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Abstract: The state of health (SOH) and remaining useful life (RUL) of lithium-ion batteries are critical
indicators for assessing battery reliability and safety management. However, these two indicators
are difficult to measure directly, posing a challenge to ensure safe and stable battery operation. This
paper proposes a method for estimating SOH and predicting RUL of lithium-ion batteries by charging
feature extraction and ridge regression. First, three sets of health feature parameters are extracted
from the charging voltage curve. The relationship between these health features and maximum
battery capacity is quantitatively evaluated using the correlation analysis method. Then, the ridge
regression method is employed to establish the battery aging model and estimate SOH. Meanwhile,
a multiscale prediction model is developed to predict changes in health features as the number of
charge-discharge cycles increases, combining with the battery aging model to perform multistep SOH
estimation for predicting RUL. Finally, the accuracy and adaptability of the proposed method are
confirmed by two battery datasets obtained from varying operating conditions. Experimental results
demonstrate that the prediction curves can approximate the real values closely, the mean absolute
error (MAE) and root mean square error (RMSE) calculations of SOH remain below 0.02, and the
maximum absolute error (AE) of RUL is no more than two cycles.

Keywords: lithium-ion batteries; state of health; remaining useful life; charging feature extraction;
ridge regression; maximum battery capacity; aging model; multiscale prediction model

1. Introduction

Lithium-ion batteries are commonly employed in electronics, new energy vehicles,
and power source systems owing to their high energy density, long life cycle, and low
self-discharge rate [1,2]. However, as the number of charge-discharge cycles increases,
performance degradation will occur for the battery, such as a decrease in the maximum
available capacity and an increase in internal resistance [3]. If the battery is not replaced
promptly, great safety risks will be posed to the equipment, seriously affecting the stability
and reliability of the power systems [4,5]. Accurately estimating battery status is essential
for effective battery management, and the state of health (SOH) and remaining useful life
(RUL) of lithium-ion batteries are critical indicators for evaluating battery performance,
which can effectively quantify the degree of aging [6].

In the field of battery health assessment, SOH is a widely used macro indicator to
measure the overall health of a battery. In addition to SOH, the micro-health parameters
of the battery are also important aspects in assessing the health status, including the
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volume fraction of negative electrode active materials, solid-phase diffusion coefficient,
electrolyte concentration, and so on. Micro-health parameters are for the performance
of the active material and electrolyte inside the battery, and changes in micro-health
parameters can present the internal health state of the battery [7]. Although micro-health
parameters can provide more detailed information about the internal state of the battery,
their measurement and evaluation processes are relatively complex and require advanced
models and algorithms. In contrast, SOH is more easily assessed by battery capacity,
internal resistance, and other parameters. Therefore, in this study, SOH is chosen as
the primary indicator for assessing battery health and the mainstream definition of SOH
describes it as the ratio of maximum usable capacity to rated capacity [8]. As the number
of charge-discharge cycles increases, the SOH will continuously decrease. When SOH
decreases to 70%~80%, the battery is typically recognized as the end of life (EOL), and the
number of cycles to degradation from the current state to EOL is called the RUL of the
battery [9,10].

In addition, there is a correlation between estimating SOH and predicting RUL, as
both can be obtained by estimating battery capacity. Model-based and data-driven methods
are included in the main research methods [11]. Model-based methods can be classified as
equivalent circuit models and electrochemical models, each based on distinct modeling
mechanisms. In the equivalent circuit model, intricate physical and chemical processes
within the battery are simplified and basic electronic components are used to simulate
battery output [12]. Zhang et al. [13] introduced a recursive least square weighted decou-
pling method to enhance parameter estimation accuracy across various dynamic regimes.
Misyris et al. [14] used recursive least squares with variable forgetting factors to identify
parameters of the equivalent circuit model, achieving internal impedance identification
and capacity estimation. Wang et al. [15] developed an equivalent circuit model using the
constant voltage charging current curve to predict battery SOH by determining relevant
circuit model features. However, establishing a precise model of battery aging is challeng-
ing owing to the intricate internal reaction mechanism [16]. Electrochemical models model
the dynamics of battery performance degradation by simulating physical and chemical
processes within the battery [17]. Khodadadi Sadabadi et al. [18] simulated the battery
charging and discharging process by establishing an electrochemical model to analyze the
affected factors of battery capacity degradation, thereby predicting RUL. Hong et al. [19]
designed an enhanced single-particle model capable of predicting battery aging states using
aging research data from LMO-NMC-cathode graphite-anode batteries. Nevertheless, it is
more difficult to develop a precise battery degradation model because the electrochemical
model is dynamic and nonlinear. The above model-based methods provide an accurate
representation of the external dynamic characteristics of the battery. However, a substantial
amount of prior knowledge is required to use the method, and frequent adjustments to
the model according to the specific type of lithium-ion battery and varying operating
conditions are needed, making it unsuitable for real-time forecasting [20].

