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Abstract: As graph models become increasingly prevalent in the processing of scientific data, the
exploration of effective methods for the mining of meaningful patterns from large-scale graphs has
garnered significant research attention. This paper delves into the complexity of frequent subgraph
mining and proposes a frequent subgraph mining (FSM) algorithm. This FSM algorithm is developed
within a distributed graph iterative system, designed for the Big Cloud (BC) environment of the China
Mobile Corp., and is based on the bulk synchronous parallel (BSP) model, named FSM-BC-BSP. Its
aim is to address the challenge of mining frequent subgraphs within a single, large graph. This study
advocates for the incorporation of a message sending and receiving mechanism to facilitate data
sharing across various stages of the frequent subgraph mining algorithm. Additionally, it suggests
employing a standard coded subgraph and sending it to the same node for global support calculation
on the large graph. The adoption of the rightmost path expansion strategy in generating candidate
subgraphs helps to mitigate the occurrence of redundant subgraphs. The use of standard coding en-
sures the unique identification of subgraphs, thus eliminating the need for isomorphism calculations.
Support calculation is executed using the Minimum Image (MNI) measurement method, aligning
with the downward closure attribute. The experimental results demonstrate the robust performance
of the FSM-BC-BSP algorithm across diverse input datasets and parameter configurations. Notably,
the algorithm exhibits exceptional efficacy, particularly in scenarios with low support requirements,
showcasing its superior performance under such conditions.

Keywords: BC-BSP; frequent subgraph; graph division; parallel algorithm

1. Introduction

In recent years, the pervasive influence of “big data”, propelled by the advancement
of information technology, has permeated diverse fields, including but not limited to data
mining [1–3], computer biology [4], environmental science [5], e-commerce [6], and social
network analysis [7]. Within these domains, the analysis and extraction of concealed
information from extensive datasets have become standard practices, often approached
from innovative perspectives [8–10]. As a general data structure, the graph has found
widespread application across the aforementioned fields. Simultaneously, the quest to
design efficient graph mining algorithms and extract valuable subgraph patterns from
graph data has become a focal point of extensive attention and research.

The challenges associated with frequent subgraph mining in this paper primarily
revolve around two key aspects [11,12]. Firstly, the algorithm’s complexity [13] poses
a significant hurdle. The algorithm’s complexity is contingent on two pivotal phases:
subgraph isomorphism and candidate pruning. Subgraph isomorphism comparison stands
out as the foremost challenge, whereas the effective implementation of candidate pruning
holds the potential to substantially reduce the computational load in identifying frequent
subgraphs in subsequent stages. Another challenge in frequent subgraph mining stems
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from the escalating volume of data within a single graph, exceeding the memory capacity
of a single machine [14]. Consequently, the adoption of a distributed graph processing
framework becomes imperative for algorithm implementation. Within this implementation
process, the integration of the algorithm into the distributed graph processing framework
becomes a critical consideration in the realm of frequent subgraph mining.

2. Related Work

Frequent subgraph mining can be broadly categorized into two directions: mining
frequent subgraphs within a graph sets and mining frequent subgraphs within a large
graph [15–17]. Noteworthy contributions in this domain include DyFSM [18], which intro-
duces the concept of frequent subgraph mining in dynamic databases, and MaNIACS [19], a
sampling-based randomized algorithm designed to compute high-quality approximations
of subgraph patterns that exhibit frequency within a single, large, vertex-labeled graph.
The focus of this paper lies predominantly in the realm of implementing frequent subgraph
mining algorithms within a large graph.

2.1. Single Frequent Subgraph Mining Algorithm

The frequent subgraph mining algorithms designed for single-machine environments
include SUBDUE [20], VSGRAM [21], gSpan [22], and GRAMI [16]. SUBDUE, an early
representative algorithm, addresses the challenge of mining frequent subgraphs within
a single, large graph. It achieves graph compression by substituting the vertices of the
input graph with frequent patterns. These algorithms employ heuristic search strategies
and approximate processing methods. However, it is important to note that these methods
may not discover all frequent subgraphs, leading to the loss of many frequent patterns
during the mining process. Additionally, their computational load is substantial, mak-
ing it challenging to scale up to large graph pattern mining. The VSGRAM algorithm
introduces a novel pruning strategy designed for processing sparse graphs, but it exhibits
limitations in terms of scalability. gSpan employs a minimal Depth First Search (DFS) code
for subgraph identification, utilizes the rightmost path for path expansion, and effectively
prunes candidate subgraphs. On the other hand, the GRAMI algorithm stands out as the
most proficient single-machine frequent subgraph mining algorithm for a single graph.
It transforms the frequent subgraph mining problem into a constraint satisfaction problem
model, enabling the efficient mining of single graphs with millions of vertices, surpassing
the performance of other single-machine frequent subgraph mining algorithms.

