, respectively, on a
smaller dataset.

Table 6. Comparative experimental results of domain-specific baselines.

Model Accuracy Precision Recall F1

HinDroid 0.9420 0.9505 0.9536 0.9521
DroidEvolver 0.9060 0.9264 0.9172 0.9218

HertDroid 0.9700 0.9767 0.9735 0.9751

The reason we employed a limited dataset is as follows. In our experimentation
with HinDroid, we utilized a dataset comprising 21,404 APKs and encountered issues
related to memory overflow. Due to constraints in available memory, we opted to adhere
to the sample size specified in [20] to experiment with our specialized Android malware
detection models. This small dataset comprises 1834 training APKs (with 920 benign and
914 malicious samples) and 500 testing APKs (with 198 benign and 302 malicious samples).
Additionally, for HinDroid, we only considered the results of the meta-path ABA, as it
demonstrated superior performance within the HinDroid framework.

5.4.2. Comparison with GNN Baselines

From Table 7, we can see that HertDroid outperforms these generic baselines and
achieves the highest F1 value. The average F1 improvements of HertDroid is 7.94% com-
pared to homogeneous baselines, such as GAT, GATv2, GCN, GraphSAGE, and 12.49%
compared to heterogenous baselines like GAT-hete, Graph-hete, HAN, and Metapath2vec.

Table 7. Comparative experimental results of GNN baselines.

Model Accuracy Precision Recall F1 Params

GraphSAGE 0.9293 0.9394 0.9616 0.9504 11.34 M
GAT 0.9501 0.9504 0.9501 0.9502 5.61 M

GATv2 0.7082 0.7105 0.9854 0.8257 23.92 M
GCN 0.9270 0.9292 0.9629 0.9458 5.67 M

GraphSAGE-hete 0.9425 0. 9683 0.9609 0.9645 24.93 M
GAT-hete 0.9318 0.9316 0.9318 0.9317 21.21 M

HAN 0.9306 0.9445 0.9672 0.9557 6.80 M
Metapath2vec 0.6284 0.8768 0.6018 0.7137 22.77 M

HertDroid 0.9802 0.9841 0.9904 0.9873 10.23 M

Furthermore, the number of parameters of HertDroid is smaller than most of the
baselines except GCN and GAT. For instance, the number of parameters of GATv2 is
approximately 10 times that of HertDroid.

To access the recognition capabilities of each model for the malicious samples, we
present the ROC (Receiver Operating Characteristic) curve of baselines and HertDroid in
Figure 5. The figure reveals that HertDroid attains the highest area under the ROC curve
(AUC) value, specifically 99.81%. Following closely, GAT achieves the next highest AUC
value. Therefore, compared with generic baselines, HertDroid is more suitable for Android
malware detection with the highest sensitivity and the lowest false positive rate.
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In summary, our method demonstrates superior performance compared to all base-
lines, while also maintaining a lower parameter count compared to heterogeneous base-
lines. Importantly, our approach achieves this without the need for manual configuration
of meta-paths, highlighting its efficiency and effectiveness in the domain of Android
malware detection.

5.5. Components Evaluation
5.5.1. Importance of DropAPI

The DropAPI is necessary for two reasons. First, it addresses the issue of high compu-
tational costs associated with incorporating too many APIs [46]. To illustrate, we randomly
selected a sample set comprising 200 applications, with an equal split between benign and
malicious ones. Constructing a heterogeneous graph (HG) containing all API calls from
these APKs, we analyzed them using Androguard. The resulting Neo4j database contained
284,464 nodes for API nodes and 102 nodes for the other four types combined, indicating
that 99.89% of the nodes were API nodes. Additionally, when we increased the number
of applications to 500 for training our baselines and HertDroid, we encountered memory
overflow problems in all models. This underscores that the absence of the DropAPI module
would substantially increase computational costs.

Second, including this module is imperative due to the problem of low performance
associated with incorporating too many weakly correlated APIs [47]. We fed the HG with
200 applications into the GAT and GCN models, two models with the fewest parameters
among the baselines. Both GAT and GCN models yielded F1 values of less than 0.7. In
summary, the DropAPI module adopted in this paper not only reduces the consumption of
computing resources but also improves the detection ability of the entire model.