In contrast, data-driven methods do not require intensive examination of the battery’s
aging mechanism, but battery performance parameters are directly extracted, such as
voltage, current, resistance, temperature, and other data as health features. The health
feature parameters are analyzed and modeled with the trend of capacity degradation to
estimate the internal state and performance of the batteries. Data-driven methods offer
the advantages of efficiency, simplicity, and ease of use, and have attracted extensive
attention in various fields [21]. Zhang et al. [22] used the rate of temperature change
associated with capacity degradation as input to time convolution networks and SOH as
output, achieving good prediction accuracy. Wu et al. [23] implemented RUL prediction
by analyzing the change rule of the terminal voltage curve during battery charging and
extracting degradation features as inputs to the feed-forward neural network. Khumprom
et al. [24] introduced an application of deep neural networks to extract eight features from
charge-discharge curves to predict SOH and RUL, with better results. Chen et al. [25] used
capacity and equal voltage drop discharge time as health features, preprocessed health
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features using ensemble empirical mode decomposition (EEMD), introduced phase space
reconstruction to optimize input sequences, and finally combined it with support vector
regression (SVR) to complete the prediction of RUL. Zhang et al. [26] combined partial
incremental capacity with an artificial neural network for estimating battery status under
constant current discharge conditions. Deng et al. [27] used constant current charging time
and capacity, as well as constant voltage charging time, as features for training the SVR
model to predict SOH. Chen et al. [28] advanced a hybrid model combining a modified
adaptive noise algorithm for performing EEMD decomposition of capacity data, predicting
each decomposition component separately using LSSVR. Li et al. [29] investigated changes
in battery charging status under various health conditions. The particle swarm algorithm
was employed to optimize the kernel function of the support vector machine for the joint
estimation of SOC and SOH. Experimental results show that the method is remarkably
adaptable and feasible. Tian et al. [30] used support vector machines to predict trends
in capacity degradation by extracting health features from the temperature differential
curve during constant current battery charging. Wu et al. [31] extracted features from
charging capacity and incremental capacity data to model battery aging through ridge
regression. Experimental results showed that compared to SVR and Gaussian process
regression, more reliable estimates with a simpler structure and lower computational
cost were provided by ridge regression using selected features. The data-driven methods
mentioned above are simple to implement and achieve high prediction accuracy when
reliable training sets are used. However, due to dynamic changes in electrochemical
reactions within the battery. This includes factors such as fine-tuning the electrode material
structure, electrolyte redistribution, and repair of the solid electrolyte interface layer, which
can lead to a phenomenon of capacity regeneration in the battery within a short time [32].
The existence of this capacity regeneration phenomenon can lead to a situation where the
battery has the same SOH but different RUL in two different cycles. This makes it difficult
to assess the degree of battery aging comprehensively and accurately by relying only on
the SOH. Therefore, it is necessary to consider the SOH and RUL of the current battery to
make a comprehensive diagnosis of the degree of aging throughout its life cycle. However,
current common evaluation methods usually estimate only one of them, while estimating
both separately will inevitably increase computational and algorithmic complexity.

Based on the previous analysis, a method is proposed for estimating SOH and predict-
ing RUL of lithium-ion batteries by charging feature extraction and ridge regression. First,
three sets of health feature parameters are extracted from the charging voltage curve, and
the Pearson correlation coefficient is applied to analyze these health features for maximum
battery capacity. Then, the ridge regression method is applied to develop the battery aging
model and estimate the SOH. On this basis, a multiscale prediction model is developed
to predict trends in health features as charge-discharge cycles increase. The results of the
multiscale prediction model are integrated with the battery aging model to estimate SOH
through multiple steps, enabling RUL prediction. Finally, the accuracy and adaptability of
the proposed method are confirmed by two battery datasets procured under varied operat-
ing conditions. Experimental results show that SOH and RUL are accurately predicted for
the proposed method with high accuracy and reliability.

