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Abstract: Jumping performance is considered an overall indicator of gymnastics ability. Acrobatic
Gymnastics involves base and top gymnasts, considering the type of training that is performed and
the distinct anthropometric traits of each gymnast. This work aims to investigate a hierarchy of
variables that influence the force–velocity (F-V) profile of top and base acrobatic gymnasts through
a deep artificial neural network model. Twenty-eight first division and elite acrobatic gymnasts
(eleven tops and seventeen bases) performed two evaluations to assess the F-V profile during the
Countermovement Jump and its mechanical variables, using My Jump 2 (a total of 56 evaluations).
A training background survey and anthropometric assessments were conducted. The final model
(R = 0.97) showed that the F-V imbalance (F-Vimb) increases with higher force and decreases with
higher maximal power, fat percentage, velocity, and height. Coaches should prioritize the develop-
ment of force, followed by maximal power, and velocity for the optimization of gymnasts’ F-Vimb.
For training planning, the influences of body mass and push-off height are higher for the bases, and
the influences of years of practice and competition level are higher for the tops.

Keywords: acrobatic gymnastics; jump; modeling; artificial intelligence

1. Introduction

Jumping performance is considered an overall indicator of gymnastics ability, de-
manding high power outputs [1], which are possible through specialized power training
complemented with high force production [2]. In Acrobatic Gymnastics (ACRO), gymnasts
work in pairs or groups to perform balance (static positions) and dynamic elements, charac-
terized by flight from throws, boosts, pitches, and catches. Therefore, each gymnast plays
a distinct role in achieving the requirements defined by the Code of Points: base and top
gymnasts [3]. Bases are generally older and present larger morphological measurements
compared to top gymnasts, with no differences in the muscular component [4].

Therefore, the use of progressive loads and training planification according to the
gymnasts’ age are key aspects in ACRO [5]. In a typical training session, top gymnasts work
on specific balance positions, while bases perform strength training to learn the appropriate
techniques to provide a stable platform for tops to balance on, launch from, and land on [6].
Both perform trampoline training and individual elements, divided into balance, flexibility,
agility, and floor categories [3]. Two studies investigated the differences between roles in
ACRO, focusing on the unipedal balance [7] and the anthropometric profile [4]. One study
evaluated the jumping performance of 5–8-year-old girls (role unknown) training ACRO
twice a week [8]. Recently, the differences in the jumping skills of bases, tops, and rhythmic
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gymnasts were investigated [9], and the results showed that the specificity of the role and
gymnastics discipline influenced the gymnasts’ jumping performance.

To maximize the individual ballistic performance, it is important to consider the
force–velocity (F-V) profile, which represents the balance between force and velocity quali-
ties [10,11], and is considered a relevant parameter for the jumping ability assessment [12].
However, as the athlete’s level and training background increase, the difficulty of producing
training adaptations to maximal power activities, such as vertical jumps, also increases [2].
There is also a greater specialization as gymnasts progress in age [7]. Evaluating to what
extent this applies to the F-V profile and investigate the variables that explain variations
between roles would improve coaches’ knowledge of each specific role.

Nevertheless, the multifactorial nature of the variables that influence sports perfor-
mance requires an evaluation method with an extraordinary ability to deal with complex
nonlinear problems, such as the multilayer neural network system, with strong self-learning,
self-adaptability, and fault tolerance [13]. Unlike classic statistical models and correlative
methods, neural networks consist of multiple indirect interconnections between input and
output variables and nonlinear mathematical equations and statistical techniques to succes-
sively minimize the variance between actual and predicted outputs, yielding a model that
can be applied to an independent data set [14]. This approach offers better optimization
possibilities for predicting sports results, athlete recruitment, and selection processes than
the widely applied regression models [15]. Two key factors of this tool are its explainability
and interpretability, focusing on the results but also on the data’s inherent patterns and
the ability of the algorithms to explain them [16]. As an efficient tool for studying and
disseminating data populations into groups, this approach has been applied in team sports
such as football [16], body composition research [14], and sports psychology [13], but no
studies have applied this method to gymnastics.

Accordingly, this work aims to investigate a hierarchy of variables that influence the
F-V profile of base and top gymnasts, using a deep artificial neural network model. We
hypothesized that the selected variables should explain variations in the F-V profile of
acrobatic gymnasts. Our second hypothesis was that the model could distinguish between
top and base gymnasts, considering the specificity of the role performed. These data
will allow us to identify the main characteristics of acrobatic gymnasts’ jumping skill,
considering their specific training and role. It will also provide information to coaches on
the hierarchy of key variables for top and bases training, as well as the imbalances detected
when considering the specific function of each gymnast.

