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Abstract: The genetic algorithm (GA) is a well-known metaheuristic approach for dealing with
complex problems with a wide search space. In genetic algorithms (GAs), the quality of individuals
in the initial population is important in determining the final optimal solution. The classic GA
using the random population seeding technique is effective and straightforward, but the generated
population may contain individuals with low fitness, delaying convergence to the best solution.
On the other side, heuristic population seeding strategies provide the advantages of producing
individuals with high fitness and encouraging rapid convergence to the optimal solution. Using
background information on the problem being solved, researchers have developed several population
seeding approaches. In this paper, to enhance the genetic algorithm efficiency, we propose a new
method for the initial population seeding based on a greedy approach. The proposed method starts by
adding four extreme cities to the route, creating a loop, and then adding each city to the route through
a greedy strategy that calculates the cost of adding every city to different locations along the route.
This method identifies the best position to place the city as well as the best city to add. Employing
local constant permutations improves the resultant route even more. Together with the suggested
approach, we examine the GA’s effectiveness while employing conventional population seeding
methods like nearest-neighbor, regression-based, and random seeding. Utilizing some of the well-
known Traveling Salesman Problem (TSP) examples from the TSPLIB, the standard library for TSPs,
tests were conducted. In terms of the error rate, average convergence, and time, the experimental
results demonstrate that the GA that employs the suggested population seeding technique performs
better than other GAs that use conventional population seeding strategies.

Keywords: genetic algorithms; initial population; TSP; IAM-TSP+

1. Introduction

Genetic algorithms (GAs) are stochastic optimization methods based on principles
of biological organisms: survival of the fittest and natural selection [1–3]. Numerous
combinatorial optimization issues in business, engineering, and social sciences have been
successfully solved with GAs [4–7]. A GA has two basic characteristics: it is a randomized
algorithm in which choosing and reproducing occur at random. The GA always works
with a set of solutions; this gives the approach the advantage of variation, along with
durability [8,9]. The GA aims to find the best solution within a large search space that
includes all feasible solutions [10]. A chromosome (or individual) is a representation of a
potential and feasible solution to a problem [11]. A population is a group of individuals
that can be managed by the GA at a certain point in time. An individual’s fitness is the
value associated with the corresponding individual. The fitness function, which is problem-
specific, refers to evaluating an individual’s quality to determine the most effective solution
to the problem at hand. Finding a superior solution or exceeding the maximum generation
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limit can be used as a termination criterion for the GA [12]. The GA begins with seeding the
population in the first step, followed by the selection process for individuals, and the third
step consists of the crossover and mutation processes [13]. The initial step is performed only
once, while the remaining steps continue whenever the final-step criterion is satisfied [14].
Figure 1 illustrates the construction of a common genetic algorithm [15].

Figure 1. The standard procedure of genetic algorithms [15].

1.1. Initial Population

The first phase of every GA is the population seeding phase. As the input for the GA, it
produces a population of possible solutions or individuals at random or through a heuristic
initialization technique [16]. Because the quality of individual solutions created in the initial
population stage is significant in determining the quality of the ultimate optimal solution,
population initialization is an important phase in the GA [17]. Random initialization is
the most frequent approach used to generate the initial population in a GA [13,18,19]. The
random approach has a low-fitness solution, which reduces the chances of discovering
an optimal or near-optimal solution; it also takes a considerable amount of search time
if information is lacking [20,21]. Thus, it is clear that an improved population seeding
approach is needed for the GA, and numerous research studies have been undertaken
to support this argument. In a large search space, on the other hand, if prior heuristic
knowledge about the best solution is provided, it may simply build the initial population
and identify high-quality solution regions. The use of heuristic approaches to generate
initial population seeding results in a high-quality population, allowing GAs to identify
better solutions quicker. However, it is possible that it will end up with a narrow search
space and will never be able to find the global optimal solution [22]. Since the inception of
GA ideas, a variety of initialization strategies have been introduced, such as the following:

• Nearest neighbor (NN) [23];
• Selective initialization (SI) [24];
• Gene bank (GB) [25];
• Equi-begin Vari-diversity (EV) [8];
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• Sorted population (SP) [26];
• K-means initial population [27];
• Knowledge-based initialization [28];
• Ordered Distance Vector population seeding [27].