The remainder of this paper is structured as follows: Section 2 presents battery degra-
dation datasets and explains the process of extracting health features. Section 3 describes
the rationale for the selected models and algorithms, as well as the overall framework for
estimating SOH and predicting RUL. Section 4 provides experimental validation of the
method, followed by discussion and analysis of the results. Section 5 summarizes the work
carried out in this paper.

2. Health Feature Parameters
2.1. Battery Degradation Datasets

This paper used two datasets of lithium-ion batteries under various operating condi-
tions to assess the prediction performance of the proposed method. The first dataset was
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from NASA lithium-ion battery dataset [33], and B0005 and B0006 batteries were selected
as research objects. Both batteries had a rated capacity of 2.0 Ah, and both underwent 168
charge-discharge cycles, setting the battery failure threshold at 70% (1.4 Ah) of its rated
capacity. The experimental data was generated through charge-discharge experiments at
24 ◦C, and the battery was initially charged at 1.5 A in constant current mode until the
voltage reached 4.2 V. Then, the mode was changed to constant voltage charging until the
charging current decreased to 20 mA. The discharge process employed a constant current
of 2 A until the B0005 and B0006 batteries reached voltages of 2.7 V and 2.5 V.

The second dataset was obtained from Oxford University’s lithium-ion battery aging
dataset [34], where Cell1 and Cell2 batteries were designated as research objects. The
rated capacity of both batteries was 0.74 Ah and underwent 78 and 73 charge-discharge
cycles, respectively. The failure threshold for lithium-ion batteries was set at 80% (0.59 Ah)
of their rated capacity. The aging experiments were conducted at 40 ◦C. The batteries
were charged initially at 1.48 A in constant current mode and then discharged to simulate
Artemis urban driving conditions. After every 100 charge-discharge cycles, a capacity
calibration experiment was conducted until the end of battery life, and the aging test
was completed.

These two datasets provide capacity degradation data and related information for
the entire battery life cycle, which is suitable for state estimation experiments. The above
specific battery parameters are detailed in Table 1, and the battery capacity variation with
charge-discharge cycles is illustrated in Figure 1.

Table 1. The parameters and operating conditions of the selected batteries.

Battery Charging Current (A) Rated Capacity (Ah) Temperature (◦C) Number of Cycles

B0005 1.5 2 24 168
B0006 1.5 2 24 168
Cell1 1.48 0.74 40 78
Cell2 1.48 0.74 40 73
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2.2. Health Features Extraction

The data-driven estimation method establishes a mapping relationship with maximum
battery capacity using multidimensional health feature data. Therefore, how to select health
features is crucial for data-driven methods to accurately describe trends in battery capacity
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degradation. The operating phases of lithium-ion batteries mainly involve the charging
and discharging phases. During the charging phase, a fixed constant current and constant
voltage mode is commonly implemented. Compared to the irregularity of the discharging
phase under actual operating conditions, it is easier to extract stable and effective health
feature data under the charging phase [35]. Characterization of the charging phase is
relatively easy to analyze and extract because the charging process is usually carried out
in a controlled constant voltage and constant current mode. Because, in practice, the
discharge phase of Li-ion batteries may be affected by a variety of factors, resulting in
irregularities in discharge data. For example, factors such as environmental conditions and
usage behavior can lead to more complexity in extracting regular data during the discharge
phase. In real life, when operating an electric vehicle artificially, the driver’s behaviors such
as acceleration, deceleration, and braking will lead to fluctuations in the battery discharge
current and voltage; the vehicle load (e.g., the number of passengers and the weight of
cargo) will also affect the battery discharge rate and voltage output. The combined effect
of these external factors leads to the fact that the discharge data of electric vehicles under
actual operating conditions tend to show a high degree of irregularity. Conversely, constant
voltage and constant current charge states make it easier to extract stable and effective
health characteristics data.

