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Abstract: Robot Exploration can be used to autonomously map an area or conduct search missions in
remote or hazardous environments. Using multiple robots to perform this task can improve efficiency
for time-critical applications. In this work, a distributed method for multi-robot exploration using
a Harmonic Map Transformation (HMT) is presented. We employ SLAM to construct a map of the
unknown area and utilize map merging to share terrain information amongst robots. Then, a frontier
allocation strategy is proposed to increase efficiency. The HMT is used to safely navigate the robots to
the frontiers until the exploration task is complete. We validate the efficacy of the proposed strategy
via tests in simulated and real-world environments. Our method is compared to other recent schemes
for multi-robot exploration and is shown to outperform them in terms of total path distance.

Keywords: autonomous robot exploration; multi-robot exploration; harmonic map transformation;
artificial potential fields

1. Introduction

Robotic Exploration involves the systematic exploration of initially unknown envi-
ronments, typically achieved by creating a map—either 2D or 3D—using autonomous
robots. The process requires three essential components: a mechanism for mapping the
environment, knowledge of the robot’s relative position within the map, and a strategy for
the robot to autonomously plan its trajectory within the explored area, in order to expand it.
The integration of the first two components constitutes the Simultaneous Localization And
Mapping (SLAM) problem, a field that has witnessed considerable advancements in recent
decades and remains an active area of study [1]. While a straightforward solution for explo-
ration involves teleoperating (remote operation) a robot performing SLAM, the necessity for
autonomous exploration arises when direct control becomes impractical due to dangerous
environments or substantial time delays. This is particularly relevant in scenarios like
search and rescue missions conducted in hazardous settings and space exploration.

While a single robot can effectively explore a designated area of interest, employing
multiple robots to cooperatively explore the same setting offers significant advantages.
Distributing the exploration task among multiple agents can notably reduce exploration
time, computational load, and distance traveled by an individual robot, thereby enhancing
the overall operational efficiency. In the realm of multi-robot exploration, two primary
architectures are considered: a centralized approach, where a central node possesses all
relevant information and coordinates each robot, and a distributed approach, where robots
can only periodically exchange information under specific conditions, such as being within
communication range.

1.1. Related Works

A vast array of methods have been suggested and implemented for autonomous
exploration using a single robot. A well-studied and common approach is that of frontier-
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based methods. In [2], Yamauchi introduced the idea of frontier detection, i.e., the edges
between explored and unknown areas, and then used a depth-first search to navigate to the
frontier location, while using reactive obstacle avoidance. In [3], an improved algorithm is
proposed for faster frontier detection. In [4], the authors eliminated the need for tuning
in frontier clustering with the employment of a histogram. In recent years, artificial
intelligence and particularly Deep Reinforcement Learning (DRL) has shown promising
results in the field of exploration. Particularly, in [5], DRL is combined with frontier
exploration to allow for the exploration of unknown cluttered environments, aiming for
use in urban search and rescue missions. In [6], an algorithm that utilizes DRL is used to
predict an efficient long-term visiting order for unexplored regions, obtaining knowledge
from information derived from a training set of office blueprints.

Another popular approach is using sampling-based algorithms to search and select
areas to be explored. In [7], a method called UFOExplorer is proposed that continu-
ously expands a dense undirected graph, optimized for fast and efficient exploration.
Rapidly-exploring Random Tree (RRT) and its variants are mainstream among various
sampling-based exploration methods. In [8], a novel method is presented where the robot
is guided to the unexplored region using multiple RRTs, removing the requirement for
frontier exploration. Artificial Potential Fields have been utilized in the field of robotic ex-
ploration, such as in [9,10], where a harmonic potential field function is used for navigating
to frontiers.