2. Materials and Methods
2.1. Sample Characterization

A total of 28 Portuguese acrobatic gymnasts (23 females and 5 males), including
11 tops—10 females (age: 13.39 ± 2.14 years old, body mass: 33.37 ± 5.92 kg, and height:
143.90 ± 8.54 cm) and 1 male (age: 16.10 years old, body mass: 49.90 kg, and height:
162.00 cm)—and 17 bases—12 females (age: 17.07 ± 2.04 years old, body mass:
59.63 ± 7.12 kg, and height: 164.92 ± 3.60 cm) and 5 males (age: 20.33 ± 4.18 years
old, body mass: 70.44 ± 14.57 kg and height: 174.20 ± 5.63 cm)—from the first division and
elite competition levels volunteered to participate in this study. These gymnasts competed
in official categories: Age Group 1 (11–16 years old), Age Group 2 (12–18 years old), Junior
Elite (13–19 years old), and Senior Elite (from 12 years old). All subjects and their legal
guardians (in case of subjects being younger than 18 years old), after being informed of
the study’s purpose, procedures, benefits, and risks, gave their voluntary and informed
consent to participate under the Declaration of Helsinki and the approval of the local
research Ethics Committee (CEFADE 02.2022).

2.2. Procedures and Instruments

A brief training background survey was conducted to obtain information regarding
the training experience (years) and the weekly training volume (hours) of each gymnast.
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Anthropometric data were collected, namely, the height of push-off (HPO), height, body
mass, and fat percentage. HPO is the difference between the right greater trochanter height
from the ground (measured at 90◦ knee angle in a squat position) and the extended lower
limb length with maximal foot plantar flexion (greater trochanter to tiptoe distance) while
the subject is in supine position [17]. This measure consists of the lower limbs’ length
change between the starting position and take-off, collected using a measuring tape and a
goniometer (BASELINE, 12-1001). A stadiometer was used for height measurements, and
the bioimpedance scale Tanita SC-330 (TANITA Corp, Tokyo, Japan) was used to measure
body mass (kg) and fat percentage (%).

After the usual training warm-up, a brief familiarization with the Countermovement
Jump (CMJ) was facilitated. For the F-V profile assessment, an incremental loading jumping
protocol was applied using the scientifically validated smartphone app My Jump 2 in
an iPhone 5s, with a camera frame rate of 40 fps [18,19]. This instrument uses basic
measures of body mass, lower limb length, jump height, and distance–time or speed–time
measurements [17,20] to measure the CMJ height and F-V profile of each athlete.

Each subject performed a maximum CMJ without additional load, followed by three
progressive loading conditions, i.e., there was an increment of 5 kg for tops in each condition
(body weight, 5 kg, 10 kg, and 15 kg) [21] and 10 kg for bases (body weight, 10 kg, 20 kg,
and 30 kg) [22]. For attempts without additional load, the participants were instructed
to remain in a standing position with their hands on their hips. For attempts with an
external load, tops used weighted vests and bases placed their hands on a barbell, since
they used higher loads. From these positions, participants performed the CMJs [23].
A 2 min interval was used for the unloaded condition [10,11] and a 4–5 min interval
was allowed between attempts using additional loads [11]. The protocol was considered
successfully finished when gymnasts achieved 20 cm of jump height with the last load
selected, as recommended by previous studies [24,25]. Each gymnast performed two
jumping performance evaluations.

This instrument also provides information regarding the magnitude and direction of
the F-V imbalance of each gymnast and the three variables that summarize the changes in
external force generation and power output with increasing movement velocity, such as
the theoretical maximal force at null velocity (F0); the maximal power output (Pmax); and
the theoretical maximal velocity at which the lower limbs can extend during one extension
under zero load (V0) [10]. The ratio between F0 and V0 (i.e., the slope of the linear F-V
relationship) characterizes the F-V profile of the neuromuscular system [10]. There are
five F-V imbalance categories according to the percentage of optimal thresholds, namely, a
high-force deficit (<60%), low-force deficit (60–90%), well-balanced (90–110%), low-velocity
deficit (>110–140%), and high-velocity deficit (>140%) [26].