To demonstrate the irregularity of the discharge data more intuitively, as shown in
Figure 2, which shows the variation curve of the battery pack voltage of an electric vehicle
under actual operating conditions. The discharge voltages show a rather chaotic trend in
actual operation. These irregularities can create difficulties for our modeling and prediction.
Therefore, the feature data of the charging voltage curve are analyzed in this paper.
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For example, the charging voltage curve of the Cell1 battery changes with battery
degradation as shown in Figure 3a. In the initial and final stages, the curve is characterized
by steepness. Nevertheless, the curve is relatively flat and is known as the plateau voltage
in the intermediate state. The plateau voltage duration gradually shortens as the charging
and discharging cycles increase, which aligns with the decreasing maximum capacity of the
battery. Consequently, equal voltage difference charging time (EVDCT) can be used as a
key feature parameter for assessing battery status. The incremental capacity analysis (ICA)
method elucidates how the decrease in maximum battery capacity is related to changes in
charging voltage. The ICA method calculates the difference dQ/dV between capacity Q
and voltage V to accentuate incremental capacity related to distinct voltage intervals during
charging. Figure 3b displays the change in the capacity increment curve, with the highest
peak decreasing gradually with an increasing number of cycles, reflecting the trend of
maximum battery capacity. The probability density (PD) analysis method correlates voltage
distribution with capacity decline by calculating probability density for each voltage value.
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Figure 3c shows the correlation between peak PD curve and capacity decline. By observing
Figure 3a–c, it is evident that the voltage data needed for feature extraction in Cell1 battery
mainly ranges from 3.78 V to 3.80 V. This indicates that the prediction process does not
necessitate complete charge voltage data and only a smaller amount of data needs to be
collected, resulting in reduced data computation and improved processing efficiency.
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To show the above conclusions more clearly, trends in IC peaks over the entire cycle
process of B0005 and B0006 batteries are summarized. Changes and curves over the cycles
are plotted as shown in Figure 3d. The max IC trend gradually decreases with increasing
cycles, while showing some volatility, manifested as a global decline and a local increase.
The trend closely resembles the downward trend in the actual maximum battery capacity,
which verifies the validity of the selected health feature parameters in this paper.
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2.3. Correlation Analysis

This paper utilizes Pearson correlation analysis to quantify the relationship between
health features and battery capacity. The calculation formula is:

ρX,Y =
∑N

i=1
(
Xi − X

)(
Yi − Y

)√
∑N

i=1
(
Xi − X

)2
√

∑N
i=1
(
Yi − Y

)2
(1)

where Xi and X represent health features and their mean values, Yi and Y are battery
capacity and mean value, and N represents data length.

The Pearson correlation coefficient serves as a statistical metric used to evaluate the
magnitude of the association between two variables. A stronger linear relationship between
the two variables is indicated when a correlation coefficient is close to 1 in absolute value. In
the field of statistics, it is widely recognized that when the absolute value of the correlation
coefficient exceeds 0.8, a robust correlation between the two variables can be considered to
exist. Table 2 shows the correlation coefficients for each health feature with battery capacity.
The results reveal significant linear correlations between the three health feature parameters
extracted in this paper and battery capacity. Accordingly, EVDCT, IC peak, and PD peak
can be effectively employed as health features to characterize battery capacity degradation.

Table 2. Pearson correlation coefficient of health features.

Health Features B0005 B0006 Cell1 Cell2

EVDCT 0.9915 0.9941 0.8666 0.9930
IC Peak 0.9953 0.9802 0.8829 0.9016
PD Peak 0.8287 0.9085 0.9247 0.9212

3. Methods

A feasible battery degradation prediction model needs to be constructed after extract-
ing health features from battery charging data. Through the analysis of the health features,
it is shown that the correlation coefficients between the selected inputs and outputs are
above 0.82, and most of them are above 0.90, indicating a very high correlation between the
selected health features and maximum battery capacity. Therefore, linear regression can be
used for fitting models because it is computationally inexpensive and can be trained offline.

From the previous section, feature variables are extracted and transformed from the
charging voltage curve. Therefore, there is bound to be overlapping information between
them, that is, the problem of multicollinearity exists. The presence of a high correlation
between data features can contribute to overfitting the linear regression model, ultimately
affecting the accuracy of predictions. In addition, a simple linear regression model is
extremely susceptible to noise from input data, and even small errors can lead to significant
changes in output variables.