5.5.2. Importance of Using HG to Express Android APKs

Suppose that Permission and So are represented as 3-dimensional and 2-dimensional
vectors, as depicted in Figures 6a and 6b, respectively. If treated as distinct node types, the
3D Permission and 2D So nodes will be directed to separate linear layers. The parameters
of these layers will undergo individual adjustments through backward propagation. This
segregation in processing allows for tailored parameter updates based on the characteristics
inherent to each node type. Conversely, in the case of transforming these nodes into a
homogeneous graph, all nodes, regardless of their type (3D Permission or 2D So), will
inhabit a unified feature space, as illustrated in Figure 6c. Consequently, the adoption of
a heterogeneous graph becomes imperative for effectively capturing and extracting the
nuanced semantics of diverse behaviors within the model.
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5.5.3. Importance of Embedding Model for HG without Manually Setting Meta-Paths

A graph embedding model can efficiently convert graph data into low-dimensional
vectors, supporting downstream tasks such as classification and visualization [48]. Our
method adopts the embedding model based on three primary considerations. Firstly, the
embedding model approach effectively preserves the complex topology of graph data [49].
This method involves analyzing the connections between nodes during the conversion
of high-dimensional graph data into low-dimensional vectors. Secondly, the embedding
models have lower computational and memory resource requirements. Traditional machine
learning methods often entail the storage of a large number of feature vectors, which
can significantly increase computation and memory demands, especially on large-scale
datasets. In contrast, embedding models typically have fewer parameters and many
of them support the mini-batch technique, which allows them to process large datasets
efficiently under limited computational resources. Thirdly, the graph embedding model
has been demonstrated to enhance performance across various tasks [50]. One reason for
this improvement is the automatic learning of features. While the embedding model also
involves feature generation for each component of the Android application, it distinguishes
itself from traditional machine learning methods by eliminating the need for manual feature
engineering. Instead, the embedding model enhances performance by learning how to
represent the data optimally.

Meta-paths define the complex semantic relationships between source nodes and
target nodes, which is a common method to structure heterogeneous graphs. In the context
of malware detection, an intuitive meta-path is denoted as App-X-App, where X signifies
other node types excluding App. This implies that two applications are similar if they share
the same entity, such as a permission.

However, the experimental results of HAN and Metapath2vec in Section 5.4 reveal
that the schema of meta-paths like App-X-App is not efficient in modeling the structure
of APK HGs. Despite the general efficacy of heterogeneous embedding models based on
meta-paths, the identification of effective meta-paths within a specific domain is profoundly
context-dependent.

Thus, we employ an embedding generation model for HGs capable of autonomously
learning meta-paths and adjusting their importance. This approach is adopted to optimize
the model’s performance and simplify its usability, as it allows the model to dynamically
adapt and optimize the relevance of meta-paths without manual intervention.

5.6. Visualization

To present the experimental results more intuitively, the embeddings of APP nodes are
visualized in Figure 7, where the purple nodes represent malicious applications, and the
yellow nodes represent benign applications. First, we selected the baseline with the fewest
parameters, i.e., GAT, and the baseline with the highest F1 value, GraphSAGE-hete. Second,
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we employed the t-SNE algorithm [51] with Euclidean distance to reduce high-dimensional
vectors to 2-dimensional vectors. Third, we randomly selected 2000 nodes and displayed
the results on the canvas.
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The visualization indicates that, in HertDroid, the two clusters of malicious and benign
applications are farther apart than in the other two models. Compared with GraphSAGE-
hete, HertDroid has a clearer boundary between the two clusters. Moreover, there are more
purple points in the yellow cluster in GAT, indicating the outperformance of HertDroid.
Therefore, HertDroid can accurately capture the semantic relationship between malicious
and benign Android applications, enabling better judgment of whether the application
poses a threat of malicious activity.

6. Conclusions

This paper introduces HertDroid, an Android malware detection method based on
centrality calculation and a transformer for Android heterogeneous graph analysis. Initially,
entities and relations from APKs are modeled as a heterogeneous graph. Subsequently,
a method incorporating centrality calculation from multiple perspectives is employed,
followed by decision-making utilizing the VIKOR algorithm. The processed heterogeneous
graph undergoes analysis by the Android APK Transformer without the need for manually
setting meta-paths, resulting in the generation of embeddings for each application. These
embeddings are then utilized to train a classifier for identifying Android malwares.

Experimental results based on 10,361 benign and 11,043 malicious applications demon-
strate that HertDroid outperforms both domain-specific and generic baselines in terms of F1
scores. Compared with domain-specific baselines, HertDroid not only processes more data
but also supports mini-batch processing, thereby reducing memory requirements during
execution. Furthermore, HertDroid maintains a relatively small number of parameters
compared to generic baselines.
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