1.2. TSP

The TSP is a combinatorial optimization problem [29] that is simple to explain but
difficult to solve, and it is categorized as one of the problems that cannot be solved in
polynomial time; in other words, it is an NP-hard issue [30].
The TSP’s purpose is to determine a complete, cheap tour in which a salesman must visit
each of the n provided cities only once. The TSP’s search space consists of permutations of
n cities. Each combination of n cities generates a solution, and given n cities, the size of the
overall TSP search space is s((n − 1)!/2) [8,31].

Due to its importance and application in multiple areas of daily life, the common
NP-hard problem known as the TSP has been comprehensively and widely explored in
many fields, especially across the domains of computer science and operations studies;
however, it remains an open challenge, and the TSP is widely regarded as a standard
testbed of multiple combinatorial optimization techniques [27,32].

However, one can question whether the TSP issue is significant enough to warrant
all of the attention it has received. Much attention has been paid to the problem because
it is a reasonably straightforward problem, and it is so easy to describe but so hard to
solve. The TSP is important because it is a representation of a wider category of problems
defined as combinatorial optimization problems. The TSP belongs to the group of problems
identified as NP-complete problems. In addition, if a polynomial-time-efficient method
can be developed for the TSP, then efficient algorithms might be developed for every
other NP-complete problem. There are, however, significant examples of actual difficulties
that may be expressed as TSPs, and many additional problems are extensions of this
problem [33], such as the drilling of printed circuit boards, the overhaul of gas turbine
engines, the design of global navigation satellite system surveying networks, wallpaper
cutting, computer wiring, X-ray crystallography, vehicle routing, etc. [29,34].

Many techniques for solving the TSP have been proposed, including exact and approxi-
mation algorithms [35]. Exact approaches are not generally appropriate for large-scale TSPs.
On the contrary, approximation algorithms, particularly many bioinspired algorithms, may
produce acceptable solutions to many NP-hard problems in a (reasonably) short running
time [10,29,36], such as genetic algorithms, ant colony optimization (ACO), particle swarm
optimization (PSO), and artificial neural networks (ANNs) [37,38].

Brady [39] presented the first GA for the TSP in 1985. Over time, the GA implementa-
tions evolved from being general to being more specialized to the TSP. Many population
seeding, encoding, mutation, and crossover methods were developed throughout the years,
further specializing GAs for the TSP [40].

1.3. Proposed Methodology and Contributions

In this paper, a new approach to initializing the population of genetic algorithms
(GAs) is presented with the goal of improving the quality of the solutions. The Iterative
Approximation Method (IAM-TSP) is the main component of our solution that solves the
Traveling Salesman Problem (TSP). This approach, which we described in full in our earlier
work [41], yields an approximate polynomial solution for the TSP and acts as the basis for
initializing the GA.

The IAM-TSP approach starts with the identification of four extreme cities along
the route. Each city is then successively incorporated into the route by comparing and
calculating the costs at different insertion sites. By using this approach, the overall path cost
is reduced by placing each city in the best possible position. We next apply local constant
permutations to the IAM-TSP outputs to further improve the quality and efficiency of the
solution, yielding an improved final path called IAM-TSP+.
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This work makes several important and varied contributions, mainly to the field of
improved GA performance by means of a sound initial population approach. The particular
contributions of this study are as follows:

• Improvement of Quality: By using a new method to initialize the GA population, our
proposed method guarantees that the beginning point is closer to the optimal solution,
resulting in a significant improvement in the quality of the solution.

• Durability: The proposed method shows resilience in generating high-quality solutions in
a variety of TSP instances, highlighting its durability and applicability to various scenarios.

• Computational Efficiency: We accomplish computational efficiency by lowering the
temporal complexity involved in locating a near-optimal route in TSPs, which im-
proves the GA’s overall performance, allowing it to converge faster. This is made
possible by the usage of IAM-TSP+.

We evaluated the proposed algorithms against standard TSP datasets to determine
how they would perform in terms of key performance measures. Our promising experi-
mental results show that our new method is effective in terms of error percentage, mean
convergence, and time. Among the achievements of this paper are new approaches to
initial population creation in the context of solving TSPs as compared to random, NN, and
regression strategies.

The rest of this research work is organized into the following structure: Section 2
discusses some relevant background ideas. The proposed approach is explained in Section 3.
Section 4 evaluates the experimental outcomes. A brief conclusion is presented in the
Section 5.