3.1. Ridge Regression

Ridge regression is an improved bias estimation method based on least square estima-
tion [36]. The method optimizes the model by introducing the term L2 regularization to
obtain more realistic and reliable regression coefficients, effectively solving the problems
of multicollinearity among variables and improving the overall fitting effect of the model.
The ridge regression formula is defined as follows:

β̂ridge = argmin

 n

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxij

)2

+ λ
p

∑
j=1

β j
2

 (2)

where β̂ridge is the vector of coefficients obtained from ridge regression, β j is the coefficients
of the jth feature, yi is the target value of the ith sample, xij is the jth feature value of the
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ith sample, n is the number of samples, and p is the number of features. Where λ is the
coefficient of the penalty term, λ ≥ 0. The greater the coefficient value, the more drastic the
contraction of the coefficient vector. When λ = 0, the above formula represents the least
squares estimation (LSE), so LSE can be considered a special case of ridge regression.

The matrix form of ridge regression is:

β̂ridge =
(

XTX + λI
)−1

XTY (3)

where I is the identity matrix, when the eigenvector has a collinearity problem, the matrix
XTX is irreversible and cannot be solved for β̂ridge. The penalty term added in ridge
regression makes the matrix XTX + λI full rank and invertible, which makes β̂ridge solvable,
and it can be concluded that ridge regression functions to reduce the singularity of the
eigenmatrix, and at the same time compresses the size of the coefficient vectors, thus
mitigating the risk of overfitting.

3.2. Multiscale Prediction Model
3.2.1. Ensemble Empirical Mode Decomposition

EEMD is an improved EMD method based on noise-assisted analysis [37]. The princi-
ple is to decompose the signal n times by EMD and add white noise with fixed variance and
zero means to the initial signal in each decomposition process. By using the property that
white noise has zero means to offset the noise effect and taking the integrated mean result
as the final result, the modal mixing problem of the EMD algorithm has been effectively
solved, ensuring the automatic distribution of the signal in the appropriate time scale.

The EEMD algorithm decomposes complex non-stationary signals into intrinsic mode
function (IMF) components at various time scales. Compared to the initial signal, the
fluctuation amplitude of each IMF component is reduced, and more precise forecasting
results can be obtained by analyzing the IMFs separately. This method has significant
advantages in extracting the fluctuation patterns of complex sequences and amplifying
the precision of the prediction model. The EEMD algorithm consists of the following
specific steps:

(1) Add white noise sequence wi(t) to the initial signal x(t) to obtain new signal Xi(t):

Xi(t) = x(t) + wi(t) (4)

where i is the number of white noise additions.
(2) The EMD decomposition of Xi(t) is performed to obtain the sum of the IMF compo-

nents of each order and the residual component res after decomposition:

Xi(t) =
n

∑
j=1

cij(t) + res (5)

where cij(t) is the jth IMF component derived from the decomposition after adding
white noise for the ith time, and the value of j is in the range of 1 ∼ n.

(3) Repeat the above two steps M times and add the IMF components obtained each time,
then calculate the mean value as the result:

cj(t) =
1
M

M

∑
i=1

cij(t) (6)

where cj(t) is the jth IMF component average obtained after EEMD decomposition of
the initial signal.
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3.2.2. Multiple Linear Regression

When there are two or more independent variables in regression analysis, and the
independent variable and the dependent variable have a linear correlation, the resulting
analysis is called multiple linear regression (MLR). Compared to conventional neural
networks, MLR offers high prediction accuracy, easy parameter adjustment, and fast
operation speed when dealing with low frequency components that are highly periodic
and have a flat trend [38]. The expression and expansion of the MLR matrix are:

Y = X × β + µ (7)
y1
y2
...

yn

 =


1 x11 · · · x1n
1 x21 · · · x2n

1
...

. . .
...

1 xn1 · · · xnn

×


β0
β1
...

βn

+


µ1
µ2
...

µn

 (8)

where Y is the dependent variable, X is the independent variable, β is the regression
coefficient, and µ is the random variable. The regression function can be obtained by
solving the parameters using the least squares method, and its formula is:

β̂ =
(

XTX
)−1

XTY (9)