2.2. Distributed Frequent Subgraph Mining Algorithm

Distributed frequent subgraph mining algorithms typically fall into two categories [23,24]:
those based on MapReduce [25] and those utilizing distributed memory frameworks like
Spark [26,27]. Each category presents its own set of advantages and disadvantages. In the
context of MapReduce-based algorithms for frequent subgraph mining, one challenge lies in
the inability to share data between different jobs due to the nature of Hadoop. Consequently,
data sharing between jobs necessitates reading from the Hadoop Distributed File System
(HDFS), leading to frequent I/O access during iterative calculations, which can adversely
impact the algorithm performance. On the other hand, frequent subgraph mining algo-
rithms based on Spark offer advantages in terms of iterative computation. However, these
algorithms may face challenges related to scalability. Notably, FSM-H [28] and MRFSM [29]
represent distributed mining algorithms that leverage the iterative MapReduce, effectively
combining Hadoop and FSM algorithms. T-FSM [30], employing a unique task-based
execution engine design, ensures high concurrency, bounded memory consumption, and
effective load balancing.

2.3. BC-BSP Calculation Model

The single-machine algorithm proves to be inefficient for large-scale graphs, primarily
due to its difficulty in supporting the mining of frequent subgraphs with low support. Ex-
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isting algorithms for the mining of frequent subgraphs from single graphs in a distributed
environment fall short in facilitating subgraph pattern growth. Moreover, the frameworks
that they rely on, such as Hadoop and the MapReduce computing framework, are poorly
suited for the execution of iterative algorithms. MapReduce jobs inherently incur a default
startup overhead. In the context of iterative calculations, the inability of different jobs to
share data through memory necessitates the initiation of at least one job per iteration, assign-
ing a fixed startup overhead, T, to each. Consequently, for tasks requiring n iterations, the
total running time increases by at least n*T, a duration that is untenable for time-intensive
tasks like frequent subgraph mining. This analysis does not even account for the fact that
some tasks cannot be resolved within a single iteration. Additionally, MapReduce lacks the
capability for resident tasks and fails to optimize static data efficiently. The Shuffle phase
and the need to write data to a disk for inter-job data sharing contribute significantly to the
I/O overhead. Furthermore, computational tasks cannot be stored in memory, complicating
the optimization of static data across different iterations. When Hadoop executes a task,
most map and reduce tasks are performed on separate physical nodes. Often, executing
a reduce operation necessitates the retrieval of the results of map tasks from other nodes,
leading to repeated read/write operations to a remote HDFS and, consequently, substantial
disk I/O and network communication overheads. Moreover, the lack of indexing support
in the HDFS exacerbates the challenge of optimizing the data retrieval efficiency. Although
some frequent subgraph mining algorithms have been developed on Spark, limitations in
Spark’s scalability introduce additional bottlenecks in algorithm optimization. To address
these issues, this paper introduces a novel frequent subgraph mining algorithm based on
the BSP model, effectively overcoming the aforementioned challenges.

The frequent subgraph mining algorithm in this paper is implemented on the BC-BSP
system [31]. BC-BSP is an open-source BSP [32] framework that leverages disk-cached data,
exhibits robust fault tolerance, and supports multiple data input sources. The utilization of
BC-BSP contributes to the efficiency and reliability of the frequent subgraph mining process
outlined in this study. Figure 1 illustrates the architecture of BC-BSP. The components
of BC-BSP include BSP JobClient, BSP Controller, WorkerManager, and ZooKeeper. The
system operates based on the BSP Computing Model. In the BSP framework, computation
is divided into a series of phases, each separated by a global synchronization period,
denoted as L. These phases are known as super steps. During a super step, each processor
is tasked with completing specific local computational operations. Additionally, the system
uses a router to facilitate the acceptance and transmission of messages, ensuring that these
messages reach the correct working node for the next phase. Subsequently, the system
conducts a global check to verify that all processors have completed the current super step.
The BSP model promotes a structured and synchronized approach to parallel computing,
significantly improving the coordination and communication among processors. Within a
super step, each process undergoes three principal operations: local computing, process
communication, and barrier synchronization. A super step in the BSP model is constrained
to a maximum duration of L time steps. The transition to the next super step is dependent
on all processes completing the current one and assembling at the barrier. This global
synchronization must be achieved before any process can advance to the next super step,
ensuring continued and coordinated execution.

The primary objective of this paper is to address subgraph isomorphism and candidate
subgraph growth within the context of frequent subgraph mining.

Contributions. The main contributions of this study are outlined as follows.
Firstly, the paper conducts a comprehensive analysis of the shortcomings associated

with frequent subgraph mining algorithms. Subsequently, it proposes the utilization of the
BSP model to implement a frequent subgraph mining algorithm tailored to large graphs.
This choice aims to enhance the efficiency and scalability of the mining process.

Secondly, the paper introduces a novel frequent subgraph mining algorithm grounded
in pattern growth and prior rules. The algorithm is structured into two main stages:
the data preparation stage and the mining stage. The mining stage, in turn, is further
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divided into the candidate subgraph generation stage and the support calculation stage.
This subdivision facilitates the clear delineation of the iterative workflow for each stage,
aligning with the super steps in the BC-BSP framework. By leveraging the information from
the super steps, the algorithm’s different iterative steps can be appropriately calculated in
their corresponding super steps, enhancing the overall efficiency of the mining process.

Figure 1. The architecture of BC-BSP.