2. Related Work

Heuristic population seeding strategies offer the advantage of giving high-quality
individuals at a preliminary phase and the ability to produce near-optimal solutions in a
few generations; however, they have disadvantages regarding the diversity of individuals
created, randomness, the opportunity to investigate more search space, and the ability to
discover a global optimum [42–45]. On the other hand, the random population seeding
method provides benefits such as population variety, the effective investigation of the
search space, and the discovery of the best solution. Random seeding has two drawbacks:
it takes longer to determine the best solution and produces individuals that have the
worst possible sequence. Due to the differences between these two kinds of population
seeding techniques, we propose an effective population seeding methodology involving
randomness, the diversity of individuals, and a probable sequence.

One well-known alternative method for random population seeding in GAs, particu-
larly for the TSP, is the nearest-neighbor (NN) tour creation heuristic. Using this strategy,
individuals in the population seeding are built with the city that is nearest to the current
city, and these good individuals may alter the later search in subsequent generations [23]. A
greedy GA (GGA) was proposed by Yingzi et al. [25] in which a gene bank (GB) is used for
population seeding. By collecting the permutation of ‘n’ cities according to their distance,
the GB is generated. By using the GGA approach, a population of individuals is produced
from the GB that is above average in terms of fitness and has a short defining length, and
using the TSP, the performance of the GGA is justified.

Yugay et al. [26] proposed an enhanced GA with a sorted starting population based on
the idea that better parents produce better children. This strategy generates a huge initial
population pool, ranks it based on fitness values, and then excludes a subset of individuals
with poor fitness.

A new GA for the TSP was created by Nagata and Soler [46]. The initial population
was generated using a local search approach, and the GA was thoroughly evaluated using
a large number of small-scale TSP cases.

Shanmugam et al. [9] presented a comprehensive survey of several population seeding
techniques used on the TSP. They attempted to evaluate the performance of population
seeding strategies such as random, NN, gene bank, selective initialization, and sorted
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populations. The performance results of prior population seeding strategies were sorted by
the error rate and convergence rate. The results showed that the NN population technique
outperformed the other strategies tested. NN develops highly fit individuals, followed by
selective initialization and gene bank approaches.

Based on the quality of individuals generated, Paul et al. [32] evaluated the effec-
tiveness of several population seeding approaches, including random, gene bank, nearest-
neighbor, selective initialization, and sorted population seeding procedures. Using TSP
instances, experiments were conducted. The experimental results indicated the order of
performance of various population seeding approaches in terms of the error rate and
convergence rate. To successfully solve the TSP, a unique Vari-begin and Vari-diversity
population seeding strategy was presented. The Individual Diversity factor, which is a
key feature of the Vari-begin and Vari-diversity population seeding approach, refers to the
variety in city permutation that each individual creates. As a result, the disadvantage of
early convergence is mitigated [32].

For a permutation-coded GA, an effective population seeding method based on Or-
dered Distance Vectors (ODVs) was suggested using an elitist service transfer strategy. The
TSP was selected as the testbed, and tests were carried out on benchmark TSP instances
of various sizes. The experimental findings support the assertion that, in terms of the
convergence rate, error rate, and convergence time, the suggested strategy performs better
than the current initialization methods [8].

Deng et al. [27] developed a strategy known as the k-means initial population strategy,
based on the k-means algorithm, to reconstruct the route by linking each cluster. The
clusters are first sorted based on how far apart their centers are from one another, allowing
the initial population to be made up of random travel paths. In order to connect with
their neighbors, clusters disconnect a link at random. In order to improve the efficiency
of the GA, Chao et al. [28] developed a knowledge-based initialization approach (KI).
KI picks up on the features of evolved populations and makes use of them to direct the
evolution of initial populations. With this approach, advanced initial solutions without
path crossover can be quickly developed. Different initialization strategies were tested
using instances from the TSPLIB. According to the experimental results, the suggested
initialization approach improved the GA more than previously published strategies, such
as the random initialization, NN, GB, and VV techniques.

To solve the large-scale TSP, an efficient GA with new initial population, crossover,
and mutation methods was developed. Through five case studies, ranging from small-scale
to large-scale TSPs, the effectiveness of the suggested GA is demonstrated. The basic idea of
the suggested approach is to create a chromosome for which two neighboring genes should
contain two extremely close cities, sometimes but not always closest to one another [47].

Hassanat et al. [13,22] presented a new regression-based method for GA population
seeding in order to address TSPs. The proposed method splits a given TSP instance into
smaller sub-problems. This is achieved by using the regression line and its perpendicular
line, which enables the cities to be repeatedly clustered into four sub-problems; each city’s
location establishes which category or cluster it belongs to; the algorithm continues until
the sub-problem’s size is extremely small.

