
Citation: Wang, X.; Gao, J.; Wang, Y.;

Bai, J.; Zhao, Z.; Luo, C. Finite

Element Analysis for Linear

Viscoelastic Materials Considering

Time-Dependent Poisson’s Ratio:

Variable Stiffness Method. Appl. Sci.

2024, 14, 3189. https://doi.org/

10.3390/app14083189

Academic Editor: Stefano Invernizzi

Received: 5 March 2024

Revised: 28 March 2024

Accepted: 8 April 2024

Published: 10 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Finite Element Analysis for Linear Viscoelastic Materials
Considering Time-Dependent Poisson’s Ratio: Variable
Stiffness Method
Xueren Wang 1, Jie Gao 2, Yanchao Wang 1,*, Jianfang Bai 3, Zhipeng Zhao 1 and Chao Luo 3

1 Zhijian Laboratory, Rocket Force University of Engineering, Xi’an 710038, China
2 National Key Laboratory of Solid Rocket Propulsion, The 41st Institute of the Fourth Academy of CASC,

Xi’an 710072, China
3 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
* Correspondence: wang_yanchao2020@163.com

Abstract: For linear viscoelastic materials, this paper proposes a finite element analysis method based
on an integral constitutive relationship that can simultaneously consider the relaxation behavior of
the elastic modulus and the creep Poisson’s ratio. Firstly, the generalized Maxwell model is employed
to depict the relaxation characteristics of the elastic modulus, while the generalized Kelvin model
is used to represent the creep Poisson’s ratio. Subsequently, the element relaxation stiffness matrix
is established, thereby forming a convolutional finite element equation. Furthermore, the recursive
calculation of the convolutional integral is derived, and the calculation steps of the finite element for
viscoelasticity considering the time-dependent nature of both the elastic modulus and Poisson’s ratio
are established. Finally, the accuracy of the proposed algorithm is verified through two numerical
examples with linear viscoelastic material. The results indicate that the proposed variable stiffness
method for the finite element analysis of linear viscoelastic materials can simultaneously consider the
changes in the elastic modulus and Poisson’s ratio over time, thereby establishing a new path and
idea for the more accurate simulation of viscoelastic materials’ mechanical properties. Compared
with the initial strain method for linear viscoelastic materials, the variable stiffness method proposed
in this paper effectively avoids the assumption of constant stress during the micro time interval,
thus significantly enhancing the finite element calculation accuracy of linear viscoelastic materials.
The proposed method establishes a simulation algorithm that matches existing commercial software
with viscoelastic material experiments by considering the elastic modulus and Poisson’s ratio as
material parameters.

Keywords: linear viscoelastic materials; integral constitutive relationship; generalized Maxwell
model; generalized Kelvin model; variable stiffness method

1. Introduction

With the advancement of materials science, numerous polymer materials have emerged
in engineering [1,2], including rubber, plastics, nylon, organic glass, textile fibers, and other
industrial materials. Additionally, geological materials such as asphalt, concrete, soil, rocks,
and biological materials like bones and muscles fall into this category. These materials
exhibit the deformation characteristics of elastic solids and the time-dependent flow char-
acteristics of viscous fluids during operation and use, collectively referred to as viscoelastic
materials [3]. The mechanical behavior of such materials under loading depends on the
magnitude of the load and varies with time. Typically, they can be regarded as linear
viscoelastic materials under small strain levels.

When conducting finite element analysis on linear viscoelastic materials, there are two
distinct implementation approaches based on the chosen form of constitutive relationship.
One approach involves employing a differential form of constitutive relationship [4]. This
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approach represents the viscoelastic mechanical behavior through various combinations
of force-bearing elements, such as springs and dashpots. Different combinations yield
different constitutive models [5], such as the generalized Maxwell model [6], the generalized
Kelvin model [7,8], and so forth. This constitutive relationship is expressed in the following
form of a differential expression:

P[σ(t)] = Q[ε(t)] (1)

where P and Q represent linear differential operators with respect to time t, and

P = P(D) =
n
∑

r=0
pr

dr

dtr , Q = Q(D) =
n
∑

r=0
qr

dr

dtr . The expanded form of the differential

constitutive relationship is denoted as σ + p1
.
σ + p2

..
σ + · · · = q0ε + q1

.
ε + q2

..
ε + · · · , where

pr and qr are material constants obtained through experiments. In different constitutive
models, specific coefficients in the equation may be zero. The existing literature often em-
ploys a combination of a differential constitutive relationship and the initial strain method
in developing viscoelastic finite element analysis programs, typically using the generalized
Kelvin model. This model consists of a spring element and a series of Kelvin bodies (each
comprising a spring and a dashpot connected in parallel). This form readily separates
the total strain at any given moment into elastic strain (provided by the spring element)
and viscous strain (the sum of strains from each Kelvin body). Consequently, the viscous
strain can be regarded as the initial strain, enabling the use of the initial strain method
employed in elastic finite element analysis for the solution. Specifically, time is discretized
into a series of intervals, assuming that stress remains constant within each interval. Based
on the characteristics of the generalized Kelvin model, the stress on individual spring
elements and each Kelvin body connected equals the known stress within that interval.
Using Kelvin’s creep compliance [9], the viscous strain of each Kelvin body under this
stress is calculated and summed to obtain the total viscous strain, and this total viscous
strain is treated as the initial strain. Additional forces are determined, and displacement
increments caused by viscous strain during that interval are calculated. The overall analysis
results are calculated step-by-step. This method maintains the stiffness matrix unchanged
and equal to the initial stiffness matrix when solving the linear equation set at each interval,
thus exhibiting higher computational efficiency.