The relative difference between the actual and optimal F-V profiles for a given indi-
vidual represents the magnitude and the direction of the unfavorable balance between
force and velocity qualities (i.e., the force–velocity imbalance, FVimb in %), allowing us to
determine the individual force or velocity deficit [26]. A FVimb value around 0% indicates
a F-V profile that is equal to 100% of the optimal profile (a perfect balance between force
and velocity qualities), whereas a F-V profile value that is higher or lower than the optimal
indicates a profile that is too oriented toward force or velocity capabilities [26].

Three types of variables were assessed to includemultifactorial data: (1) subject infor-
mation: age (years), sex, training experience (years), weekly training volume (hours), and
competition level (1st division and elite); (2) anthropometrics: body mass (kg), height (cm),
HPO (cm), fat percentage (%), and body mass index (kg/m2); and (3) F-V-profile-associated
variables: F0 (N/kg), V0 (m/s), Pmax (W/kg), CMJ height (cm), and FVimb (%).

2.3. Statistical Analysis

Data are presented as mean ± SD using IBM SPSS Statistics for Windows, Version 27.0.,
Armonk, NY, USA. The variables’ normal distribution was confirmed by Shapiro–Wilk’s
test and variance homogeneity by Levene’s test. Descriptive analysis was obtained for all
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variables. Student’s t-test for independent samples with effect size estimation was used for
comparing tops and bases. The guidelines used for the interpretation of Cohen’s d effect
size were that a small effect = 0.2, a medium effect = 0.5, and a large effect = 0.8 [27]. The
significance level was set at p ≤ 0.05.

A deep artificial neural network model was then developed to assess the relationship
between the dependent variables and gymnasts’ FVimb. Considering that 28 gymnasts
participated in this work and that each gymnast performed two jumping performance
evaluations, the neural network accounted for 56 inputs, since each subject represents an
independent input. The structure was developed in Python (version 3.9.2) through the
TensorFlow© library (Google), using an input layer with 15 variables, representing the
dependent variables, 3 hidden layers (hyperbolic tangent, sigmoid, and linear rectified
activation functions, respectively) with 1000 neurons each, and the output layer with
1 variable, representing the independent variable (FVimb, Figure 1).
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Figure 1. Model structure of the artificial neural network used. Input layer with 15 variables,
representing the dependent variables, 3 hidden layers with 1000 neurons each, and the output layer
with 1 variable (F-V imbalance), representing the independent variable.

The sample was randomly divided into training and test sets (70% and 30% of the
subjects, respectively). In the model training, the root mean square propagation adaptive
learning algorithm was used, with a loss function based on the mean square error and
a learning rate of 0.001. A limit of 200.000 epochs was established for training, and a
checkpoint function was used to store the information of the best weight configuration
(by monitoring the root mean square error), thus avoiding overtraining. The final model
reached a value of 0.0001 of the latter error after 58.480 epochs, with R2 = 0.97. Training,
test sets, and all subjects’ performance were measured using the coefficient of determi-
nation of linear regressions between targets and output values (Figure 2). The model
interpretation was based on the Shapley additive explanations values (SHAPs), which are
aligned with human intuition and allow to discriminate among model output classes with
improved generalization and representation of the nonlinear systems’ behavior, like human
athletic performance [28,29].
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Figure 2. Coefficient of determination of the linear regressions between target (real F-V imbalance)
and output (estimated F-V imbalance) values for all subjects, training, and testing sets (panel A, B,
and C, respectively).

3. Results

Table 1 presents the results from the comparison of the subject information, anthropo-
metric, and F-V variables of top and base gymnasts.

Table 1. Comparison of top and base gymnasts: subject information, anthropometrics, and F-V-
profile-associated variables.