As shown by the literature reviewed above, there are substantial reasons to identify
better initial populations for GAs, such as reducing the GA search time required to discover
an optimal solution and reducing the number of generations required to obtain a good
solution. Identifying the optimal initial population is crucial for determining the optimal
solution, and population diversity is required to prevent the GA’s premature convergence.

3. Methods

To boost the genetic algorithm’s effectiveness, the IAM-TSP+ [41] method was used as
an initial population seeding method for the genetic algorithm. The method has proven
effective in finding high-quality solutions to the TSP. The IAM-TSP+ is a greedy algorithm
for the TSP, and it is an improvement of the IAM-TSP [41] method. The IAM-TSP begins
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by selecting four cities within the input set to act as locations in the east, west, north, and
south. The order in which these cities are added to the route list is as follows: east, north,
west, and south, with an eastward return. Then, the algorithm recursively adds each of
the remainder cities to the route one at a time. Every iteration of the technique determines
the cost of adding a city at different places along the route. It thoroughly looks into every
possible position for every location, selecting the best position and city for the least cost.
Lastly, this method calculates the overall cost of the route and outputs the result. The
Euclidean distance between each city along the route is used to compute the cost. The
IAM-TSP pseudocode is shown in Algorithm 1.

Algorithm 1 The proposed IAM-TSP algorithm

Require: Cities xy (list of cities with x- and y-coordinates) of size n (number of cities)
Ensure: Cost (total cost of the route using Euclidean distance) and Route (the best possible

sequence of cities)
1: Create an empty list Route to store the order of visited cities.
2: Obtain the East, North, West, and South cities and add them to Route .
3: Initialize a Boolean array Visited of size n and set all elements to f alse.
4: Set the Visited status of the cities in Route to true (East, North, West, and South).
5: Create an empty list Open.
6: Add all cities in Citiesxy to Open if their Visited status is f alse.
7: while Open is not empty do
8: Create an empty list PossibleSolutions to store the possible solutions (routes).
9: for each city i in Open

10: find the best location to insert i into Route
11: add the new Route to PossibleSolutions
12: end for
13: Find the best solution Best in PossibleSolutions and keep track of the city ID.
14: Update Route by Best.
15: Remove the city ID from Open that satisfies Best.
16: end while
17: Calculate the cost of the Route using the Euclidean distance and store it in Cost.
18: return Cost, Route.

With a predetermined number of local cities (k), an improved version of the IAM-TSP
called IAM-TSP+ computes every permutation sequence from the first city in the output
route to the kth city, identifying the best solution and updating the route in the process.
Following that, the method goes into a loop where it iterates through each city until it finds
the next k permutations until n − k. The procedure of the suggested IAM-TSP+ is displayed
in Algorithm 2.

Algorithm 2 The proposed IAM-TSP+ algorithm

Require: Cities xy of size n and k = 5 (local permutations)
Ensure: Cost, Route

1: Route = Algorithm1(Citiesxy).
2: for i = 1 to n − k do
3: create an empty list of lists PossibleSolutions to store the possible solutions (routes).
4: for each j from 1 to k, generate all k local permutations of Route from j to j + k.
5: Update the cost of each solution in PossibleSolutions.
6: Route = the minimum cost solution in PossibleSolutions.
7: end for
8: return Cost(Route), Route



Appl. Sci. 2024, 14, 3151 7 of 19

The IAM-TSP+ route results for a280 and tsp225 from the TSPLIB [48] are shown in
Figures 2 and 3. This method provides a single solution; because the population requires
many solutions to initiate the GA, we utilized the seed solution from the previous algorithm
to generate n solutions using the mutation operator, which mutates the seed solution n − 1
times, in which n is the size of the population. To boost the diversity of the starting
population, we employed the mutation operator rather than the crossover operator in this
case. The GA will then follow up to optimize the solutions after the initial population is
finished. In this work, we used several types of mutations to achieve a kind of diversity.
We used IRGIBNNM mutation [14], flip mutation [49], and slide mutation [50].

Figure 2. The initial solution for a280.

Figure 3. The initial solution for tsp225.

4. Experimental Settings, Results, and Discussion

Investigations were carried out using TSP instances from the TSPLIB [48], and the
TSP was chosen for several reasons, including the fact that it can be used to simulate a
wide range of real-world problems, and it serves as a typical testbed for new algorithmic
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approaches; success on the TSP is frequently seen as evidence of a method’s applicability or
effectiveness. In addition, it is simple to understand, preventing excessive complexity from
obscuring the behavior of the algorithm. Therefore, the TSP may serve as an appropriate
benchmark case to assess how well various population seeding approaches perform.