However, using the initial strain method mentioned above relies on two underlying
conditions: firstly, the ability to express the total strain at any given moment as the sum of
elastic strain and viscous strain; secondly, the assumption that the material’s Poisson’s ratio
remains constant. The first condition is only satisfied when employing structures similar to
the generalized Kelvin model. This implies the necessity of knowing the creep compliance
beforehand, which requires providing corresponding data through creep tests. The second
condition typically applies only to some incompressible materials. However, meeting both
conditions in practical engineering can be challenging due to many problems. For example,
in the viscoelastic analysis of solid rocket motor propellants [10,11], which are polymer
materials, relaxation tests rather than creep tests are usually conducted. These tests provide
data on the relaxation modulus varying with time instead of the creep compliance [12].
Additionally, Poisson’s ratio is not constant. In such cases, the direct application of the
initial strain method is not feasible.

Another approach is to employ an integral constitutive relationship [13]. This approach
considers the stress–time history sum of a series of rectangular pulses over small time
intervals. Utilizing the Boltzmann superposition principle, the following form of the
hereditary integral is derived [14]:

σ(t) = E(t)ε0 +
∫ t

0
E(t − τ)

dε(τ)

dτ
dτ (2)

where σ(t) and ε(τ) represent stress and strain, respectively, both of which are functions of
time; E(t) represents the relaxation modulus of the viscoelastic material; and ε0 represents
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the initial strain. Current commercial software packages such as ABAQUS 2022 and ANSYS
2023 utilize this constitutive relationship [15,16]. However, these commercial programs
require the input of shear relaxation modulus G(t) and bulk relaxation modulus K(t), which
decompose deformation at any given time into volumetric and shear components. Typically,
these two relaxation moduli are assumed to follow a Prony series, with material parameters
fitted from experimental data. Once these relaxation modulus expressions are determined,
the remaining process is similar to the elastic finite element method. Time is discretized into
a series of intervals, and numerical integration methods are used to obtain displacement and
strain for each time interval. The advantage of this method lies in its generality. Regardless
of the specific constitutive model used, as long as the Prony series of the relaxation modulus
is obtained, the analysis can be completed following steps similar to those of traditional
finite element methods. However, the drawback is apparent: forming the stiffness matrix
must be repeated for each time step, resulting in high computational complexity and lower
efficiency. Another drawback is the requirement for shear and bulk relaxation tests to obtain
corresponding material parameters for these commercial software packages. Since these
tests are operationally complex, they are rarely conducted in practical engineering. Most
relaxation tests involve tension or compression [17], providing the relaxation modulus E(t)
over time [18,19]. Then, assuming a constant Poisson’s ratio, the bulk and shear moduli
are derived from these parameters and input into the commercial software. However, this
conversion process inevitably introduces additional errors. Therefore, while this method
uses shear relaxation and bulk relaxation moduli, it relies solely on the elastic relaxation
modulus and a constant Poisson’s ratio [20–22].

In summary, it is clear that whether developing custom finite element programs
or using commercial software for analysis, it is commonly assumed that Poisson’s ratio
remains constant throughout the entire analysis process. However, this assumption is
inaccurate for many practical viscoelastic problems. For example, experimental results on
Poisson’s ratio of viscoelastic materials like polymers show that it is not constant throughout
the testing. It tends to increase towards 1/2 with rising temperature and prolonged loading
time, while it decreases towards 1/3 with decreasing temperature and shorter loading
time. Even slight variations in Poisson’s ratio can significantly impact the calculation
results of mechanical properties [23,24]. Therefore, this paper aims to develop a viscoelastic
finite element algorithm that can simultaneously account for the relaxation behavior of the
elastic modulus and the creep Poisson’s ratio. Compared with the initial strain method,
the calculation accuracy is improved by considering the time variation in Poisson’s ratio.
Compared with commonly used commercial software, the required constitutive parameters
are easier to obtain, thus providing a foundational algorithm for addressing such practical
engineering problems.

2. Basic Principles of the Variable Stiffness Method in Finite Element Analysis of
Viscoelastic Materials
2.1. The Generalized Maxwell Model for Viscoelastic Materials

Without loss of generality, the generalized Maxwell model is used to represent the
relaxation properties of the elastic modulus in viscoelastic materials. Defining the elastic
relaxation modulus [25–27]:

E(t) = E∞ +
m

∑
r=1

Ere−
t

τr (3)

The creep properties of viscoelastic materials are defined using the generalized Kelvin
model, and the creep Poisson’s ratio is established [28,29]:

µ(t) = µ0 +
n

∑
i=1

µi

(
1 − e−

t
τi

)
(4)

where E∞ represents the elastic coefficient of the spring element in the generalized Maxwell
model, Er represents the elastic coefficient of the r-th Maxwell body in the generalized



Appl. Sci. 2024, 14, 3189 4 of 16

Maxwell model, and τr represents the relaxation time of the r-th Maxwell body in the
generalized Maxwell model. µ0 represents the initial Poisson’s ratio, µi represents the
elastic coefficient of the i-th Kelvin body in the generalized Kelvin model, and τi represents
the relaxation time of the i-th Kelvin body in the generalized Kelvin model. m and n
represent the number of Maxwell bodies in the generalized Maxwell model and the number
of Kelvin bodies in the generalized Kelvin model, respectively. The parameters above are
fitted based on data from the relaxation test for the elastic modulus and the creep test for
Poisson’s ratio.