3.2.3. Gated Recurrent Unit

The gated recurrent unit (GRU) optimizes the long short-term memory by combining
the forgetting gate and the input gate into an update gate. This optimizes network parame-
ters, enhances convergence speed, and effectively reduces the risk of data overfitting. GRU
has excellent performance in handling complex, fluctuating non-smooth, and nonlinear
data with excellent performance. Due to the design of the gating mechanism, the GRU
model can extract and retain important “key information” in high-frequency components
with better capture of long-term dependence in sequence data. The GRU network structure
is illustrated in Figure 4.
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The formulas for its status and output are as follows:

rt = σ(Wr · [ht−1, xt]) (10)

zt = σ(Wz · [ht−1, xt]) (11)
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h′t = tanh(Wh′ · [rt ∗ ht−1, xt]) (12)

ht = (1 − zt) ∗ ht−1 + zt ∗ h′t (13)

where xt is the input value at the current moment; zt is the value of the update gate at the
current moment; rt is the value of the reset gate at the current moment; ht and ht−1 are the
state of the implicit layer at the current moment and the previous moment, respectively; h′t
is the activation state of the implicit layer at the current moment; Wr, Wz and Wh′ are the
weight matrices; σ and tanh are the activation functions.

3.2.4. Multiscale Prediction Modeling

From Figure 3d, as the number of cycles increases, health features show a tendency to
decline like capacity, posing a challenge to the model training process. This paper proposes
a multiscale prediction model to solve the problem. First, EEMD is utilized to break down
the health feature sequence into its high and low frequency components, which have
simpler fluctuation patterns and significant frequency characteristics. Then, high frequency
and low frequency components are predicted using GRU and MLR models, respectively.
Finally, the prediction results from both models are merged to generate a new dataset of
health features. The flowchart is shown in Figure 5.
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3.3. Overall Prediction Framework

SOH and RUL serve as crucial indicators for assessing the degree of battery aging, but
they are based on different principles and application scopes. Considering the relationship
and difference between SOH and RUL, this paper suggests a coupling framework for
evaluating and predicting both SOH and RUL in an integrated manner.

The framework of the estimation method is illustrated in Figure 6. Among them,
the blue area represents the data processing process, the green area represents the SOH
estimation process, and the yellow area indicates the RUL prediction process. Specific steps
are as follows: Initially, charging voltage data for lithium-ion batteries is collected, and
EVDCT, IC Peak, and PD Peak are extracted from them as health features. These features
are then used as inputs and SOH as outputs to develop a battery aging model using ridge
regression. Meanwhile, the multiscale prediction model is employed to forecast the health
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features of future cycles. Finally, the results are combined with the ridge regression model
to make a multistep SOH prediction and achieve RUL prediction.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 18 
 

The framework of the estimation method is illustrated in Figure 6. Among them, the 
blue area represents the data processing process, the green area represents the SOH esti-
mation process, and the yellow area indicates the RUL prediction process. Specific steps 
are as follows: Initially, charging voltage data for lithium-ion batteries is collected, and 
EVDCT, IC Peak, and PD Peak are extracted from them as health features. These features 
are then used as inputs and SOH as outputs to develop a battery aging model using ridge 
regression. Meanwhile, the multiscale prediction model is employed to forecast the health 
features of future cycles. Finally, the results are combined with the ridge regression model 
to make a multistep SOH prediction and achieve RUL prediction. 

 
Figure 6. Flowchart of SOH and RUL estimation. 

4. Results and Discussion 
4.1. Evaluation Metrics 

Prediction results are evaluated using mean absolute error (MAE), root mean square 
error (RMSE), and absolute error (AE). The following formulas are presented: 

𝑀𝐴𝐸 = 1𝑛 |𝑥(𝑖) − 𝑥(𝑖)| (14)

𝑅𝑀𝑆𝐸 = 1𝑛 𝑥(𝑖) − 𝑥(𝑖)  (15)

𝐴𝐸 = 𝑇 − 𝑇  (16)

where 𝑛 is the number of predicted cycles, 𝑥(𝑖) is the real value, 𝑥(𝑖) is the predicted 
value, 𝑇  is the number of cycles at the end of battery life in the actual case, and 𝑇  
is the predicted value of RUL. 

4.2. SOH Estimation Results 

Figure 6. Flowchart of SOH and RUL estimation.

4. Results and Discussion
4.1. Evaluation Metrics

Prediction results are evaluated using mean absolute error (MAE), root mean square
error (RMSE), and absolute error (AE). The following formulas are presented:

MAE =
1
n

n

∑
i=1

|x(i)− x̂(i)| (14)

RMSE =

√
1
n

n

∑
i=1

(x(i)− x̂(i))2 (15)

AE =
∣∣TRUL − T̂RUL

∣∣ (16)

where n is the number of predicted cycles, x(i) is the real value, x̂(i) is the predicted value,
TRUL is the number of cycles at the end of battery life in the actual case, and T̂RUL is the
predicted value of RUL.