Variables (Mean ± SD) Top Gymnasts (n = 11) Base Gymnasts (n = 17) p-Value Effect Size (95% CI)

Subject information

Age (years) 13.75 ± 2.14 18.15 ± 3.05 <0.001 * 1.6 (0.1–2.2)

Sex (M; F) M = 1; F = 10 M = 3; F = 14 0.05 * 0.5 (−0.0–1.0)

Training experience (years) 7.09 ± 3.28 8.35 ± 3.43 0.17 0.4 (−0.2–0.9)

Weekly training volume
(hours) 29.45 ± 1.77 29.29 ± 1.96 0.75 −0.1 (−0.6–0.5)

Level (1st division and elite) 1st = 5; E = 6 1st = 9; E = 8 0.59 −0.1 (−0.7–0.4)

Anthropometrics

Body mass (kg) 35.77 ± 7.70 63.67 ± 10.70 <0.001 * 2.9 (2.1–3.6)

Height (cm) 145.64 ± 9.66 167.67 ± 5.86 <0.001 * 2.9 (2.1–3.7)

Height of push-off (cm) 32.57 ± 4.09 38.37 ± 5.25 <0.001 * 1.2 (0.6–1.8)

Body fat percentage (%) 21.72 ± 4.83 18.16 ± 5.92 0.01 * −0.6 (−1.1; −0.1)

BMI (kg/m2) 16.64 ± 1.53 22.53 ± 2.68 <0.001 * 2.6 (1.8–3.3)
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Table 1. Cont.

Variables (Mean ± SD) Top Gymnasts (n = 11) Base Gymnasts (n = 17) p-Value Effect Size (95% CI)

F-V profile associated variables

F0 (N/kg) 29.10 ± 3.19 33.57 ± 7.09 0.88 −0.0 (−0.6; 0.5)

V0 (m/s) 2.98 ± 1.00 3.38 ± 1.25 0.21 0.3 (−0.2; 0.9)

Pmax (W/kg) 24.15 ± 4.87 27.20 ± 5.85 0.04 * 0.6 (0.0; 1.1)

CMJ height (cm) 29.10 ± 3.19 35.30 ± 6.22 <0.001 * 1.2 (0.6; 1.8)

F-V imbalance (%) 81.00 ± 34.96 79.56 ± 36.61 0.88 −0.0 (−0.6; 0.5)

BMI: body mass index, CMJ: Countermovement Jump, E: elite level, F: female, F-V: force–velocity, F0: maximal
theoretical force, M: male, Pmax: maximal power output, V0: maximal theoretical velocity, 1st: first, * statistically
significant differences.

Age, sex, all the anthropometric variables, Pmax, and CMJ height present significant
differences between roles. Bases present higher values for all variables, except for fat
percentage, which is, on average, 2% higher in tops (Table 1).

The relative importance of each variable for the F-V profile that was demonstrated by
all the gymnasts are presented in Figure 3. The left side of this figure presents the mean
SHAP values that were obtained for each variable. The F0 variable presents the highest
contribution (20.36 SHAP values), followed by Pmax (5.13 SHAP values). Fat percentage, V0,
height, and body mass make similar contributions (2.35, 2.27, 2.24, and 2.07 SHAP values,
respectively). The role performed, years of practice, and competition level are placed in the
middle of the hierarchy (0.95, 0.78, and 0.67 SHAP values, respectively). The age and sex
variables showed marginal effects in explaining the F-V profile but remained relevant for
the model construction.
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Figure 3. Hierarchical average impact magnitude for the 15 input variables used on the artificial
model and Shapley additive explanation (SHAP) values summary plot with the 15 input variables,
ordered by feature importance. The color bar on the right is used to interpret the direction (red) of the
relationship between one individual variable and the F-V profile. The strength of the relationships is
defined by the amplitude of the SHAP values. F0: maximal theoretical force, Pmax: maximal power
output, V0: maximal theoretical velocity, HPO: height of push-off, CMJ: Countermovement Jump,
BMI: body mass index, and SHAP: Shapley additive explanations.

A variable’s positive or negative impact on the F-V profile (the model output) can be
interpreted on the right panel of Figure 3. The results show that the FVimb increases with
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higher F0 values and decreases with higher values of Pmax, fat percentage, V0, height, and
the role performed (bases “0” or tops “1”). This result suggests that being a top gymnast
may be associated with a reduced FVimb in comparison to being a base gymnast (0.95
SHAP values). With a smaller individual expression, more years of practice and a higher
competition level, i.e., being an elite-level gymnast contribute to a higher FVimb (0.67 SHAP
values). Although the variables body mass index, age, and sex play a collaborative role in
the model construction, they do not show relevant individual contributions. In addition,
when the red color appears on both the positive and negative sides of the graphic (e.g., fat
percentage or body mass), this indicates that these variables are important for the model as
cooperative variables and should be interpreted in combination with other variables.