2.2. Integral Constitutive Relationship of Viscoelastic Materials

Based on the elastic relaxation modulus and creep Poisson’s ratio previously men-
tioned, the elastic relaxation matrix [D(t)] can be defined as follows:

[D(t)] =
E(t)

(1 + µ(t))(1 − 2µ(t))



1 − µ(t) µ(t) µ(t) 0 0 0
µ(t) 1 − µ(t) µ(t) 0 0 0
µ(t) µ(t) 1 − µ(t) 0 0 0

0 0 0 1−2µ(t)
2 0 0

0 0 0 0 1−2µ(t)
2 0

0 0 0 0 0 1−2µ(t)
2


(5)

With the elastic relaxation matrix above, the integral constitutive relationship of
viscoelastic materials [30] can be expressed as follows:

{σ(t)} = D(t){ε0}+
∫ t

0
[D(t − τ)]

∂{ε(τ)}
∂τ

dτ (6)

where [D(t)] represents the elastic relaxation matrix at time t, {ε0} represents the initial
strain vector, and {ε(τ)} represents the strain vector at time τ. After obtaining the constitu-
tive relationship of viscoelastic materials, similar to the finite element derivation process,
the relationship between the nodal forces and nodal displacements of the element can be
derived using the principle of virtual displacement:

{P(t)}e = [k(t)]e{δ}e
0 +

∫ t

0
[k(t − τ)]e

∂{δ(t)}e

∂τ
dτ (7)

where {P(t)}e represents the nodal force vector of the element at time t; {δ}e
0 represents

the nodal displacement vector of the element at the initial moment; {δ(t)}e represents
the nodal displacement vector at time t; and [k(t)]e =

∫
v
[B]T [D(t)][B]dv is the relaxation

stiffness matrix of the element at time t, where [B] represents the strain matrix.
Integrating these individual matrices yields the global relaxation stiffness matrix after

obtaining the relaxation stiffness matrix for any element at a specific time. Simultaneously,
by assembling the elemental load vectors into the global load vector and introducing the
boundary conditions, the global equation at that time can be derived as follows:

K(t){δ}0 +
∫ t

0
[K(t − τ)]

∂{δ(t)}
∂τ

dτ = {P(t)} (8)

where [K(t)] represents the global relaxation stiffness matrix at time t; {δ}0 represents the
initial global displacement vector; {δ(t)} represents the global displacement vector at time
t; and {P(t)} represents the global load vector at time t.
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3. Finite Element Analysis of Viscoelastic Materials Considering Time-Dependent
Poisson’s Ratio
3.1. The Foundation of Convolutional Integral for Viscoelastic Materials

Numerical implementation is required to solve Equation (8) involving convolutional
integrals. Here, the recursive format for convolutional integration is given. Suppose that
we have the following form of a convolutional integral equation,∫ t

t1

A(t − τ)
∂y(τ)

∂τ
dτ = q(t) (9)

where t1 represents the initial moment of integration and t represents the end moment of
integration. In practical scenarios, t1 = 0 can be assumed.

Let I(t) =
∫ t

t1
A(t − τ)

∂y(τ)
∂τ dτ, and consider t = tj+1, meaning that the equation can

then be transformed to the following:

I
(
tj+1

)
=

∫ tj+1

t1

A
(
tj+1 − τ

)∂y(τ)
∂τ

dτ (10)

If the integration time t1 ∼ tj+1 is discretized into a sequence of time intervals[
t1 t2 t3 · · · tj tj+1

]
, then we have j small time intervals, thus

I
(
tj+1

)
=

j

∑
k=1

∫ tk+1

tk

A
(
tj+1 − τ

)∂y(τ)
∂τ

dτ (11)

According to the mean value theorem for integrals, the summation can be simplified
as follows [31]:

I
(
tj+1

)
=

j

∑
k=1

1
2
[
A
(
tj+1 − tk+1

)
+ A

(
tj+1 − tk

)]
·
∫ tk+1

tk

∂y(τ)
∂τ

dτ (12)

Further simplification yields the following:

I
(
tj+1

)
=

j

∑
k=1

1
2
[
A
(
tj+1 − tk+1

)
+ A

(
tj+1 − tk

)]
· [y(tk+1)− y(tk)] (13)

Substituting the above equation into the original convolutional integral Equation (9)
yields the following:

j

∑
k=1

1
2
[
A
(
tj+1 − tk+1

)
+ A

(
tj+1 − tk

)]
· [y(tk+1)− y(tk)] = q

(
tj+1

)
(14)

After rearranging the above equation, the following recursive equation for solving the
convolutional integral equation is derived:



j−1
∑

k=1

1
2
[
A
(
tj+1 − tk+1

)
+ A

(
tj+1 − tk

)]
· [y(tk+1)− y(tk)]

+ 1
2
[
A
(
tj+1 − tj+1

)
+ A

(
tj+1 − tj

)]
·
[
y
(
tj+1

)
− y

(
tj
)]

= q
(
tj+1

)
j−1
∑

k=1

[
A
(
tj+1 − tk+1

)
+ A

(
tj+1 − tk

)]
· [y(tk+1)− y(tk)] +

[
A(0) + A

(
tj+1 − tj

)]
·
[
y
(
tj+1

)
− y

(
tj
)]

= 2q
(
tj+1

)
y
(
tj+1

)
= y

(
tj
)
+

2q(tj+1)−
j−1
∑

k=1
[A(tj+1−tk+1)+A(tj+1−tk)]·[y(tk+1)−y(tk)]

A(0)+A(tj+1−tj)

(15)

For the initial time point of t = t1, the value of y1 = y(t1) is often determined by initial
conditions. For the second time point of t = t2, y2 = y(t2) is calculated using the following
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equation: y2 = y1 +
2q(t2)

A(0)+A(t2−t1)
. Subsequently, starting from the third time point (j ≥ 2),

yj+1 can be solved.