4.2. SOH Estimation Results

Divide experimental data into training and test sets, and the ridge regression model is
constructed by the training set, while its performance is assessed by the test set. Specifically,
the first 100 cycle data from B0005 and B0006 of NASA battery datasets are used as training
sets, and subsequent cycle data are used as test sets. Similarly, the first 50 cycles of Cell1
and Cell2 in the Oxford battery dataset are chosen as training sets, followed using the
remaining cycle data as test sets. Throughout each prediction process, three selected health
features are selected from the charging voltage curve and utilized as inputs for the ridge
regression model, with SOH estimates as outputs.
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To confirm the superiority of the ridge regression model, a comparative experiment
was conducted with SVR and LSE. Specific descriptions of the three forecasting methods
are illustrated in Table 3.

Table 3. Methods statement.

Prediction Methods Describe Advantages Disadvantages

SVR Support Vector Regression Strong generalization ability Complex parameter tuning
LSE Least Squares Estimation Simplicity and Efficiency Sensitive to outliers

Our method Ridge Regression Handles multicollinearity well Regularization selection

Figure 7 displays the SOH prediction results for three methods using various batteries,
and a comparison of their estimation errors is shown in Table 4.
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Table 4. MAE and RMSE of comparison for different model predictions.

Battery Methods MAE RMSE

B0005
SVR 0.0339 0.0411
LSE 0.0177 0.0186

Our Method 0.0042 0.0051

B0006
SVR 0.0628 0.0770
LSE 0.0521 0.0597

Our Method 0.0188 0.0193

Cell1
SVR 0.0236 0.0246
LSE 0.0142 0.0155

Our Method 0.0022 0.0027

Cell2
SVR 0.0226 0.0235
LSE 0.0143 0.0153

Our Method 0.0036 0.0045

Our method shows superior performance in predicting battery SOH, as shown in
Figure 7. Its prediction curve closely tracks the real SOH degradation curve, accurately
capturing the trend of battery capacity decline. Moreover, Our method effectively adapts
to the deterioration process of the battery and its capacity regeneration phenomenon.
Compared with the SVR and LSE methods, Our method exhibits a notable enhancement
in predictive precision. Most of its predicted SOH values closely match the real values,
making it well suited for predicting the real SOH trend. However, a careful comparison can
be found in Figure 7c,d, where the simulated results are slightly different from the actual
results and appear to jump up and down. This may be due to errors in data collection
or processing resulting in bias in the input data used for model training. Therefore, the
datasets used for training and testing need to be further reviewed to minimize noise
disturbances and outliers and to ensure data accuracy.

Table 4 shows the MAE and RMSE calculation results, and Our method prediction
error results on the four battery datasets show extremely low values, which remain below
0.02. Moreover, under the same conditions, Our method exhibits the smallest prediction
error. Especially for Cell1 and Cell2, the MAE and RMSE are maintained within 0.004 and
0.005. This shows that the ridge regression model proposed in this paper not only adapts
effectively to different datasets but also exhibits superior prediction accuracy.

Among them, the estimation errors of both Cell1 and Cell2 are relatively small, because
there is no obvious fluctuation during battery decline and the overall degradation trend is
relatively smooth. Therefore, all three prediction methods effectively capture the real SOH
curve trends for Cell1 and Cell2 batteries. However, for battery B0006, the degradation
trend is more drastic, and fluctuations up and down are more obvious. Within 60 cycles,
the SOH of this battery decreased by about 15% and significant capacity regeneration
occurred, resulting in a large error in the prediction effect for battery B0006. However, Our
method outperforms the other two methods in predicting the real degradation trend with
the smallest error, and this also reflects the applicability of Our method in dealing with
battery data with drastic and fluctuating degradation trends.

4.3. RUL Prediction Results

RUL prediction is based on the predicted starting point set in the SOH estimation.
The left side of Figure 8 shows the real value and estimated value. The real value of RUL
is obtained by calculating the cycles needed to reach EOL from the current cycle count.
The red circle on the right side of Figure 8 shows the absolute error between the real and
estimated values. From Figure 8, the estimated and real values of all four batteries closely
match, with a maximum AE of only 2. This observation shows the high accuracy and
adaptability of the proposed RUL prediction method.
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Notably, the prediction accuracy of health features improves with more cycles, result-
ing in a decrease in the corresponding RUL estimation error. The overall errors are small
in this paper, mainly because the multiscale prediction model can decompose time series
signals into components at different frequencies and use the appropriate prediction model
for targeted prediction. This method can effectively capture the feature details of the data
and can well predict the trend of health features, thus greatly improving the precision and
robustness of the RUL prediction method.