Due to the clear advantages of employing multiple robots for exploration, most
methods used in single robot exploration have been extended to multi-robot setups. In [11],
Yamauchi first expanded the concept of frontier-based robotic exploration to multiple
robots. In this method, each robot exchanged information with others but kept a local copy
of its map to maintain robustness. In [12], a more sophisticated approach was taken for
multi-robot exploration, as frontier target selection considered both cost and utility. In [13],
a modified A* search algorithm for multi-agent exploration is presented that attempts
to minimize the energy consumption during the exploration process. Similarly, the RRT
approach has been extended to multi-robot systems as well. In [14], local and global
RRT-based detectors are used for multi-robot exploration. Additionally, [15] proposes
a novel frontier detection algorithm called Hybrid Multi-Strategy RRT to improve the
efficiency and reliability of multi-robot exploration. Their method consists of an adaptive
incremental distance strategy, a sub-region sampling strategy, and a greedy frontier-based
exploration strategy.

In [16], a decentralized and computationally efficient frontier allocation method favor-
ing a well-balanced spatial distribution of robots in the environment was introduced. A
wavefront propagation algorithm constructs Artificial Potential Fields used for the path
planning process. In [17], multi-robot multi-target Potential Fields are used for exploration,
an approach that eliminates local minima for multi-robot Artificial Potential Fields. In the
same vein, artificial harmonic potential fields were employed in [18], leading to a reactive
algorithm for autonomous exploration for multiple autonomous multi-rotor robots. In [19],
a collaborative multi-robot exploration method is proposed. Utilizing Voronoi-based explo-
ration strategies, each robot is assigned a target location for exploration. The robots then
navigate to the target location with the use of a DRL collision avoidance algorithm. In [20],
a Gaussian Process and relative localization belief information are used to generate a map
and determine the unexplored region. The next-best unexplored region is then selected by
solving a linearized convex hull optimization problem. In [21], a novel exploration strat-
egy is presented using the Monte Carlo Tree Search algorithm, optimized for multi-robot
exploration missions in unknown areas. Navigation is based on a reward function, and a
decentralized coordination model is used among multiple robots, resulting in significantly
reduced exploration times.
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1.2. Contributions

This paper presents a novel method for both single-robot and multi-robot exploration,
leveraging a HMT for frontier navigation and obstacle avoidance. This modified version
will hereby be referred to as HMT for Exploration. In the proposed approach, a map of
the perceived space is obtained and the HMT for Exploration is computed. Employing
a greedy frontier allocation strategy, the robot is able to choose its goal and navigate to
it safely using the HMT. In the multi-robot case, the exploration process is optimized by
sharing the local maps of the robot and constructing a merged map. The key contributions
of this work include the following:

• The extension of the concept of HMT to incorporate frontier points on the boundary
of the perceived workspace, enabling its use for exploration tasks.

• The design of a comprehensive exploration method that integrates the HMT for
effective navigation and mapping in unknown environments.

• The extension of the proposed method to facilitate multi-robot exploration, enabling
collaborative exploration efforts with improved efficiency and coverage.

To the best of our knowledge, this is the first time that the HMT has been extended for
exploration in a multi-robot framework. This paper is organized as follows: In Section 2,
the problem of multi-robot exploration is formally introduced. In Section 3, the proposed
methodology is presented. The validity of the proposed methodology is evaluated through
both high-fidelity simulations and real-world experiments, the results of which are detailed
in Section 4. Finally, conclusions regarding the presented method and future work are
shown in Section 5.

2. Problem Formulation

Let W ⊂ R2 denote the compact and connected workspace of the robot. Within W
exists a finite set of inner obstacles Wj, j ∈ [1, ..., M]. The workspace is considered static
and the only dynamic elements are the robots themselves. The boundaries of the outer and
inner curves are denoted as ∂W0 and ∂Wj and the entirety of the workspace’s boundaries
can be referred to as ∂W (see Figure 1).