3.2. Calculation Steps of Finite Element Analysis for Viscoelastic Materials Considering
Time-Dependent Poisson’s Ratio

Based on the recursive calculation provided by Equation (15) to obtain the convo-
lutional integral, the viscoelastic finite element Equation (8) given in Section 2 can be
solved. After rearrangement, the calculation steps for the variable stiffness method, which
considers both the relaxation behavior of the elastic modulus and the creep Poisson’s ratio,
are as follows:

(1) Data Initialization

➀ Discretize the time into an array as follows: t =
[
0, t1 t2 t3 · · · tN−1

]
1×N ,

where t[j] represents the j-th element in the array, with t[1] = 0, t[2] = t1, t[3] = t2,
t[j + 1] = tj; additionally, ∆tj = t[j + 1]− t[j] = tj − tj−1 is introduced.

➁ Determine material parameters: use experimental data and the least squares to fit
the material parameters in Equations (3) and (4): m, E∞, Er, τr (r = 1, 2, · · · , m), n, µ0, µi, τi
(i = 1, 2, · · · , n).

➂ Determine the corresponding load vector for each time point: P =
{

P0 P1 · · · PN−1
}

.

(2) Elastic calculation at the initial time (t = 0)

➀ Calculate E(0) = E0 = E∞ +
m
∑

r=1
Er and µ(0) = µ0 and derive the relaxation matrix

at the initial time according to the following equation:

[D(0)] =
E0

(1 + µ0)(1 − 2µ0)



1 − µ0 µ0 µ0 0 0 0
µ0 1 − µ0 µ0 0 0 0
µ0 µ0 1 − µ0 0 0 0
0 0 0 1−2µ0

2 0 0
0 0 0 0 1−2µ0

2 0
0 0 0 0 0 1−2µ0

2


➁ Use the relaxation matrix obtained above and derive the initial stiffness matrix for each

element at the initial time: [k(0)]e =
∫
v
[B]T[D(0)][B]dv =

∫ 1
−1

∫ 1
−1

∫ 1
−1 [B]

T[D(0)][B] · |J|dξdηdς.

➂ Assemble the global stiffness matrix [K(0)]. It is important to note that the stiffness
matrix at the initial time must be saved for subsequent calculations.

➃ Establish the global load vector at the initial time {P(0)}, denoted as P0.
➄ Introduce any necessary boundary conditions.
➅ Solve the following equations to obtain the displacement {δ}1 at the initial time t[1].
➆ [K(0)] · {δ}1 = {P(0)}

(3) Calculation at the second time point, i.e., t = t[2] = t1

➀ Calculate ∆t1 = t[2]− t[1] = t1 − 0 = t1 = t[2].

➁ Calculate E(∆t1) = E∞ +
m
∑

r=1
Ere−

∆t1
τr and µ(∆t1) = µ0 +

n
∑

i=1
µi

(
1 − e−

∆t1
τi

)
and

further construct the relaxation matrix for this time point:

[D(∆t1)] = E(∆t1)
(1+µ(∆t1))(1−2µ(∆t1))

×



1 − µ(∆t1) µ(∆t1) µ(∆t1) 0 0 0
µ(∆t1) 1 − µ(∆t1) µ(∆t1) 0 0 0
µ(∆t1) µ(∆t1) 1 − µ(∆t1) 0 0 0
0 0 0 1−2µ(∆t1)

2 0 0
0 0 0 0 1−2µ(∆t1)

2 0
0 0 0 0 0 1−2µ(∆t1)

2
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➂ Use the relaxation matrix obtained above to formulate the stiffness matrix for
each element:

[k(∆t1)]
e =

∫
v

[B]T [D(∆t1)][B]dv =
∫ 1

−1

∫ 1

−1

∫ 1

−1
[B]T [D(∆t1)][B] · |J|dξdηdς

➃ Assemble the global stiffness matrix [K(∆t1)].
➄ Calculate [K] = [K(0)] + [K(∆t1)].
➅ Establish the global load vector for this time point {P(t[2])}, i.e., P1.
➆ Introduce any necessary boundary conditions and solve the following equation

set to determine the displacement increment {∆δ1} within the first time interval; thus,
[K] · {∆δ1} = 2 × {P(t[2])} − 2[K(∆t1)] · {δ}1.

➇ Calculate the displacement {δ}2 = {δ}1 + {∆δ1} at this time point, i.e., the second
time point, and save this displacement value.