When the model was exposed only to tops or bases separately, the hierarchy of
importance of the first four variables remained the same, regardless of the role that gym-
nastsperformed. This means that the changes in FVimb were promoted mostly by changes
in F0, followed by Pmax, V0, and fat percentage for both roles (Figure 4). From this point
on, Figure 4 shows the different contributions of each input variable according to the role
performed, indicating the discriminating variables between roles. Height, years of practice,
and competition level are relevant for top gymnasts, and body mass, height, and HPO have
greater impact for base gymnasts.
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model for base and top gymnasts. SHAP: Shapley additive explanations, F0: maximal theoretical
force, Pmax: maximal power output, V0: maximal theoretical velocity, HPO: height of push-off, CMJ:
Countermovement Jump, BMI: body mass index.

4. Discussion

This work aimed to investigate a hierarchy of factors that influence the F-V profile
of base and top acrobatic gymnasts, using a deep artificial neural network model. The
results showed that the selected variables explained the variations in the F-Vimb of acrobatic
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gymnasts and that such a model was also able to distinguish between top and base groups,
allowing us to understand the main characteristics of their jumping skill, considering their
specific training and role.

Age and anthropometric measures were different between tops and bases, with the
body fat percentage being the only variable that was higher in tops (2%). This finding
was not expected, since top gymnasts have a greater role specificity, being responsible for
carrying out a variety of elements while being supported and propelled by the bases [30].
However, this can be an effect of gymnasts’ growth, development, and maturation [1] and
can also be associated with increases in muscle mass and neuromuscular development of
the bases, that are positively linked to responses to training and competition [31].

The role played in ACRO is strongly influenced by physical characteristics, with
bases being associated with an endo-mesomorphic and tops with a balanced mesomorphic
somatotype, similar to artistic gymnasts [4]. Although anthropometric variations are part
of this gymnastics discipline, they are limited by the Code of Points. For instance, in the
senior age group, athletes may receive a penalty in the final score of each exercise if the
height difference between partners is larger than 29.99 cm [3].

In fact, gymnasts develop jumping and bouncing skills at early ages [1], and the
CMJ has been used to evaluate the power of the lower limbs of dancers and rhythmic
gymnasts [21,32]. Compared to the present top group, 13-year-old ballet dancers presented
similar CMJ heights when evaluated with the same instrument [32]. Bases presented
higher Pmax and CMJ height than tops considering that jumping performance is expected
to increase with growth and/or age [33,34]. In fact, the additional effects of training
experience and biological maturation positively influenced the performance of young
basketball players, suggesting that coaches should focus not only on athletes’ body sizes,
but also on their skill level, especially during adolescence [35].

Professional ballet dancers at all company ranks (18.94 ± 1.32 years old) were classi-
fied as velocity-oriented [12], and adolescents (13.6 years old) also tend to show a more
velocity-oriented profile compared to children (8.1 years old) [36]. The interpretation
of the F-V profile of the present sample indicates that both roles present, on average, a
low-force deficit, which may negatively affect the jumping skill and, therefore, the qual-
ity of their performance [26]. Accordingly, it is important that ACRO coaches invest in
strength- and jump-specific training, both in younger and older gymnasts. A previous
study demonstrated that a combination of heavy resistance training with high-impact
plyometric jumps is effective in prepubertal gymnasts, despite their initial high level of
physical conditioning [1].

In the present sample, F0 was the most important variable for the F-V relationship,
followed by Pmax. However, while a higher F0 contributed to an increased FVimb, a
higher Pmax reduced the FVimb, as well as the V0. This was expected, considering that
the maximal concentric muscle force decreases as the velocity of movement increases [2].
Previous studies also showed the influence of the range of motion in the vertical jumping
performance of children training ACRO twice a week, instead of improving the ground
reaction force in the same phases [8]. The influence of the range of motion was also
relatively greater in prepubescent girls than in adult females [37]. These considerations
show the importance of coaches having clear information on the variables that are required
to develop in ACRO, considering the role performed. The identification of the vertical jump
mechanical determinants may assist in strengthening the weaker components of the F-V
profile throughout the training process [38].