In addition to the suggested seeding technique, we give the empirical results and
analysis of the performance of the MLRBT [13] population seeding method. Table 1 shows
the GA settings that were chosen for our experiments. The experiment was carried out ten
times for each instance.

Table 1. GA setup parameters.

Parameter Value/Method

Population size 100
Generation limit 3000
Initialization method IAMTSP method and Multi-Linear Regression-Based Technique

(MLRBT) [13]
Crossover method One-point modified
Crossover rate 82%
Mutation Exchange mutation
Mutation rate 100%
Selection mechanism Truncation Selection
Termination criterion Generation limit

Each individual’s fitness level was determined using a truncation selection approach.
This is a typical method for assigning the fitness function to every chromosome in the GA
population, and truncation selection is the most straightforward method of selection. In this
type of selection, the population is sorted by fitness, and then the lower-fitness proportion
is dropped [51].

For the reproduction process in our experiments, the one-point modified crossover and
exchange mutation methods were used, as they are among the simplest methods that have
been used with problems that are characterized as permutation problems. The one-point
modified crossover process randomly selects a location in the chromosomes, and then the
individuals exchange genes to make new offspring [52]. The exchange mutation process
works by randomly selecting two genes and altering their locations [53].

We would like to clarify that the primary objective of our research is to propose a new
method aimed at enhancing diversity within genetic algorithms. We employ the TSP as an
example of an optimization problem to facilitate a comparative analysis of our proposed
method against other existing methods. Additionally, our choice of straightforward GA
parameters, as depicted in Table 1, was intentional. We did not employ sophisticated
parameter control or tuning procedures. This approach aligns with the primary goal of
our paper, which is to validate the effectiveness and showcase the benefits of our proposed
method when compared to a GA in terms of time and diversity. This choice of parameters
was made to ensure that the results obtained were a direct reflection of the proposed
method’s efficacy, rather than the impact of parameter tuning.

4.1. Experimental Setup

To ensure a fair assessment, all tests were conducted in the same environment for all
initialization methods. The findings aid in evaluating the effectiveness and efficiency of the
IAM-TSP+ for GA population initialization when compared to other initialization methods.
Simulation experiments were performed in the Microsoft Visual Studio 2022 environment,
and the system’s hardware and software specifications are as follows:

• 11th Gen Intel(R) Core (TM) i7-1165G7 @ 80 GHz 2.80 GHz;
• 8.00 GB of RAM;
• Windows 11 Pro, 64-bit operating system.
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We conducted tests on many TSPs, each having a known optimal solution. These
TSPs are from the TSPLIB [48], which includes vertices ranging from 48 to 783, and are
as follows: KroA100, eil51, bier127, pr439, KroA200, lin318, pr144, att532, rat783, a280,
and att48. The experiments included using the IAMTSP+ seeding method alongside the
Multi-Linear Regression-Based Technique (MLRBT) [13], which was proven to be superior
to the Regression-Based Technique (RBT) [22], as well as the random and NN approaches.

4.2. Experimental Results and Discussion

The experiment was carried out ten times for each instance, using the same set
of parameters for the two seeding methods: the MLRBT [13] and the IAMTSP+ seed-
ing method. The IAMTSP+ seeding method was found to be more efficient than the
MLRBT [13] across all instances. Additionally, Table 2 and Figure 4 demonstrate that, in
terms of the optimal solution, the IAMTSP+ technique is superior in every case. Moreover,
it can be said that this approach is more effective than random, NN, and RBT [22] methods,
as the suggested technique achieved good performance and produced a result that was
close to the optimum.

Figure 4. The results of the initial population methods on the genetic algorithm.

Table 2. The experimental results.