(4) From the third time point onwards, repeat the following steps:

f or j = 3 : N

➀ Calculate ∆tj−1 = t[j]− t[j − 1].
➁ Calculate E

(
∆tj−1

)
, µ

(
∆tj−1

)
, E(t[j]), and µ(t[j]) to establish the relaxation matrices[

D
(
∆tj−1

)]
and [D(t[j])].

➂ Determine the stiffness matrices
[
k
(
∆tj−1

)]e and [k(t[j])]e for each element.
➃ Assemble the global stiffness matrices

[
K
(
∆tj−1

)]
and [K(t[j])] corresponding to

∆tj−1 and t[j], respectively.
➄ Calculate [K] = [K(0)] +

[
K
(
∆tj−1

)]
.

➅ Calculate the additional force using the following steps:
Initialize the additional force vector {Fv}

f or k = 1 : j − 2

Calculate ∆tk+1 = t[j]− t[k + 1] and ∆tk = t[j]− t[k].
Calculate E(∆tk+1), µ(∆tk+1), E(∆tk) and µ(∆tk).
Formulate the relaxation matrices [D(∆tk+1)] and [D(∆tk)].
Calculate the stiffness matrices [k(∆tk+1)]

e and [k(∆tk)]
e for each element.

Formulate the global stiffness matrices [K(∆tk+1)] and [K(∆tk)] corresponding to
∆tk+1 and ∆tk, respectively.

Calculate [K]k = [K(∆tk+1)] + [K(∆tk)].
Calculate {∆δ}k = {δ(t[k + 1])} − {δ(t[k])}.
Calculate the additional force {Fv} = {Fv}+ [K]k · {∆δ}k.
end
➆ Establish the load vector {P(t[j])} at the nodes for this time point.
➇ Calculate the load vector {∆P}j−1 = 2{P(t[j])} − 2[K(t[j])] · {δ}1 − {Fv} on the

right-hand side of the equations for this time step.
➈ Introduce boundary conditions, solve the following equation set, and obtain the

displacement increment
{

∆δj−1
}

within the (j− 1)-th time interval, yielding [K] ·
{

∆δj−1
}
=

{∆P}j−1.
➉ Calculate the displacement {δ}j = {δ}j−1 +

{
∆δj−1

}
at this time point, i.e., t = t[j],

and save this displacement.

4. Verification and Discussion of the Example
4.1. Viscoelastic Displacement of the Rod Subject to Uniaxial Tension
4.1.1. Parameter Specification

A vertical axial rod is fixed at the bottom and subjected to tensile force P, with material
behavior described by the generalized Maxwell viscoelastic model, comprising a spring
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element and a Maxwell body in parallel. It is assumed that only one-dimensional elements
are used. The load P = 2 N, cross-sectional area A = 100 mm2, length L = 500 mm, and
material parameters are E∞ = 0.65 MPa and E1 = 3 MPa. The viscosity coefficient is taken
separately as η1 = 5.4 MPa · s, 10.8 MPa · s, and 21.6 MPa · s. The corresponding relaxation
times are τ1 = 1.8, 3.6 and 7.2 s, as shown in Figure 1. The viscoelastic displacement of
the rod subject to the uniaxial tension at different relaxation times is solved in this section,
where the numerical results are computed using our own programmed algorithms.
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4.1.2. Analytical Solution

The analytical solution can be obtained by solving the general expression of the
differential constitutive equation of linear viscoelastic materials as follows:

P(D)σ = Q(D)ε (16)

where P(D) =
m
∑

k=0
pk

∂k

∂tk , Q(D) =
m
∑

k=0
qk

∂k

∂tk , and D = ∂
∂t are differential operators over time.

The generalized Maxwell model, composed of a spring element and a Maxwell element
in parallel, degenerates into the traditional Poynting–Thomson model, commonly known
as the H|M model (H represents Hookean spring, M represents a Maxwell element, and
H|M represents a spring and a Maxwell element in parallel). Its differential constitutive
equation is as follows:

σ +
η1

E1

.
σ = E∞ε +

(
η1 +

E∞η1

E1

)
.
ε (17)

where E1 and η1 are the elastic and viscous coefficients of the Maxwell elements, respec-
tively; E∞ is the elastic coefficient of the spring, representing the elastic modulus of the
material as time approaches infinity.

Referring to the general expression (16), for the H|M model, we have the following:

P(D) = 1 +
η1

E1
D, Q(D) = E∞ +

E1 + E∞

E1
η1D (18)

Rewriting Equation (16) yields the following:

σ =
Q(D)

P(D)
ε (19)

It can be seen that Q(D)
P(D)

is equivalent to the elastic modulus E in elastic materi-
als. According to the principle of elasticity–viscoelasticity correspondence, the solutions
to linear viscoelastic problems are exactly the same as those of elastic problems under
identical boundary conditions in Laplace space. Simply substitute E in the elastic so-
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lution with the Laplace space expression Q(s)
P(s) corresponding to Q(D)

P(D)
in the viscoelastic

constitutive equation.
Here, Q(s) is the Laplace transform of Q(D), and P(s) is the Laplace transform of

P(D). For the H|M model used in the given example

P(s) = 1 +
η1

E1
s, Q(s) = E∞ +

E1 + E∞

E1
η1s (20)

Therefore,
Q(s)
P(s)

=
E∞ + E1+E∞

E1
η1s

1 + η1
E1

s
= E∞ +

E1η1s
E1 + η1s

(21)