Thirdly, the paper proposes a novel BC-BSP message sending and receiving mecha-
nism designed to facilitate data sharing across different stages of the frequent subgraph
mining algorithm. This mechanism enables the realization of global support calculation
on large graphs by sending the same standard coded subgraph to the corresponding node.
This approach enhances the efficiency of communication and coordination within the
BC-BSP framework.

Additionally, the candidate subgraphs are generated through the implementation of
the rightmost path expansion strategy, strategically minimizing the occurrence of redundant
subgraphs. The use of standard coding ensures the unique identification of subgraphs,
obviating the need for extensive isomorphism calculations. This design choice contributes
to the computational efficiency and reduced complexity in the mining process. Furthermore,
the MNI [33] measurement method is employed for support calculation. This method aligns
with the attribute of downward closure, ensuring the accurate and efficient assessment of
support levels in the mining algorithm. The existing literature has defined several anti-
monotonic support calculation methods, such as Minimum Image (MNI), Harmful Overlap
(HO), and the Maximum Independent Set (MIS), among others. The distinction between
these methods lies in the extent of isomorphic graph coverage that they allow. This paper
adopts the MNI measurement method, primarily because MNI is the only metric that can
be effectively calculated, whereas the calculations for HO and MIS are NP-hard problems.
Moreover, MNI offers an effective pruning strategy. The combination of these techniques
enhances the overall performance and reliability of the frequent subgraph mining algorithm
within the BC-BSP framework.
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3. Proposed Method
3.1. Overall Design

This paper introduces an innovative frequent subgraph mining algorithm grounded in
the BC-BSP framework, offering solutions to the previously identified challenges. The fol-
lowing elucidates the overarching concept of this paper based on the BC-BSP frequent
subgraph mining algorithm.

In response to the shortcomings observed in existing frequent subgraph mining algo-
rithms, our approach advocates for the utilization of the BSP model, exemplified by the
BC-BSP framework. The BSP model is chosen for its ability to structure computations into
synchronized super steps, thereby facilitating parallel processing and global synchroniza-
tion. A pivotal contribution of this paper lies in the introduction of a BC-BSP message
sending and receiving mechanism. This mechanism is designed to foster efficient data
sharing across various stages of the frequent subgraph mining algorithm. Notably, it plays
a crucial role in achieving global support calculation on large graphs by dispatching the
same standard coded subgraph to the corresponding nodes. By employing this mechanism,
the paper enhances the communication efficiency and coordination within the BC-BSP
framework. The proposed frequent subgraph mining algorithm incorporates several strate-
gic components to address the challenges associated with large graph data. The generation
of candidate subgraphs employs the rightmost path expansion strategy, effectively miti-
gating redundancy. Furthermore, standard coding is implemented for unique subgraph
identification, eliminating the need for extensive isomorphism calculations and thereby
enhancing the overall computational efficiency. The adoption of the MNI measurement
method for support calculation aligns with the downward closure attribute, ensuring both
accuracy and efficiency in the mining process. The algorithm is structured into distinct
stages, including data preparation and mining, with the mining stage further divided
into candidate subgraph generation and support calculation. This granularity in design
facilitates the clear and efficient mapping of each iterative step of the algorithm to the
corresponding super step within the BC-BSP framework.

In conclusion, this paper articulates a comprehensive approach to frequent subgraph
mining, leveraging the capabilities of the BC-BSP framework. Through thoughtful algo-
rithmic design and the strategic utilization of the BSP model, our proposed methodology
addresses the challenges associated with large graph data, thereby offering improved
performance and scalability in the domain of frequent subgraph mining.

In a general context, common frequent subgraph mining algorithms can be dissected
into three primary phases within the mining workflow.

(1) Candidate Subgraph Generation: The initial step involves the creation of candidate
subgraphs. Candidate subgraphs are generated, transitioning from Fk frequent sub-
graphs to Fk+1 frequent candidate subgraph extensions. This step provides essential
input for subsequent frequent pattern mining. The prevalent strategies for subgraph
extension include depth-first and breadth-first approaches. While centralized algo-
rithms typically favor depth-first extension due to its superiority over breadth-first
extension, distributed algorithms demonstrate increased efficiency when expanding
subgraphs in a breadth-first manner. This paper employs a rightmost path exten-
sion method, which extends the frequent subgraphs from the preceding pattern by
adding an edge to the rightmost path of the graph. This extension strategy facilitates
parallelization and minimizes redundant candidate subgraph generation, thereby
contributing to effective pruning.

(2) Subgraph Isomorphism: The second phase involves subgraph isomorphism, necessi-
tating an assessment of isomorphism following the generation of candidate subgraphs.
Commonly, standard encoding schemes are employed for isomorphism judgment.
This involves generating a sequence of edges according to a prescribed sequence, with
the isomorphic graphs generating the same standard coding sequence to complete
the subgraph isomorphism process. The standard code utilized in this paper is the
minimal DFS code.
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(3) Support Degree Calculation: The final phase revolves around support degree calcula-
tion. Different measures yield varying results for support degrees, contingent upon
the specific practical application scenario. In this paper, the MNI support algorithm is
employed to determine support degrees. The selection of this algorithm is informed
by its practical applicability and effectiveness in the given context.