Table 5 shows the MAE and RMSE calculation results. Wherein the battery B0005
starts from cycle 101 until it reaches EOL, and the multistep SOH prediction is performed
for 25 cycles to obtain the RUL prediction results, with a prediction error of 0.3600 for MAE
and 0.6000 for RMSE. Compared to the B0005 battery, the error metrics of the other three
batteries are slightly larger, which is mainly due to the poor results caused by the smaller
amount of data. However, the MAE of all batteries is below 0.8 and the highest RMSE value
is 1.1094, suggesting that the RUL prediction method proposed in this paper can achieve
reliable estimation despite the limited data available.

Table 5. Results of RUL prediction error.

Evaluation Metrics B0005 B0006 Cell1 Cell2

MAE 0.3600 0.7778 0.7692 0.7143
RMSE 0.6000 1.1055 1.1094 1.0000

4.4. Results of the Joint SOH and RUL Evaluation

Both SOH and RUL can be used to evaluate the aging state of a battery. However,
SOH is evaluated based on the current battery capacity state, while RUL is evaluated based
on the number of cycles remaining in the battery. During battery use, the presence of
capacity regeneration may cause the battery to have the same SOH in different cycling
cycles. However, this does not mean that the battery has recovered to the previous degree
of aging at the corresponding SOH, and therefore further judgment is required. Given the
more obvious phenomenon of capacity regeneration in B0005, two points with the same
SOH but different RUL in B0005 were selected for comparative analysis.

As shown in Table 6, the remaining usable capacity of the B0005 battery is comparable
between cycles 111 and 121, but the RUL of the two differ by 10 cycles. This indicates that
although SOH can reflect the current capacity state of the battery, the degree of battery aging
cannot be comprehensively and accurately assessed by SOH alone. The joint estimation
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method proposed in this paper can simultaneously predict the SOH and RUL of the battery
at the current moment, and the prediction results are both well-fitted to the real values with
high prediction accuracy and reliability. Combining SOH and RUL estimation results helps
to assess battery health more comprehensively and accurately.

Table 6. Results of the joint SOH and RUL evaluation.

Current Number
of Cycles

Real Capacity
(Ah)

Estimated
Capacity (Ah)

Estimation
Error (Ah) Real RUL Prediction of

RUL
Prediction

Error

111 1.4387 1.4382 0.0005 14 14 0
121 1.4383 1.4336 0.0047 4 4 0

5. Conclusions

This paper proposes a method that utilizes charging feature extraction and ridge
regression to estimate SOH and predict RUL of lithium-ion batteries. By extracting three
sets of health features that can reflect battery degradation from the charging voltage curve.
These health features are used as input and SOH as output, leading to the development of a
battery aging model based on ridge regression. On this basis, a multiscale prediction model
is designed to predict the changing trend of health features. The results of the multiscale
prediction model are integrated with the battery aging model to estimate SOH through
multiple steps, thus achieving an accurate prediction of RUL. The accuracy and reliability
of the proposed method are confirmed using two battery datasets under varied operating
conditions to validate its performance. Experimental results show that the prediction
curves can approximate reality closely, the MAE and RMSE calculations of SOH remain
below 0.02, and the maximum AE of RUL is no more than two cycles. By combining the
SOH and RUL estimation results, a comprehensive and accurate prediction of battery aging
can be obtained. Therefore, the proposed SOH and RUL prediction methods offer high
accuracy and adaptability, serving as valuable references for SOH and RUL prediction of
existing lithium-ion batteries.

However, the method has not yet been validated in other more complex working
conditions, such as the impact of temperature factors on battery aging. Battery temperature
changes can reduce the reliability of battery SOC estimation and can even pose a risk of
thermal runaway; accurate battery SOC estimation in temperature–varying environments
can avoid battery thermal runaway [39]. This may result in the inability to provide a more
comprehensive reflection of the battery state. Therefore, in future work, the method needs
to be further optimized to consider the temperature factor and perform joint estimation to
adapt to more complex operating environments.
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