The role performed in ACRO shows different F-V relationships. There is a tendency
for top gymnasts to present a reduced F-Vimb, suggesting that the force and velocity
components may be more balanced compared to bases. A higher competition level, i.e.,
being an elite gymnast, is also associated with a higher F-Vimb. Still, these findings must be
interpreted carefully, since both the role performed and the competition level presented
reduced individual contributions, i.e., 0.95 and 0.67 SHAP values, respectively, which
makes it difficult to generalize this specific result to the gymnastics community. A possible
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remark is that this may be linked to a greater specialization [7], which is expected as
gymnasts get older. In fact, as the athlete’s level and training background increase, the
difficulty of producing training adaptations in maximal power activities, such as vertical
jumps, also increases [2].

In sprint performance, the F-V slope decreases with maturation and age, strengthening
the relevance of F0 in contrast to V0 [39]. For young soccer players, jumping force highly
explained the variability in maturity offset and chronological age, along with the F-V
slope, indicating that force is the mechanical determinant that develops the most across
the maturation process or age, while other variables, such as velocity, are not expected
to increase [38]. However, a significant improvement in sprint performance is associated
with the ability to develop horizontal forces at high velocities and to not develop a high
level of resultant force, which is mainly associated with an increase in the mechanical
effectiveness of the force application to the ground with increasing velocity [36]. Learning
the consequences of applied forces is necessary to improve a sports skill. In ACRO, the
balance between force and power is necessary to achieve the expected effect on motion,
either for the top or the base. Further studies are required to evaluate if this information
applies to the pair/group execution.

The neural networks of the separate data from tops or bases showed that the hierarchy
of importance of the first four variables was the same for both roles. From that point
on, the variables were presented in a different hierarchy for tops and bases, suggesting
different adaptations for each role. In the following order, body mass, height, and HPO
are the salient variables for explaining the FVimb of base gymnasts, while height, years of
practice, and competition level are the same for tops. Our work has highlighted the different
anthropometric measures between roles, since bases are heavier and taller and present a
higher HPO. A possible remark is that the anthropometric differences, as well as maturation
and age variations between roles, gave an advantage to the bases for achieving a higher CMJ
height, which is similar to a previous work’s findings [9]. In fact, the largest correlations
were identified in the F0 and Pmax and both the maturity offset and chronological age
of both horizontal and vertical F-V profiles, regardless of body size and experience [38].
These findings highlight the importance of task specificity to assess the neuromuscular
capabilities of athletes [22].

The major limitation of this work is the reduced male sample, which results from the
imbalance between the number of males and females practicing the sport and at this level
of competition. The general sample size is also reduced, making it difficult to generalize
the results to different contexts. We have included all the available gymnasts at this
competition level and two evaluations for each gymnast; therefore, the results apply to
this specific context of high-level acrobatic gymnasts with different roles (bases and tops).
Like other gymnastics disciplines, Acrobatics is characterized by its early specialization, in
which from the age of 12, gymnasts can compete at a high-performance level. Therefore,
another limitation is the uncontrolled effect of age/maturation processes in a large age
span, which could have provided important information to support several outcomes,
using variables such as the maturity offset and peak height and weight velocity. We
have collected anthropometric measures, in which the HPO is the one that provides more
detailed information in terms of the effect of the lower limb length on jumping performance.
For future studies, we recommend the use of representative samples to verify the results
achieved, perhaps using gymnasts from different clubs and nationalities, to assess a larger
number of high-performance gymnasts.

The hierarchy of variables established in this investigation (regardless of and consid-
ering the role) provides an important tool for ACRO coaches to understand the weight
that each input has on the final output. Our results showed that F0, Pmax, V0, and body
fat percentage are key for both roles, i.e., they present the same hierarchy of importance.
From this point on, the discriminating variables between roles, which are important for
the training of tops and bases, are height, years of practice, and competition level for top
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gymnasts and body mass, height, and HPO, with a greater impact for base gymnasts (in
this order).

5. Conclusions

On average, acrobatic gymnasts present a low-force deficit, regardless of the role
performed, which may negatively affect their jumping skill and quality of performance.
Therefore, it is important that ACRO coaches invest in strength- and jump-specific training,
both in younger and older gymnasts.

The neural network results showed that F0 is the key variable for the F-V profile
of acrobatic gymnasts, followed by Pmax. In addition, the FVimb of acrobatic gymnasts
increases with higher F0 values and decreases with higher values of Pmax, fat percentage,
V0, and height. With a minor individual contribution, being a top gymnast may lead to
more balanced force and velocity components in comparison to being a base gymnast, and
a higher competition level, i.e., being an elite gymnast is also associated with a higher
F-Vimb. Nevertheless, further studies are required to understand the impact of these two
findings in the gymnastics community.