For the axial tension rod, its elastic displacement solution is u = PL
EA . According to the

principle of elasticity–viscoelasticity correspondence, the linear viscoelastic displacement
solution retains the same form in Laplace space. To obtain the viscoelastic displacement
solution in Laplace space, simply substitute E with Q(s)

P(s) in Equation (21), thus resulting in
the expression shown below:

ũ(s) =
PL

sA
(

E∞ + E1η1s
E1+η1s

) (22)

Organize Equation (22) to obtain a form that is easy to perform inverse Laplace
transform with as follows:

ũ(s) =
PL
A

× E1

η1(E∞ + E1) · s
[
s + E∞E1

η1(E∞+E1)

] +
PL
A

× 1

(E∞ + E1) ·
[
s + E∞E1

η1(E∞+E1)

] (23)

After this arrangement, each term in Equation (23) can be identified using the Laplace
transform table to find its corresponding inverse transformation form. The analytical
solution of the viscoelastic problem in the time domain is then derived by applying the
inverse Laplace transform to Equation (23), as shown below:

u(t) =
PL

AE∞
− PL

A
· E1

(E∞ + E1)E∞
e
− E∞E1

η1(E∞+E1)
t

(24)

It can be organized as follows:

u =
PL
A

f (t), f (t) =
1

E∞
− E1

E∞(E1 + E∞)
e
− E1E∞

(E1+E∞)η1
t

(25)

In the given example, η1 = 10.8 MPa·s; in the case of τ1 = 3.6 s, we have the following:
PL
A = 1000

100 = 10 N
mm

f (t) = 1
0.65 − 3

0.65×3.65 e−
3×0.65

3.65×10.8 t = 1.53846 − 1.264489e−0.049467t

u(t) = 10 f (t) = 15.3846 − 12.64489e−0.049467t
(26)

4.1.3. Comparison and Discussion of Simulation Results

Following the calculation steps previously outlined, considering the case of only one
element, the viscoelastic displacements for different material parameters can be obtained.
As depicted in Figure 2, the graph also includes the analytical solution obtained using
Equation (25). As presented in Figure 3, the relative error of two methods under different
material parameter values can be calculated using the following formula:

Eerror =

(
unumeric − uanalytical

)
× 100

uanalytical
(27)
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where unumeric is the axial tension displacement obtained by the numerical algorithm
proposed in this study, uanalytical is the analytical solution to the displacement obtained
according to Equation (25), and Eerror is the relative error of the results obtained by the
two methods.
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From Figure 2, it is evident that in the case of using only one element, the results
yielded by the algorithm proposed in this paper nearly perfectly align with the analytical
solution. Under constant loading, the viscoelastic displacement of the axial rod progres-
sively increases with time, indicating the creep properties inherent to viscoelastic materials.
Analyzing the error variation depicted in Figure 3, it becomes apparent that initially, the
error is minimal, followed by an increase over time, reaching a peak around the relaxation
time. Subsequently, the error gradually diminishes. Throughout the process, the error
consistently remains negative, indicating a slight underestimation in the calculated results
compared to the analytical solution. The initial ascent and subsequent descent of the error
can be attributed to the rapid change in the slope of the curve near the relaxation time, as
evident from the equation for the relaxation modulus of the generalized Maxwell model.
This suggests a steep slope of the curve in proximity to the relaxation time, succeeded by a
more gradual change beyond this range, signifying a relatively stable relaxation modulus.
In this example, for a relaxation time of 3.6 s, the stress decreases by 63.2% from its initial
value (1/e of the initial stress), indicative of rapid attenuation. Consequently, the material
parameters undergo rapid changes near the relaxation time (or within a time range of the
same order of magnitude as the relaxation time). Due to the uniform time intervals used
in the calculation, the error increases within this interval. However, beyond this range, as
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the elastic modulus changes more slowly, the error decreases. To enhance the calculation
accuracy, reducing the time intervals near the relaxation time and enlarging them away
from the relaxation time can be contemplated.

4.2. Viscoelastic Displacement of Slender Members with Equal Cross-Section under Self-Weight Effect
4.2.1. Information Detail

As depicted in Figure 4, we consider a straight rod with an equal cross-section char-
acterized by a unit weight. P = 10−6N/mm3. The rod is fixed at the upper end and free
at the lower end, with a length of L = 2 m (equivalent to 2000 mm) and a cross-section of
400 mm × 400 mm. The coordinate origin is denoted as O, with the z-axis extending posi-
tively upward and the y-axis oriented horizontally and positively to the right. Considering
the material as linear viscoelastic and using the generalized Maxwell model to reflect the
relaxation characteristics of the material’s elastic modulus as E∞ = 0.65 MPa, E1 = 3 MPa.
The initial elastic modulus is E0 = 3.65 MPa. Using the generalized Kelvin model to reflect
the creep Poisson’s ratio of the material, where µ0 = 0.34, µ1 = 0.15, and the Poisson’s ratio
at the final stable state is µ∞ = 0.49. The relaxation time is 3.6 s, i.e., τr =

η1
E1

= 10.8
3 = 3.6 s,

τi = ηiµ1 = 24 × 0.15 = 3.6 s = τr. The description of the material parameters is explained
in the previous example.
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The vertical displacement under the self-weight effect at points located at z = 0 and
x = y = 200 mm (i.e., the corners of the bottom free end) is calculated in Figure 4.