After a detailed examination of the specific solutions for various facets of frequent
subgraph mining tasks, let us delve into how BC-BSP can be employed to implement each
aspect of the work.

BC-BSP stands as a large-scale graph processing system with disk temporary storage,
grounded in the overarching synchronous parallel computing model. Throughout its
operation, BC-BSP is essentially organized into the following distinct processes.

(1) Data Reading and Partitioning: The initial phase involves reading data and partition-
ing them. Graph data are sourced from an external graph database, and the data are
segmented based on a defined split function. This division is crucial in distributing
the workload efficiently among the compute nodes.

(2) Local Iteration Calculation: In this phase, each compute node undertakes local itera-
tion calculations. Every node processes the segment of the graph data assigned to it,
performing local computations relevant to the frequent subgraph mining algorithm.

(3) Message Sending and Global Synchronization: Subsequently, there is a phase ded-
icated to message sending and global synchronization. The computed results are
transmitted to the specified node, and the system awaits the completion of global
synchronization for the ongoing super step. This synchronization ensures that all
nodes have completed their local computations before progressing to the next stage.

(4) Result Storage: The final step involves saving the computed results to an external stor-
age device, such as a HDFS. This ensures the persistence of the valuable information
gleaned from the frequent subgraph mining algorithm.

In summary, the BC-BSP framework is effectively leveraged across these four key
processes, demonstrating its capability to orchestrate large-scale graph processing and
facilitate the implementation of each facet of the frequent subgraph mining workflow.
The systematic approach of data reading, local computation, message passing, global
synchronization, and result storage contributes to the overall efficiency and reliability of
the frequent subgraph mining algorithm within the BC-BSP framework.

The frequent subgraph mining process can be broadly categorized into two main
phases: the preparatory phase and the mining phase. In the preparatory phase, tasks such
as graph data reading and preprocessing are completed. The mining phase encompasses
candidate subgraph growth, subgraph isomorphism, and support degree calculation. Each
mining stage corresponds to frequent subgraphs of a specific size, building upon the output
of the previous stage. BC-BSP organizes these tasks into super steps, wherein each super
step is dedicated to accomplishing specific work. Communication between different super
steps is facilitated through messages, creating a structured chain of message sending,
reception, and processing to formulate the iterative job. The computational process on each
vertex in BC-BSP is abstracted out and uniformly defined, ensuring consistency in the tasks
performed during each scale mining stage. A practical implementation involves executing
tasks such as generating candidate subgraphs, conducting subgraph isomorphism checks,
and performing support calculations within individual super steps. The intuitive approach
is to allocate specific super steps for designated tasks. For instance, during super step 1,
graph data reading and preprocessing are completed. Subsequent super steps, such as
steps 2 and 3, are dedicated to 1_frequent subgraph mining, steps 4 and 5 to 2_frequent
subgraph mining, and so on, until the desired number of super steps or until no more
frequent subgraphs are generated.

The synergy between frequent subgraph mining and BC-BSP computation is depicted
in Figure 2, highlighting the systematic and structured approach adopted to efficiently
handle each stage of the mining process within the BC-BSP framework.
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Figure 2. Calculation process of subgraph mining-based BC-BSP.

After a meticulous examination of the intricate flow of the frequent subgraph mining
algorithm and the computational workflow of BC-BSP, the integration of the frequent
subgraph mining algorithm with the BC-BSP computation framework is elucidated. The
procedure for the frequent subgraph mining algorithm based on BC-BSP unfolds as follows.

(1) After the user submits the job, the client initiates communication with the HDFS. The
primary objective is to partition the original graph data into logical fragments based
on the specified method of graph data division. The client then adjusts the partitioned
data according to the user-specified number of partitions and the graph data division
approach. Subsequently, the modified data, now structured into logical fragments,
are submitted to the cluster for further processing. This initial phase ensures proper
data organization and distribution, laying the foundation for subsequent parallelized
computation within the cluster.

(2) During the first iteration step, specifically in the phase of generating frequent 1_sub-
graphs, the initial input is the graph in the form of an adjacency list. The process
commences with the reading of this adjacency list, essentially constituting the first job.
The objective at this stage is to obtain the 1_subgraphs with specified encoding. Sub-
sequently, identical specification encodings are aggregated together, seeking the count
to identify frequent occurrences. The results are then recorded. The key information
for the frequent edge consists of the vertex ID, while the associated value includes both
edge information and specification encoding. Essentially, this step involves acquiring
frequent 1_subgraphs, marking the completion of the first iteration. Alternatively, the
process of generating frequent 1_subgraphs can be divided into two super steps. The
rationale for this division is that calculating the frequency by seeking an edge graph
might be relatively inefficient in a single super step. In the first super step, an edge
graph with specified encoding is obtained. Following this, the specification encoding is
hashed, resulting in a hash value representing a vertex ID number. Subsequently, the
specification encoding and the information about an edge graph are packaged into a
message for transmission. In the next super step, the system receives the message and
performs a statistical count of the occurrences of the edge graph. This division enhances
the efficiency by optimizing the calculation of the edge graph frequency, leading to an
effective and streamlined process in generating frequent 1_subgraphs.