Thus, FVimb could be considered a potentially useful variable for monitoring jumping
performance in this sport. ACRO coaches should target F0 development as their main
priority, followed by Pmax and V0 for the optimization of gymnasts’ jumping performance.
In addition, ACRO coaches should also focus on the contribution of the anthropometric
measures (bases) and the training experience and competition level (tops) for the F-V
profile, according to the role performed.
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19. Bogataj, Š.; Pajek, M.; Hadžić, V.; Andrašić, S.; Padulo, J.; Trajković, N. Validity, reliability, and usefulness of My Jump 2 App for
measuring vertical jump in primary school children. Int. J. Environ. Res. Public Health 2020, 17, 3708. [CrossRef] [PubMed]

20. Morin, J.-B.; Samozino, P. Interpreting power-force-velocity profiles for individualized and specific training. Int. J. Sports Physiol.
Perform. 2016, 11, 267–272. [CrossRef]

21. Ferreira Melo de Sá, L.; Leite, I.; Batista Santos, A.; Tristão Ávila Carvalho, M.d.L. Jump ability and force-velocity profile in
Rhythmic Gymnastics. Sci. Gymnast. J. 2023, 15, 225–237. [CrossRef]

22. Junge, N.; Morin, J.-B.; Nybo, L. Leg extension force-velocity imbalance has negative impact on sprint performance in ball-game
players. Sports Biomech. 2020, 22, 1027–1040. [CrossRef]

23. Jimenez-Reyes, P.; Samozino, P.; Cuadrado-Penafiel, V.; Conceicao, F.; Gonzalez-Badillo, J.J.; Morin, J.B. Effect of countermovement
on power-force-velocity profile. Eur. J. Appl. Physiol. 2014, 114, 2281–2288. [CrossRef]

24. Jimenez-Reyes, P.; Cuadrado, V.; Blanco, F.; Montilla, J.A.; Bendala, F.; González-Badillo, J. Load that maximizes power output in
countermovement jump. Rev. Bras. Med. Esporte 2016, 22, 13–16. [CrossRef]

25. Loturco, I.; Nakamura, F.Y.; Tricoli, V.; Kobal, R.; Cal Abad, C.C.; Kitamura, K.; Ugrinowitsch, C.; Gil, S.; Pereira, L.A.; González-
Badillo, J.J. Determining the Optimum Power Load in Jump Squat Using the Mean Propulsive Velocity. PLoS ONE 2015, 10,
e0140102. [CrossRef] [PubMed]

26. Jimenez-Reyes, P.; Samozino, P.; Brughelli, M.; Morin, J.B. Effectiveness of an individualized training based on force-velocity
profiling during jumping. Front. Physiol. 2017, 7, 677. [CrossRef] [PubMed]

27. Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988; p. 567.
28. Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 1–10.

[CrossRef]
29. Perl, J. Artificial Neural Networks in Sports: New Concepts and Approaches. Int. J. Perform. Anal. Sport 2001, 1, 106–121.

[CrossRef]
30. Taboada-Iglesias, Y.; Vernetta-Santana, M.; Alonso-Fernandez, D.; Gutierrez-Sanchez, A. Anthropometric Specificity and Level of

Participation in Acrobatic Gymnastics Based on Sex. Int. J. Morphol. 2019, 37, 1534–1540. [CrossRef]
31. Guimarães, E.; Baxter-Jones, A.D.G.; Williams, A.M.; Tavares, F.; Janeira, M.A.; Maia, J. The role of growth, maturation and

sporting environment on the development of performance and technical and tactical skills in youth basketball players: The INEX
study. J. Sports Sci. 2021, 39, 979–991. [CrossRef]

32. Ávila-Carvalho, L.; Conceição, F.; Escobar-Álvarez, J.A.; Gondra, B.; Leite, I.; Rama, L. The Effect of 16 Weeks of Lower-Limb
Strength Training in Jumping Performance of Ballet Dancers. Front. Physiol. 2021, 12, 774327. [CrossRef]