Instance Optimal Solution
MLRBT IAMTSP+

Best Solution Average Best Solution Average

kroA100 21,282 27,493 29,440.8 22,075 22,067.4
eil51 426 465 478.6 437 437
a280 2579 3473 3539.7 2957 2964.5
KroA200 29,368 46,269 47,877.4 31,788 31,818.3
lin318 42,029 68,490 70,237.6 46,045 46,135.7
pr144 58,537 124,763 131,974.3 62,446 62,446
att532 27,686 145,128 157,423.6 91,627 91,992.4
rat783 8806 14,659 15,308.1 9725 9737
att48 10,628 40,939 41,236.9 34,877 34,877
bier127 118,282 137,850 141,773.7 128,848 128,848
pr439 107,217 149,445 154,323.3 117,650 118,096.7
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When investigating various initialization methods, parameters or factors related to
performance (which have been recognized as measurements), such as the error percentage,
average convergence rate, and convergence diversity, must be considered. To obtain a
nearly optimal solution, these factors are used to evaluate the quality of the acquired
population by assessing the effect of the initial population approach on GA performance.
For any given problem, the error rate is the percentage difference between the value of the
solution’s fitness and the known optimal solution [23]. The error rate can be computed using
Equation (1). The average convergence rate of a solution is defined as the percentage of
fitness reached by the solution considering the known optimal solution to the problem [32].
It can be stated as in Equation (2).

Error Rate =
Fitness − Optimal f itness

f itness
× 100% (1)

Average Convergence = 1 − Average Fitness − Optimal f itness
Average Fitness

× 100% (2)

The experimental results of the error rate are given in Table 3, which includes the error
rate of the best solution for every instance. Table 3 shows that the suggested approach
produced the lowest possible error rate. Therefore, the results indicate that the individuals
generated by the IAMTSP+ method for GAs fit the quality metrics more closely than the
individuals generated by the MLRBT.

It is noteworthy that the error rates for instances att532 and att48 are substantial for
all methods. The best-known solutions for both cases are substantially higher, with 86,729
and 33,522 route lengths, respectively, according to recent research [54–56]. Therefore, if
we adopted these values as the real optimal solutions, the error rates would be relatively
small, 5.3% and 3.9% for att532 and att48, respectively. Since we wanted to be safe, we
went with the smallest optimal solutions reported, regardless of their correctness, as stated
in [57–59]. It is important to note, nevertheless, that these chosen numbers seem to be
far lower than the generally agreed-upon values using Euclidean distances. It is possible
that measurements other than the Euclidean distance were used to calculate the reported
route lengths for these two instances. However, investigating the correctness of the optimal
solutions for these two instances is beyond the scope of this paper.

Table 3. Error percentage results for the two seeding methods.

Instance MLRBT IAMTSP+

kroA100 22.59121 3.592298981
eil51 8.387097 2.517162471
a280 25.74143 12.78322624

KroA200 36.5277 7.612935699
lin318 38.63484 8.721902487
pr144 53.08144 6.259808475
att532 80.92305 69.78401563
rat783 39.92769 9.449871465
att48 74.03942 69.52719557

bier127 14.19514 8.200360114
pr439 28.25655 8.867828304

Figure 5 shows the error rates of the initial population methods for all instances.
Table 4 and Figure 6 show the average convergence of the two population initialization

methods and show how efficient the genetic algorithm is in converging to the optimal
solution. As shown in Figure 6, the IAMTSP+ method achieved a larger convergence
rate than the MLRBT.
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Figure 5. Error rates of population seeding methods.

Figure 6. Average convergence rates of population seeding methods.
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Table 4. Average convergence rates %.

Instance MLRBT IAMTSP+

kroA100 72.28744 96.44090378
eil51 89.00961 97.48283753
a280 72.85928 86.99612076

KroA200 61.34001 92.29908575
lin318 59.83832 91.09865029
pr144 44.35485 93.74019153
att532 17.58694 30.09596445
rat783 57.5251 90.43853343
att48 25.77303 30.47280443

bier127 83.43014 91.79963989
pr439 69.47557 90.78746485

The GA efficiency is significantly affected by the genetic operator choices (such as
selection, crossover, and mutation), as well as the fine-tuning of the control parameters
and the population seeding methods. To obtain near-optimal solutions in an appropriate
amount of time, it is important to carefully select GA operators and parameters that
balance exploitation and exploration and another parameter, such as the initial population
method. Exploration is focused on discovering new and unknown places in the search
space, whereas exploitation uses the knowledge gained from previously visited sites to
identify better points. Research on GAs focuses on the selection of genetic operators and
parameters and their impact on algorithm efficiency. There is no “best” answer to these
challenges, and the choice of parameters is determined by the problem domain and the
structure of the search space.

To examine the efficiency of the IAMTSP+ initial population seeding method and its
impact on the efficiency of GA, the algorithm was run for a specific time (Millisecond) with
the three population seeding methods (IAMTSP+, random, and MLRBT) for each city, and
the solutions were obtained. It is worth noting that the GA parameters are the same as
those displayed in Table 1, except that the termination criterion was set to a specific time
for each city.