(3) In the second iteration, during the stage of generating candidate subgraphs, the focus
is on creating candidate frequent 2_subgraphs. Each vertex corresponds to a set of
key–value pairs obtained from the previous stage, with the vertex ID serving as the
key. The goal is to obtain the specification encoding of the candidate 2_subgraphs.
Following this, hash encoding is applied based on the specification encoding, and the
count of vertices is determined. This information is then transmitted via a message. To
iteratively generate candidate frequent multi-subgraphs, it is crucial to address scenar-
ios where each vertex may handle multiple different keys. To manage this complexity,
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partitioning is done based on the key. Utilizing the hash, vertices with the same key
are grouped together, and the value within each group undergoes an extension of
graph information. By extending the k_subgraphs, candidate (k + 1)_subgraphs are
derived. To obtain the specification encoding of the candidate (k + 1)_subgraphs,
hashing is again performed according to the specification encoding. The remainder of
the vertex is identified, and this information is sent as part of the message. This itera-
tive process ensures the systematic generation of candidate frequent multi-subgraphs,
effectively building upon the results of the previous stages.

(4) In the third iteration, the focus shifts to frequent counting, culminating in the identi-
fication of frequent subgraphs. When a vertex receives messages from the previous
super step, these messages contain the same specification encoding intended for that
vertex. However, due to potential hash conflicts, a vertex may receive messages with
multiple different specification encodings. Consequently, each vertex must process
these received messages by regrouping them based on the differences in the speci-
fication encoding. To address this, messages can be regrouped through rehashing,
and, subsequently, frequent counting is performed within each group. This entails
applying the MNI support calculation method for frequent counting. If the frequency
counts surpass a predefined threshold, the pertinent information is stored in the HDFS.
Following the frequent counting phase, hash coding is applied to the specifications of
the identified frequent subgraphs. The resulting hash values correspond to the IDs
of specific vertices, and this information is transmitted through messages. This itera-
tive process ensures the systematic identification and storage of frequent subgraphs
meeting the specified support threshold.

The iterative process involves 2n super steps, aligning with the second iterative step
for the generation of candidate subgraphs. The subsequent 2n + 1 super step process aligns
with the third iterative step, involving the calculation of support for candidate subgraphs.
This iterative cycle continues until the specified number of iterations is reached or no more
frequent subgraphs are generated. The systematic and consistent execution of these super
steps ensures the effective generation and evaluation of candidate subgraphs, leading to the
identification and storage of frequent subgraphs that meet the specified support threshold.
This iterative approach allows for flexible and scalable adaptation to different graph mining
scenarios and ensures the comprehensive exploration of the graph data.

3.2. Detailed Design

After a comprehensive analysis of the algorithm’s overall flow, the detailed design
of the algorithm is presented below. The distributed frequent subgraph mining algo-
rithm, FSM-BC-BSP, based on BC-BSP, is primarily divided into four major phases: data
preparation, local computing, messaging, and synchronization.

The data preparation phase involves reading the graph database, data division, obtain-
ing edge frequent subgraphs, and generating static data. The local calculation phase focuses
on generating candidate subgraphs and performing isomorphism judgment. The messag-
ing phase facilitates data sharing. In addition to fulfilling the super step synchronization
tasks mandated by the BC-BSP architecture, the synchronization phase is primarily ded-
icated to frequent counting, support calculation, and tasks related to writing frequent
subgraphs to the HDFS.

The different stages are interconnected through the BC-BSP system’s super step mech-
anism until frequent subgraphs are no longer generated or until the predefined number of
super steps is reached.

Subsequently, this paper will elucidate the specific implementation details of each stage.

3.2.1. Data Division

During the data preparation phase, FSM-BC-BSP employs a strategy to divide the
graph data G into multiple partitions. A more intuitive partitioning strategy involves seg-
menting the large graph into different partitions based on the number of edges. This strat-
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egy is particularly effective on datasets where most vertices have a greater number of
edges. However, it is important to note that such a partitioning strategy might face chal-
lenges with datasets exhibiting extremely unevenly distributed edges. In cases where the
edges are distributed unevenly, this strategy could result in an unbalanced load distribu-
tion, potentially leading to nodes experiencing an overflow or saturation due to excessive
computational loads.

In the context of the FSM-BC-BSP algorithm, the number of partitions is a crucial
parameter. Experimental evaluations are conducted to assess the algorithm’s performance
under different numbers of partitions. The objective is to strike a balance between load
balancing and efficient parallel processing, considering the characteristics of the specific
dataset being analyzed. Experimentation with varying numbers of partitions allows for an
empirical understanding of how the algorithm performs under different configurations,
guiding the selection of an optimal number of partitions for a given dataset.

3.2.2. Obtaining Edge Frequent Subgraphs

In the data preparation phase, which corresponds to the frequent 1_subgraph mining
stage, the algorithm takes the following steps.

(1) Infrequent Edge Removal: While scanning the entire graph database, infrequent edges
are removed, retaining only the frequent subgraphs.

(2) Vertex Renumbering: After removing infrequent edges, the vertices on the entire
large graph are renumbered. It is essential to ensure that vertices and edges maintain
consistent labeling.