Now, consider a group of N robots, where the position of each robot is described
by the state vector pi(t) = [xi(t), yi(t)]T ∈ R2, i ∈ [1, ..., N], representing the Cartesian
coordinates in the workspace. Each robot has a sensing region ri, i ∈ [1, ..., N] that de-
notes a disk with a radius equal to maximum distance that can be perceived as unoc-
cupied by the robot’s sensors. The explored region of each robot at time t is noted as
εi(t) = (ri ∩ W) ∪ εi(t − T) ⊆ W, where T is the period that the explored region is updated
and the initial explored region is εi(0) = ri ∩ W. The boundaries of the explored region
∂εi can be a part of the workspace boundaries and denoted as ∂εiO ⊆ ∂W or belong to the
workspace and denoted as ∂εi f ⊂ W. The latter boundaries will henceforth be referred to
as frontiers. The total explored region at any given moment t can be defined as follows:

E(t) =
N⋃

i=1

εi(t). (1)

Problem: Our goal is to create a controller that plans the path of each robot so that
E(t f ) = W with t f < ∞, using the information provided by each of the robots in an efficient
manner, while ensuring that each robots’ trajectory remains safe , i.e., pi(t) ∈ W for all
t ≥ 0.
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Figure 1. An example of a workspace with two obstacles. Three robots p1, p2, p3 are exploring the
workspace. The colored areas correspond to the perceived part of the workspace so far.

3. Methodology

The methodology proposed in this paper revolves around the computation of a HMT
from the data given by the mapping process. To achieve this, the map undergoes a series of
preprocessing steps, including filtering and boundary extraction.

3.1. Filtering and Boundary Extraction

Each robot generates a dynamic map of the explored area and its corresponding posi-
tion using odometry and LIDAR data through SLAM. Subsequently, this map undergoes
filtering to eliminate noise or imperfections that may arise during the mapping process,
such as small gaps in boundary walls. This filtering primarily involves image processing
techniques, including boundary dilation and erosion. To simplify the control process,
each robot is considered to be a point, and thus the boundaries are inflated by the robot’s
radius. Computer vision algorithms are then employed for edge detection and boundary
coordinate extraction. The extraction of the explored region’s boundaries, including the
identification of frontiers, is essential for the construction of the HMT.

3.2. Harmonic Maps Transformation for Exploration

To navigate within the explored region while avoiding static obstacles, a modified
version of Harmonic Maps for Planar Navigation used in [22] is proposed. The aforemen-
tioned method maps the robots’ workspace W into a punctured unit disk D. In contrast,
our modified version of the transformation T maps only the explored region ε into D and
has the following properties:

1. Maps the explored region’s outer boundary ∂ε onto the unit circle ∂D
2. Maps each of the frontiers ∂ε f of the outer boundary into a single point q f ∈ ∂D
3. Maps the inner obstacle boundaries ∂Wj that are within the explored region ε to a

distinct point qj ∈ int(D)

4. The transformation T is a diffeomorphism for all p ∈ int(W).
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The modified transformation is visualized in Figure 2. Since no closed-form solu-
tions exist for non-trivial domains of the aforementioned transformation, the inner and
outer boundaries are subdivided into a sufficient number of linear elements in order to
numerically approximate T with T̃ . Thus, the following transformation is given

T̃ (p) = [ũ(p), ṽ(p)]T = q, p ∈ ε, q ∈ D, (2)

with ũ(p), ṽ(p) being harmonic functions with respect to p, by approximating an ideal
harmonic map T .

Figure 2. The Modified HMT for exploration, transforming the explored region into a punctured disk.
On the left is an example of a workspace and on the right is its corresponding transformation. The
explored region is colored blue and the frontiers are colored green.

The HMT for Exploration is particularly useful for navigating inside the explored
region while avoiding the static obstacles, since each inner obstacle is mapped to a single
point. Thus, in the transformed space D, a line that connects the mapped position to the
desired destination may intersect with inner obstacles with zero probability. Furthermore,
since frontiers are mapped to points, navigating towards them becomes trivial, as shown in
later sections.

3.3. Robot Exploration

The algorithms followed for both single-robot and multi-robot exploration are pre-
sented in this subsection. The proposed method is heavily based on the HMT, since it is
used for goal selection, path planning, and terminating exploration.