The time was first calculated for the IAMTSP+ seeding population while filling in the
population size for city N, so it was time T1. Then, a specific time was fixed for the genetic
algorithm that works after seeding, so it was time T2. The genetic algorithm was run with
the random seeding of the population at time T1 + T2.

Table 5 and Figure 7 show the computational results of the genetic algorithm using
the IAMTSP+ initial population seeding method compared to two other methods of initial
population seeding: random and MLRBT methods.

It is clear from Table 5 that the quality of the resulting solutions for the IAMTSP+
initial population seeding method is the highest, despite the limited time, and it is also
clear that the IAMTSP+ seeding method is superior to the other methods from an algorithm
efficiency aspect. It is also obvious from Table 5 how the GA proceeds with the doubling of
time, as despite the doubling of time for the genetic algorithm that uses random seeding, a
local optimum was obtained, and the solutions obtained from the GA with the IAMTSP+
initial population method are still much better than the GA with random seeding solutions,
and this justifies our use of the IAMTSP+ seeding method with the GA.
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Table 5. Computational results for the GA with a specific amount of time for each instance.

Instance Time (ms) Time ∗ 2
(ms)

GA Solution
with Random
Seeding

GA Solution
with Random
Seeding with
Time ∗ 2

GA Solution
with Initial
IAMTSP+

GA Solution
with Initial
Regression
Based

bier127 6023 12,046 214,928 187,452 128,678 139,460
a280 19,399 38,798 8243 7148 3018 4525
kroA100 5565 11,130 41,233 34,176 22,057 26,040
kroA200 9403 18,806 96,272 75,012 32,088 43,140
lin318 27,772 55,544 202,537 139,552 47,507 63,085
pr144 6618 13,236 193,568 130,639 62,481 95,713
att532 173,946 347,892 358,763 348,633 96,050 126,337
att48 5136 10,272 46,780 40,711 34,877 38,544
rat783 803,368 1,606,736 51,239 49,520 10,196 11,999
pr439 89,720 179,440 380,537 390,937 122,586 166,083
eil51 5151 10,302 493 477 438 463

Figure 7. Comparison of the final solution in a specific amount of time.

Figure 8 indicates that the GA with IAMTSP+ initial population seeding reaches the
near-optimal solution faster than the GA with random seeding, and the specified time to
complete the algorithm for the two methods is 6023 ms.

Efficiency is a general term that, depending on the situation, can be defined and
assessed in several ways. It frequently entails using the fewest resources—such as money,
time, or energy—to achieve the intended result. When addressing problems or coming
up with solutions, we typically take the amount of time needed to determine the effi-
ciency of a particular approach. Efficiency, for instance, could be quantified as the ratio
of the input—in this case, time—used to produce the output, which is the quality of the
solution [16].

E f f iciency (A) =
Quality o f Solution (A)

Time consumed (A)
(3)
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where A is a problem-solving method, i.e., TSP, and the Quality of the Solution can be
defined using Equation (2) (average convergence rate.) This allows the definition of
efficiency for a TSP solver to be [16]

E f f iciency (A) =
Convergence Rate (A)

Time consumed (A)
(4)

This formula implies that a more efficient solution achieves a high-quality result using
fewer resources (time).

Figure 8. The efficiency of the GA for bier127 from the TSPLIB using two population seeding methods:
random and IAMTSP+.

Table 6 and Figure 9 show the calculation of the error rate for each initial seeding
method, but the termination criterion was running to the specified time.

Table 6. The error rate for the GA with 3 initial seeding methods based on the specified time.

Instance GA with Random
Seeding

GA with Random
Seeding (Time ∗ 2)

GA with IAMTSP+
Seeding

GA with
Regression-Based

Seeding

bier127 44.96669 36.9001131 8.0790811 15.18572
a280 68.71285 63.91997762 14.546057 43.00552

kroA100 48.386 37.72823034 3.5136238 18.27189
kroA200 69.49476 60.84893084 8.4766891 31.92397

lin318 79.24873 69.88291103 11.530932 33.37719
pr144 69.75895 55.19178806 6.3123189 38.84112
att532 92.28293 92.05869783 71.175429 78.0856
att48 77.28089 73.89403355 69.527196 72.42632

rat783 82.81387 82.21728595 13.632797 26.61055
pr439 71.82482 72.57435341 12.537321 35.44372
eil51 13.59026 10.6918239 2.739726 7.991361
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Figure 9. The error rate of each initial seeding method based on specific time.