(3) Initialization for Frequent 1_Subgraph Mining: BC-BSP determines the current num-
ber of super steps. When it is identified as super step 0, the process for frequent
1_subgraph mining is initiated.

(4) Static Data Generation: The static data needed for each iteration are generated after
the 0th iteration. Specifically, an Edge Extend Map (EEM) is created. The EEM stores
information about which vertices each vertex can extend to during the mining process.

(5) Message Transmission: During message transmission between super steps, in addition
to the graph information of the current mode, the EEM needs to be sent. This facilitates
efficient communication and information sharing between different super steps.

(6) Support Calculation Optimization: In the first super step, when receiving the message
sent by the 0th super step, support calculation is optimized. Since non-frequent edges
have been removed while reading the graph data, support calculation is no longer
necessary. Instead, the algorithm focuses on expanding the current edge based on the
data structure of the EEM.

As depicted in Figure 3, the algorithm, after reading the adjacency list of the original
graph, performs the 0th iteration to generate an edge code and the EEM data structure. The
unique minimal DFS code for each graph serves as the key during message sending. Sub-
graphs with the same specification encoding are sent to the same node along with the EEM
data structure for all vertices included in the message. This structured approach ensures
efficient processing and communication throughout the frequent subgraph mining process.

Figure 3. Example of data preparation.
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3.2.3. Local Computing

The local computing phase of FSM-BC-BSP is responsible for generating candidate
subgraphs and performing subgraph isomorphism tests. Candidate subgraphs are gener-
ated using the rightmost path extension strategy, and subgraph isomorphism is achieved
through specification encoding.

For a given frequent pattern of size k, a candidate pattern of size k + 1 is obtained by
adding a frequent edge belonging to the EEM during the candidate subgraph generation stage.

If a frequent edge introduces a new vertex, we say that this frequent edge is the outer
edge; otherwise, for the inner edge, the latter simply connects the existing vertices in the
frequent pattern. The newly added vertex in the outer edge is given an ID, which is the
largest of the already existing vertices in the frequent pattern; the size of the vertex IDs
represents the order in which they were added as they were expanded outside. In the
topological structure of graph mining, the candidate pattern is called the frequent edge
sub-node and the frequent edge is called the parent node of the candidate pattern. Based
on this parent–child relationship, a candidate subgraph spanning tree can be constructed
during the mining job. It should be noted that if the candidate pattern has k + 1 edges,
the candidate pattern will have multiple paths in the candidate subgraph spanning tree
according to the order of edges added. However, in FSM-BC-BSP, it is stated that only one
build path will be considered valid and no other redundant candidate patterns will be
generated. With such a constraint, it is guaranteed that such a candidate subgraph spanning
tree is unique to an FSM-BC-BSP task. In this paper, the rightmost path generation strategy
is used. In short, the rightmost path is the shortest path from the vertex with the smallest
ID to the vertex with the largest ID, and the graph is extended on such a path.

In the process of building candidate subgraphs, multiple generation paths may
produce the same candidate subgraph, necessitating subgraph isomorphism detection.
FSM-BC-BSP uses the minimal DFS code specification encoding method. The same mini-
mal DFS code within the same structure facilitates pruning and supports the calculation of
candidate subgraphs on different vertices.

An example of the principle of the minimal DFS code is shown in Figure 4. The DFS
of Figure 4a, depending on the order of the access vertices, may lead to different depth-first
search trees, i.e., a graph may correspond to multiple depth-first search trees, Figure 4b–d
are the depth-first search trees of Figure 4a. Converting each subscripted graph into an
edge sequence leads to DFS encoding.

Figure 4. An example of DFS trees. (a) Original image; (b–d) Different depth-first search trees of (a).

DFS encoding establishes two types of order; in order to select the smallest encoding
DFS encoding as the standard encoding, one is the order of the edge, which is also the access
sequence, as shown in Figure 4b. For the forward edge order (0,1) (1,2) (1,3), backward
edge order (2,0), one is the sequence order.

Table 1 presents the DFS encoding corresponding to the DFS tree in Figure 4.
For the edge sequences, we establish two edge sequences e1 = (i1 , j1) and e2 = (i2 , j2).

If one of the following four conditions is true, then e1 ≺ e2.

1. If both are forward edges, then (j1 < j2) or (i1 < i2 and j1 = j2);
2. If both are backward edges, then (i1 < i2) or (i1 = i2 and j1 < j2);
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3. If e1 is the backward edge, and e2 is the forward edge, then i1 < i2;
4. If e1 is the forward edge, and e2 is the backward edge, then j1 ≤ j2;

For the sequence order, it is necessary to define the order of different sequences in
different DFS codes. Each DFS sequence is represented by a quintuplet (i, j, li, l(i,j), lj), as
shown in Table 1, where i and j are the edge order and li and lj are the vertex labels; l(i,j)
is the connecting edge between them. The DFS dictionary sequence is defined as follows:
the edge order has the first priority, the vertex li has the second priority, the edge label l(i,j)
has the third priority, and lj has the fourth priority, i.e., two DFS sequence sizes need to be
compared according to the order of priority. For example, for the D1 and D2 sequences in
Table 1, we take the compared first-priority order and find that the two edges are the same;
then, we compare the vertex order (assuming that the label comparison is based on the
natural order of the letters). We see that X < Y, so (0, 1, X, a, X) < (0, 1, Y, b, X) is obtained.
Based on the above rules, D0 < D1 < D2, the smallest of all DFS encodings for a given
graph is the minimal DFS code.