4.2.2. Analytical Solution of Viscoelastic Displacement

According to elastic mechanics, the analytical solution for the vertical displacement of
elastic materials is as follows:

w =
P

2E

[
µ
(

x2 + y2
)
+ z2 − L2

]
(28)

where E and µ are the elastic modulus and Poisson’s ratio of the material, respectively.
Using the same approach as in Section 4.1 and based on the principle of elasticity–

viscoelasticity correspondence, the solution of Equation (28) in the phase space after Laplace
transform can be obtained as follows:

w(s) =
P
2

[
µ(s)
sE(s)

(
x2 + y2

)
+

z2 − L2

sE(s)

]
= w1(s) + w2(s) (29)

and

w1(s) =
P
2

(
x2 + y2

)1
s
· µ(s)

E(s)
(30)
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w2(s) =
P
2

(
z2 − L2

) 1
sE(s)

(31)

where µ(s) and E(s) represent the Laplace transform of Poisson’s ratio and elastic modulus
in phase space, respectively.

For this example, within the generalized Maxwell model describing the relaxation
characteristics of elastic modulus, m = 1, and in the generalized Kelvin model used to
describe the creep Poisson’s ratio, n = 1. Consequently, we have the following:

E(s) = E∞ +
E1s

s + 1
τ1

(32)

µ(s) = µ0 +
µ1

τ1

(
s + 1

τ1

) (33)

Based on this framework, we derive the following:

1
s
· µ(s)

E(s)
=

µ0

(E∞ + E1)

 1
s + E∞

(E∞+E1)τ1

+
1
τ1

· 1

s
(

s + E∞
(E∞+E1)τ1

)
+

µ1

τ1(E∞ + E1)
·

 1

s
(

s + E∞
(E∞+E1)τ1

)
 (34)

Substituting the above equation into Equation (30) and introducing E0 = E∞ + E1
yields the following:

w1(s) =
P
2

(
x2 + y2

)µ0

E0

 1
s + E∞

E0τ1

+
1
τ1

· 1

s
(

s + E∞
E0τ1

)
+

µ1

τ1E0
·

 1

s
(

s + E∞
E0τ1

)
 (35)

Applying the inverse Laplace transform to Equation (35) yields the following:

w1(t) =
P
2

(
x2 + y2

)
· µ0

E0

[
e−

E∞
E0τ1

t
+

E0

E∞

(
1 − e−

E∞
E0τ1

t
)]

+
P
2

(
x2 + y2

)
· µ1

E∞

(
1 − e−

E∞
E0τ1

t
)

(36)

Similarly, applying the inverse Laplace transform to Equation (31) yields the following:

w2(t) =
P
2

(
z2 − L2

)( 1
E∞

− E1

E∞E0
e−

E∞
E0τ1

t
)

(37)

From this, the inverse Laplace transform of Equation (29) can be derived as follows:

w(t) = w1(t) + w2(t) =
P
2

(
x2 + y2

)
· f1(t) +

P
2

(
z2 − L2

)
· f2(t) (38)

where

f1(t) =
µ∞

E∞
− (µ0E1 + E0µ1)

E0E∞
e−

E∞
E0τ1

t (39)

f2(t) =
1

E∞
− E1

E∞E0
e−

E∞
E0τ1

t (40)

In this example, the analytical solution for viscoelastic displacement, accounting
for both Poisson’s ratio and elastic modulus variations over time, can be obtained by
substituting the respective parameters as follows:

w(t) =
10−6

2
× 2 × 2002 f1(t)−

10−6

2
× 4 × 106 f2(t) = 0.04 f1(t)− 2 f2(t) (41)

where

f1(t) =
0.49
0.65

− 0.34 × 3 + 3.65 × 0.15
3.65 × 0.65

e−
0.65

3.65×3.6 t = 0.753846 − 0.6607e−0.0494673t
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f2(t) =
1

0.65
− 3

3.65 × 0.65
e−

0.65
3.65×3.6 t = 1.538461538 − 1.264489e−0.0494673t

Based on the algorithm proposed in this paper, the viscoelastic displacement of the
sectioned straight bar under self-weight is calculated. The time interval is set to 1 s, and
the finite element mesh is partitioned, as shown in Figure 5. The calculation results of the
viscoelastic displacement at the free end corner within 50 s are shown in Figure 6, where the
analytical solution obtained by Equation (41) is also provided. From the calculation results,
it can be observed that for the sectioned straight bar under self-weight, at the position of
the free end corner, the instantaneous elastic displacement due to loading is approximately
0.5 mm. Subsequently, due to the viscous flow of the material, the viscoelastic displacement
gradually increases with time, reaching 2.84 mm at 50 s, which is approximately five
times the initial displacement. A comparison with the analytical solution shows that the
maximum error of the algorithm proposed in this paper is about 0.3%, indicating good
computational accuracy.
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From the above two examples, it can be observed that when deriving analytical
solutions for viscoelastic problems while leveraging the principle of elasticity–viscoelasticity
correspondence, it is necessary to first obtain the analytical solution for the corresponding
elastic problem. Subsequently, by applying Laplace transform, the analytical solution
for the viscoelastic problem in the Laplace domain can be derived. Following this, by
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performing an inverse transformation, the analytical formula for the viscoelastic problem
can be obtained. In many practical scenarios, however, obtaining analytical solutions for
corresponding elastic problems is challenging due to the complexity of boundary conditions,
geometric shapes, and loading conditions involved. Consequently, the applicability of
analytical solution methods based on Laplace transform is severely limited. In contrast,
the algorithm proposed in this study falls under the finite element method, which is not
constrained by the conditions mentioned above. Therefore, it proves to be more suitable
for addressing complex engineering problems encountered in practice.