Based on Equation (3), Table 7 displays the GA efficiency for each instance, as well as
the methods used to seed the initial population. From Table 7, we conclude that employing
IAMTSP+ as an initial population seeding method with the GA improves the efficiency of
the GA when solving the TSP.

Table 7. GA efficiency.

Instance
GA Solution
with Random
Seeding

GA Solution
with Random
Seeding with
Time ∗ 2

GA Solution
with Initial
IAMTSP+

GA Solution
with
Regression
Based

bier127 0.009137193 0.005238244 0.01526165 0.014081734
a280 0.001612823 0.000929945 0.004405069 0.002938011
kroA100 0.009274753 0.005594948 0.017338073 0.014686094
kroA200 0.003244202 0.002081839 0.009733416 0.00723982
lin318 0.000747201 0.00054222 0.003185549 0.00239892
pr144 0.004569515 0.003385329 0.014156495 0.009241294
att532 0.0000443648 0.0000228269 0.00016571 0.000125984
att48 0.004423503 0.002541469 0.005933178 0.005368708
rat783 0.0000213926 0.0000110676 0.000107506 0.0000913522
pr439 0.000314035 0.00015284 0.00097484 0.00071953

Table 7 demonstrates that the proposed GA-IAMTSP+ outperforms both the pure GA
and the GA that initially began with a regression approach in terms of efficiency across all
TSP instances. This notable achievement is attributable to the high-quality initial solutions
offered by IAMTSP+. Because these initial solutions are of greater quality, the GA converges
faster and produces solutions of higher quality. This effectively addresses our study’s main
concern: how can the GA’s efficiency in solving the TSP be improved?

4.3. Experiments on Simulated Data

We conducted three experiments on randomly generated instances, C1, C2, and C3,
with 100, 200, and 300 cities, respectively. We used a uniform distribution to simulate
city locations (x- and y-coordinates), ensuring that cities were randomly but uniformly
dispersed over the simulation space. These experiments utilized a variety of seeding
approaches, including random seeding, MLRBT seeding, and IAMTSP+ seeding, while
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keeping GA parameters constant, as shown in Table 1. Table 8 shows the lengths of the
routes obtained by the GA with different seeding approaches.

As can be seen from Table 8 and Figure 10, it appears that the IAMTSP+ seeding
method consistently outperforms the other methods across all instances. Specifically, using
the GA with IAMTSP+ seeding resulted in the shortest routes for all three instances. This
finding aligns with outcomes previously observed in real-world TSP instances, suggesting
that adopting a more sophisticated and adaptive approach for the initial population in the
GA culminates in the enhanced performance of the GA’s final solution.

By demonstrating the superior performance of the IAMTSP+ method on real-world
and simulated data, we can build confidence in its use for generating the initial seeding
for the GA to be used not only for solving the classical TSP but also in various other
applications, such as networking [60,61], transportation planning, urban design, location-
based services, etc.

Table 8. Comparison of route length results obtained by the GA on simulated data utilizing three
seeding approaches, bold font means the best performance.

Instance Number of
Cities MLRBT IAMTSP+ GA with

Random
GA with
MLRBT

GA with
IAMTSP+

C1 100 3484 3175 3813 3220 3142
C2 200 6307 4514 6714 5363 4418
C3 300 8630 5750 12167 6510 5623

Figure 10. Visualization of the resultant routes from the GA after applying the three initial seeding
methods on C1. (A) Random seeding, (B) MLRBT seeding, (C) IAMTSP+ seeding.

5. Conclusions

We present a GA approach with improved efficiency in this study that makes use
of the IAMTSP+ initial population strategy. This approach’s main benefits include a
considerable reduction in processing time, increased robustness, and better solution quality.
We evaluated the new method on popular TSP instances to determine its performance.
When we compared our method to previously published ones in the literature, including
regression-based and random initial solutions, we found that using IAMTSP+ as an initial
population method for GA performed better than the other methods in all TSP instances.

Our goal in this work was to investigate the effect of different initiation procedures
on the effectiveness of genetic algorithms (GAs). It is important to note, however, that the
efficiency of the GA is impacted by a variety of circumstances. In future studies, we plan
to thoroughly examine the IAMTSP+ technique by taking into account other factors, such
as selection methods, deriving the remaining solutions from a single IAMTSP+ solution,
and combining two initialization procedures to seed the population. We want to conduct
thorough testing and comparisons in our next study, with the goal of providing a detailed
evaluation of the effectiveness of the proposed GA-IAMTSP+ approach.
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