Table 1. DFS codes.

D0 (Figure 4b) D1 (Figure 4c) D2 (Figure 4d)

(0, 1, X, a, X) (0, 1, X, a, X) (0, 1, Y, b, X)
(1, 2, X, a, Z) (1, 2, X, b, Y) (1, 2, X, a, X)
(2, 0, Z, b, X) (1, 3, X, a, Z) (2, 3, X, b, Z)
(1, 3, X, b, Y) (3, 0, Z, b, X) (3, 1, Z, a, X)

3.2.4. Messaging and Synchronization

Before entering the synchronization phase, there are links for message sending and
message receiving. The serialization and deserialization processes facilitate data sharing
across different phases of the algorithm, although these processes are not reiterated.

The synchronization phase is responsible for counting the isomorphic graphs within a
single graph. As previously mentioned, this paper utilizes the MNI support measure method.

4. Experiments
4.1. Experimental Environment

This section details the experimental environment, employing a 48-node cluster server
system. During the actual experiments, 28 nodes were utilized, including 1 master node and
27 slave nodes.

4.2. Experimental Data

The experiment utilizes four real datasets, As.txt, credit1, credit2, and DBLP, detailed
in Table 2.

Table 2. The description of the datasets.

Dataset Vertex Edges Vertices_Label Number Edge_Label Number

As.txt 6474 12,572 62 61
DBLP 151,574 191,840 7 17

Credit1 14,700 14,000 59 20
Credit2 6300 98,576 59 51

4.3. Experimental Results Analysis
4.3.1. FSM-BC-BSP Algorithm Results

This section provides an in-depth analysis of the FSM-BC-BSP algorithm’s performance
under various input datasets and parameter configurations. The examined parameters
primarily include minimum support, the number of steps in the super step, and the count
of initial divisions. To gauge the impact of each parameter on the algorithm’s performance,
specific adjustments are made to one parameter at a time, keeping others constant. To ensure
fairness, the output of the algorithm is consistently cleared from the HDFS with each run,
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while maintaining consistent hardware conditions to eliminate additional factors affecting
the performance.

(1) Different Datasets and Varied Minimum Support Corresponding to Subgraph Counts

Employing the FSM-BC-BSP algorithm on the credit1, credit2, and DBLP datasets,
frequent subgraphs are mined under varying minimum support levels. The subgraph
counts are then tabulated based on different support degrees. With an initial division count
of nine and a super step count of four, the results indicate that, as expected, the number of
subgraphs decreases exponentially with an increasing support degree. This trend aligns
with common expectations. Notably, for the DBLP dataset, no corresponding frequent
subgraph is identified when the support exceeds 16, a characteristic specific to the DBLP
dataset. The statistical results are shown in Table 3.

Table 3. The number of frequent subgraphs with different support under different datasets.

Min_Sup n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 128

Credit1 9166 1945 1493 1045 599 253 88
Credit2 2529 2250 1920 1522 1085 668 324
DBLP 243,473 114,099 63,245 853 0 0 0

(2) Different Datasets, Varied Minimum Support, and Algorithm Runtime

Applying the FSM-BC-BSP algorithm to the credit1, credit2, As, and DBLP datasets
with varying support degrees, the runtime of the algorithm is statistically measured. With
an initial fragment count of nine and a super step count of four, the algorithm demonstrates
the efficient mining of frequent subgraphs across different support levels. Notably, the
runtime is prolonged when the support is very small under the DBLP dataset. This
extended runtime can be attributed to the uneven distribution of neighboring edges in
DBLP vertices, following a power-law distribution. Such disparities lead to a large number
of some frequent subgraphs and the minimal occurrence of others, resulting in inefficient
resource utilization and an increased operating time, as depicted in Figure 5. The figure
shows the trend of the algorithm based on the three datasets of credit1, credit2, and As.txt
as the support running time changes. The running results based on DBLP are too different
from the other three and cannot be displayed in the same graph.

Figure 5. The times of frequent subgraphs with different support under different datasets.

(3) Different Datasets, Varied Initial Fragments, and Algorithm Runtime

Examining the credit1, credit2, and AS datasets under the FSM-BC-BSP algorithm with
a consistent support level of four and a super step count of five, the algorithm’s runtime
is evaluated under different initial fragment counts. The results indicate a trend of initial
downward and subsequent upward runtime variations with changes in the number of
partitions. This behavior is attributed to the reduced parallelism when fewer partitions are
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employed, resulting in an increased runtime. Conversely, when the fragment count exceeds
a certain threshold, the benefits of parallelism are offset by network communication and
load balancing issues, leading to an increased runtime, as shown in Figure 6.

Figure 6. The times of frequent subgraphs with different partitions under different datasets.