3.3.1. Single Robot

Single robot exploration follows the algorithm depicted in Figure 3. We propose
a simple yet effective approach. First, an occupancy grid map is constructed utilizing
SLAM. Then, the boundaries are extracted as previously discussed. Subsequently, the HMT
for Exploration is computed using the extracted boundaries. As highlighted in [22], the
transformation incurs a computational complexity of O(M3), where M denotes the total
number of elements (samples of the boundaries) utilized in the computation. Although
the mapping process may slow as the size of the map expands, this issue is mitigated by
the fact that the map only needs to be updated when the robot is close to a frontier so
that new information is added to the map. Thus, the transformation can be calculated at a
low frequency. However, if computational demands persist, a solution proposed in [22]
involves employing a map atlas, where numerous local HMTs are interconnected within a
graph structure.

Following the calculation of the HMT, the presence of frontiers is used as a condition
for terminating the exploration process. In the event that frontiers are detected, the single
robot selects one to navigate towards. A greedy approach is adopted, wherein the nearest
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frontier is chosen as the destination. This selection strategy optimizes the exploration
process by prioritizing proximity to unexplored regions. After selecting a navigation goal,
a controller based on the HMT guides the robot towards the frontier. The robot’s position
is denoted as p = [x, y]T ∈ R2, and the yaw angle is represented as θ ∈ R. The mapping of
the robot’s position is expressed as q = T̃ (p) ∈ R2, with its corresponding Jacobian matrix
denoted as J(q). The following vector

u = −J−1(q)(q − qdest) (3)

signifies the velocity required for the robot to navigate to the point that maps to qdest. It
should be noted that qdest represents the set of points of the nearest frontier and not a single
point in the actual workspace.

Filtering & Boundary
Extraction

Harmonic Map
calculation

Frontiers
exist?

End

Pick Nearest Frontier
(Greedy Strategy)

Navigate to Frontier

No Yes

Receive Map 
from SLAM

Exploration Done

Start

Figure 3. The single robot exploration algorithm.

The above equations are sufficient to control a single integrator model. A more
common case is that of a differential drive model. Although it is possible to map the single
integrator dynamics to the differential drive, as shown in [23], a simpler approach is used
in this paper. The low-level controllers of differential drive robots often require that linear
v and angular ω velocities be provided to them. The controller chosen is a proportional
controller that aims to align the robot with the u vector.

v = KlinKtα∥u∥ (4)

ω = Kang∆θ (5)
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with ∆θ ∈ [−π, π] denoting the angular error between θ and θd = arctan(uy/ux), and with
Klin, Kang ∈ R being the controller gains. The rotation gain

Kt(∆θ) =

{
1, if ∆θ ∈ [−ϕ, ϕ]

0, otherwise.
(6)

determines whether the robot should be stationary while turning to avoid larger deviations
from the single integrator path and ensure that the robot remains within the workspace.
The angle ϕ represents the largest acceptable deviation. The gain α is a damping factor
that reduces linear velocity near frontiers, assisting in avoiding collisions near unexplored
regions, such as sharp corner turns.

Remark 1. An issue arises with the inner obstacle’s "shadows". During the exploration process, an
obstacle may be detached from ∂ε, but the area around it will not be fully explored, thus remaining
unknown. Frequently, the above issue is solved by simply continuing the exploration process, but for
small areas or obstacles with complex shapes the issue may persist. HMTs can by modified to handle
the exploration of such areas. Simply put, the inner obstacle’s frontier is mapped to a single point in
the interior of D, similarly to the frontiers belonging to ∂E , but in this case the angle of approach
must be taken into account so the correct area is explored. Finding the correct angle of approach can
be achieved trivially, since the transformation is orientation preserving. When approaching inner
obstacle frontiers, the control law must be altered to guarantee convergence to the correct angle of
approach. The HMT is modified by adding a dipolar vector field, as shown in Figure 4. A similar
approach is taken in [24]. Since a dipolar vector field is harmonic, no local minima will arise [25].
Hence, when navigating to an inner obstacle frontier, the updated control law for the velocity vector
u ∈ R2 is given by

u = J−1(q)vdvf (7)

where vdvf represents the dipolar vector field direction [24].