33. Temfemo, A.; Hugues, J.; Chardon, K.; Mandengue, S.-H.; Ahmaidi, S. Relationship between vertical jumping performance and
anthropometric characteristics during growth in boys and girls. Eur. J. Pediatr. 2009, 168, 457–464. [CrossRef]

https://doi.org/10.1016/j.gaitpost.2021.07.023
https://doi.org/10.3390/biomechanics3040037
https://doi.org/10.1249/MSS.0b013e31822d757a
https://www.ncbi.nlm.nih.gov/pubmed/21775909
https://doi.org/10.1055/s-0033-1354382
https://doi.org/10.12678/1089-313X.24.2.59
https://doi.org/10.1155/2022/3692428
https://doi.org/10.1007/s00592-003-0018-x
https://www.ncbi.nlm.nih.gov/pubmed/14618425
https://doi.org/10.1016/j.sbspro.2014.02.249
https://doi.org/10.1038/s41598-021-90264-w
https://www.ncbi.nlm.nih.gov/pubmed/34031518
https://doi.org/10.1123/IJSPP.2015-0484
https://doi.org/10.1080/02640414.2014.996184
https://www.ncbi.nlm.nih.gov/pubmed/25555023
https://doi.org/10.3390/ijerph17103708
https://www.ncbi.nlm.nih.gov/pubmed/32466091
https://doi.org/10.1123/ijspp.2015-0638
https://doi.org/10.52165/sgj.15.2.225-237
https://doi.org/10.1080/14763141.2020.1775877
https://doi.org/10.1007/s00421-014-2947-1
https://doi.org/10.1590/1517-869220162201129753
https://doi.org/10.1371/journal.pone.0140102
https://www.ncbi.nlm.nih.gov/pubmed/26444293
https://doi.org/10.3389/fphys.2016.00677
https://www.ncbi.nlm.nih.gov/pubmed/28119624
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.1080/24748668.2001.11868253
https://doi.org/10.4067/S0717-95022019000401534
https://doi.org/10.1080/02640414.2020.1853334
https://doi.org/10.3389/fphys.2021.774327
https://doi.org/10.1007/s00431-008-0771-5


Appl. Sci. 2024, 14, 3191 12 of 12

34. Focke, A.; Strutzenberger, G.; Jekauc, D.; Worth, A.; Woll, A.; Schwameder, H. Effects of age, sex and activity level on counter-
movement jump performance in children and adolescents. Eur. J. Sport Sci. 2013, 13, 518–526. [CrossRef]

35. Guimarães, E.; Baxter-Jones, A.; Maia, J.; Fonseca, P.; Santos, A.; Santos, E.; Tavares, F.; Janeira, M.A. The Roles of Growth,
Maturation, Physical Fitness, and Technical Skills on Selection for a Portuguese Under-14 Years Basketball Team. Sports 2019, 7,
61. [CrossRef] [PubMed]

36. Rossi, J.; Slotala, R.; Samozino, P.; Morin, J.B.; Edouard, P. Sprint acceleration mechanics changes from children to adolescent.
Comput. Methods Biomech. Biomed. Eng. 2017, 20, 181–182. [CrossRef] [PubMed]

37. Floría, P.; Harrison, A.J. The influence of range of motion versus application of force on vertical jump performance in prepubescent
girls and adult females. Eur. J. Sport Sci. 2014, 14, S197–S204. [CrossRef] [PubMed]

38. Fernández-Galván, L.M.; Boullosa, D.; Jiménez-Reyes, P.; Cuadrado-Peñafiel, V.; Casado, A. Examination of the Sprinting and
Jumping Force-Velocity Profiles in Young Soccer Players at Different Maturational Stages. Int. J. Environ. Res. Public Health 2021,
18, 4646. [CrossRef]

39. Samozino, P.; Rabita, G.; Dorel, S.; Slawinski, J.; Peyrot, N.; Saez de Villarreal, E.; Morin, J.-B. A simple method for measuring
power, force, velocity properties, and mechanical effectiveness in sprint running. Scand. J. Med. Sci. Sports 2016, 26, 648–658.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/17461391.2012.756069
https://doi.org/10.3390/sports7030061
https://www.ncbi.nlm.nih.gov/pubmed/30857137
https://doi.org/10.1080/10255842.2017.1382922
https://www.ncbi.nlm.nih.gov/pubmed/29088592
https://doi.org/10.1080/17461391.2012.679316
https://www.ncbi.nlm.nih.gov/pubmed/24444207
https://doi.org/10.3390/ijerph18094646
https://doi.org/10.1111/sms.12490

	Introduction 
	Materials and Methods 
	Sample Characterization 
	Procedures and Instruments 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