(4) Same Dataset, Varied Initial Fragments, and Minimum Support Impacting Algorithm
Runtime

Utilizing the credit1 dataset and aligning the initial fragment counts with the min-
imum support levels, the impact of these two parameters on the algorithm is explored.
As illustrated in Figure 7, the FSM-BC-BSP algorithm achieves optimal performance with
an initial fragment count of 10 and a support count of 60.

These comprehensive analyses provide valuable insights into the FSM-BC-BSP al-
gorithm’s behavior under diverse conditions, allowing for informed parameter tuning
and optimization.

Figure 7. The times of frequent subgraphs with different partitions and different support

4.3.2. FSM-BC-BSP Algorithm Performance Evaluation

This section evaluates the performance of the FSM-BC-BSP algorithm through a
comparative analysis with two other frequent subgraph mining algorithms, namely FSM-H
based on MapReduce and GRAMI based on a single machine.

(1) Different Datasets’ Comparison at the Same Support Level

The initial part of the test involves comparing the runtime performance of FSM-BC-
BSP, FSM-H, and GRAMI across different datasets, while maintaining the same support
level of 4. Datasets such as As.txt, credit1, credit2, and DBLP are used. The results con-
sistently indicate that the FSM-BC-BSP algorithm outperforms FSM-H and GRAMI on
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all datasets. Figure 8 provides a visual representation of the runtime comparison on the
diverse datasets.

Figure 8. The times of frequent subgraphs with the same support under different datasets.

(2) Support-Dependent Performance within the Same Dataset

The second part of the test focuses on the runtime performance of FSM-BC-BSP, FSM-H,
and GRAMI under varying support levels, utilizing the As.txt dataset with 6474 vertices.
Figure 9 illustrates that, when the support is relatively large, the performance of the three
algorithms is comparable. However, as the support increases, the FSM-BC-BSP algorithm
demonstrates superior efficiency compared to FSM-H and GRAMI. Specifically, when the
support level is 2, FSM-BC-BSP exhibits over eight times better performance than FSM-H
and an impressive 1000 times improvement over GRAMI. The figure emphasizes the robust
performance and stability of the proposed FSM-BC-BSP algorithm.

Figure 9. The times of frequent subgraphs with the same support under different datasets.

These comparative analyses provide compelling evidence of the superior perfor-
mance of FSM-BC-BSP, especially when confronted with datasets of varying characteristics
and support levels. The results underscore the efficiency, scalability, and stability of the
FSM-BC-BSP algorithm in comparison to its counterparts, FSM-H and GRAMI.

5. Conclusions and Future Work

In recent years, the increased use of graph models to abstract scientific data has led
to a surge in research on the mining of interesting patterns from large-scale graph data.
Existing research primarily focuses on graph sets and single large graphs. However, the
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current algorithms for the mining of frequent subgraphs based on single large graphs face
challenges such as high complexity and poor scalability. Moreover, they struggle to handle
the mining of frequent subgraphs on a large single graph.

Against this backdrop, this paper delves into the mining of frequent subgraphs on
large graphs and introduces the FSM-BC-BSP algorithm to address the challenges associated
with single-graph frequent subgraph mining. The algorithm utilizes the BC-BSP message-
sending and message-receiving mechanism for data sharing across different stages of
the frequent subgraph mining process. It employs standard subgraph coding, ensuring
that identical subgraphs are sent to the same node for global support calculation on the
large graph. Additionally, FSM-BC-BSP leverages the rightmost path expansion strategy
to generate candidate subgraphs, minimizing redundancy. The use of standard coding
helps to uniquely identify subgraphs, eliminating the need for subgraph isomorphism
calculations. Furthermore, the algorithm adopts the MNI measurement method for support
calculation, adhering to the downward closure attribute.

Performance testing of the FSM-BC-BSP algorithm across various datasets, initial parti-
tion counts, and support levels yielded promising results. In comparison to the FSM-H and
GRAMI algorithms, FSM-BC-BSP demonstrated superior performance. Particularly in sce-
narios with low support, FSM-BC-BSP showcased outstanding efficiency. The FSM-BC-BSP
algorithm represents a valuable contribution to the field of frequent subgraph mining,
offering an effective solution for large single-graph scenarios. The proposed algorithm’s
scalability, efficiency, and ability to handle low-support situations make it a noteworthy
advancement in the realm of graph data mining.

Certainly, this algorithm has inherent limitations—notably, the process of data trans-
mission involves redundant static data that are required at each iteration step and remain
unchanged. The algorithm proposed in this paper operates under the assumption that the
input graph data are static. However, in practical applications, graph data often undergo
frequent changes. For instance, within the DBLP user relationship graph, should a new
author publish a paper, the graph structure would consequently experience some degree
of alteration. This observation underscores the necessity for future research to focus on
mining frequent subgraphs within dynamically changing graphs. Moreover, when it comes
to accessing static data, the current algorithm can only sequentially match the static data
stored on the hard disk. Indeed, as each frequent subgraph expands, the requisite static
data are directly related to the current vertex data. Therefore, forthcoming research efforts
should aim to establish a static data access model, designed to optimize the retrieval of
such static data.
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