5. Conclusions

This paper introduces a viscoelastic finite element algorithm that simultaneously con-
siders the relaxation behavior of elastic modulus and the creep Poisson’s ratio in viscoelastic
materials. The relaxation behavior of the elastic modulus is modeled using the generalized
Maxwell model, while the creep Poisson’s ratio is represented using the generalized Kelvin
model. Starting from the integral constitutive relationship and incorporating the principle
of virtual displacement, a convolution-based variable stiffness method for solving equa-
tions is proposed. The paper also presents recursive calculations for convolution-based
numerical integration. Based on this, the calculation steps of the proposed algorithm are
outlined. The main conclusions of this paper can be summarized as follows:

(1) In contrast to the initial strain method derived from the differential constitutive re-
lationship, this algorithm can simultaneously account for the variation in the elastic
modulus and Poisson’s ratio over time, thus establishing a more precise simulation
pathway and a novel perspective for modeling the mechanical properties of viscoelas-
tic materials.

(2) Compared to the initial strain method for linear viscoelastic materials, the pro-
posed variable stiffness method considering the time-dependent Poisson’s ratio effec-
tively avoids the assumption of constant stress over small time intervals, thereby
significantly enhancing the accuracy of the finite element calculations for linear
viscoelastic materials.

(3) Compared to the finite element method commonly used in commercial software, the
proposed variable stiffness method considering the time-dependent Poisson’s ratio,
with the elastic modulus and Poisson’s ratio as material parameters, establishes a
simulation algorithm that aligns with experiments on viscoelastic materials.

(4) The proposed variable stiffness method considering the time-dependent Poisson’s
ratio and its calculation process effectively fits the coefficients of the Prony series for
the elastic modulus and Poisson’s ratio directly based on experimental data, thereby
reducing errors introduced during the transformation of material parameters when
using commercial software. Future research will include additional experimental
testing, convergence analysis, and investigation into computational efficiency.

Author Contributions: Conceptualization, X.W.; methodology, Y.W., J.G., J.B., X.W. and Z.Z.; software,
J.B., C.L., Z.Z. and Y.W.; writing—original draft preparation, X.W., J.G., Y.W., J.B., Z.Z. and C.L.;
writing—review and editing, X.W., J.G., Y.W., J.B., Z.Z. and C.L.; visualization, Z.Z. and Y.W.;
supervision, Z.Z.; funding acquisition, X.W. and Y.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the Stable Support Project of National Key Laboratory of
Solid Rocket Propulsion (grant number SY41YYF202309043), National Natural Science Foundation of
China (grant number 52108387); China Postdoctoral Science Foundation (grant number 2022M713851),
and Project of Central Guiding Local Science and Technology Development Funds (Fundamental
Research Project: 216Z5402G). All support is gratefully acknowledged.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.



Appl. Sci. 2024, 14, 3189 15 of 16

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Isono, Y. Viscoelastic Properties of Rubbery Materials: 1. Polymer Viscoelasticity. Nippon Gomu Kyokaishi 2018, 91, 351–357.

[CrossRef]
2. Hayashi, M.; Noro, A.; Matsushita, Y. Viscoelastic properties of supramolecular soft materials with transient polymer network.

J. Polym. Sci. Part B Polym. Phys. 2014, 52, 755–764. [CrossRef]
3. Findley, W.N.; Lai, J.S.; Onaran, K.; Christensen, R.M. Creep and Relaxation of Nonlinear Viscoelastic Materials With an

Introduction to Linear Viscoelasticity. J. Appl. Mech. 1977, 44, 505–509. [CrossRef]
4. Ferreira, J.A.; Oliveira, P.D.; Silva, P.M.D. Reaction–diffusion in viscoelastic materials. J. Comput. Appl. Math. 2012, 236, 3783–3795.

[CrossRef]
5. Chen, D.L.; Yang, P.-F.; Lai, Y.-S. A review of three-dimensional viscoelastic models with an application to viscoelasticity

characterization using nanoindentation. Microelectron. Reliab. 2012, 52, 541–558. [CrossRef]
6. Cheng, Y.; Li, H.; Li, L.; Zhang, Y.; Bai, Y. Viscoelastic Properties of Asphalt Mixtures with Different Modifiers at Different

Temperatures Based on Static Creep Tests. Appl. Sci. 2019, 9, 4246. [CrossRef]
7. Zhao, Y.; Ni, Y.; Zeng, W. A consistent approach for characterising asphalt concrete based on generalised Maxwell or Kelvin

model. Road Mater. Pavement Des. 2014, 15, 674–690. [CrossRef]
8. Huang, W.; Wang, H.; Yin, Y.; Zhang, X.; Yuan, J. Microstructural Modeling of Rheological Mechanical Response for Asphalt

Mixture Using an Image-Based Finite Element Approach. Materials 2019, 12, 2041. [CrossRef]
9. Makris, N. The frequency response function of the creep compliance. Meccanica 2019, 54, 19–31. [CrossRef]
10. Tola, C.; Nikbay, M. Solid rocket motor propellant optimization with coupled internal ballistic–structural interaction approach.

J. Spacecr. Rocket. 2018, 55, 936–947. [CrossRef]
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