(a) (b)

Figure 4. An example of inner frontier. (a) a workspace with a singular L-shaped inner obstacle. The
explored region is colored in blue and the frontier in green, showing that the inner corner remains
unexplored. (b) HMT of the explored region with the dipolar vector field overlayed on top. The inner
obstacle is mapped to the green point and the white arrow shows the desired angle of approach. The
dipolar vector field guides the robot through the desired angle.

3.3.2. Multi-Robot Setup

The framework outlined for single robot exploration can be extended to accommodate
multiple robots working cooperatively. This extension provides enhanced exploration
efficiency and coverage, by leveraging collaborative efforts among multiple agents. The
method detailed in Figure 5 is used for multi-robot exploration. First, utilizing SLAM,
a local occupancy grid map is constructed. Then, if possible, maps from other robots
are merged with the local map. Next, the boundaries are extracted and if frontiers are
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detected the robot navigates to the nearest frontier as explained previously. To reduce
frontier overlap and increase efficiency, a frontier allocation process is used that will be
discussed later.

Map Merging

Does this robot's map
overlap with anothers?

Filtering & Boundary
Extraction

Use SLAM map Use Merged Map

Yes No

Harmonic Map
Transformation

Receive Map 
from SLAMStart

Frontiers
exist?

End

Pick Nearest Frontier
currently not being
explored by other

robot
(Greedy Strategy)

Navigate to Frontier

No Yes

Exploration
Completed

For each robot:

Figure 5. The multi-robot exploration algorithm.

The approach is implemented in a distributed manner, since each robot has limited
information about the others and can independently explore the workspace regardless of
the state of the other agents. The information shared among robots involves their location,
their map of the so far explored workspace, and their currently explored frontier. If the
explored region of a robot intersects with another’s, the new information is used to expand
their explored region. Finally, overlapping between explored regions is minimized by the
goal frontier selection, further optimizing the exploration process. By using a distributed
approach, each robot can act autonomously, thus making the system robust to robot failure.

It is important to consider the scalability of the system. Since the approach is dis-
tributed, when more agents are added the complexity of the system grows only in the
amount of data shared and the number of maps to be merged. If all robots exchange infor-
mation with each other, then n(n − 1) information exchanges would be required, where n
is the total number of robots, making the scaling of the system O(n2). The complexity is
reduced by limiting the inter robot communication to a certain range, reducing the total
number of information exchanges to O(nl) , where l ≤ n is the average number of agents
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within each robot’s communication range. The amount of data in each exchange is mainly
dependent on the size of the map being shared and its resolution.

A big advantage of using multiple robots is the ability to combine many maps to
produce a complete mapping of the workspace. This process is called map merging [26].
The merging process facilitates the creation of a unified and comprehensive map, thereby
eliminating the need to fully map the workspace with each individual robot. In our
approach, when a map is shared, it is aligned with the robot local map and added to
the robot’s merged map, as shown in Figure 6. Thus, each robot has an individual local
and merged map. This approach ensures that the system does not rely on a central map
merging node, although a common frame of reference is selected for all merged maps, so
their resulting maps can be comparable. Moreover, the map merger checks if the added
area is connected to the local explored region, in the sense that a clear path connecting the
two regions exists in the merged explored region. If the two areas overlap, then the new
region is added to the HMT. Notable is a fact that during the merging process when the
local map overlaps with another, the data of the local map is selected as correct, so as to not
interfere with the local explored region when a map is misaligned. The merging of partial
maps generated by multiple robots enhances the exploration process significantly as larger
areas can be fully mapped in a more efficient manner.

Figure 6. The map merging process visualized. (a–c) show three partial maps of the same workspace
and (d) shows the resulting merged map that the robot (a) produces. Note that the blue area is on top.

A potential challenge arises post-merging, wherein multiple robots may inadvertently
explore the same frontiers simultaneously. To address this issue, a strategy is employed to
ensure efficient frontier allocation among robots. At the start of the exploration process,
each robot is assigned an arbitrary priority number, with a smaller number indicating
higher priority. The priority number assists the frontier allocation process, as constant
changes in the goal frontier are avoided when the allocation metric (the distance from
the frontier in this case) of two agents is equal. When selecting a frontier to navigate to,
the robots with higher priority share a merged map and state their current goal frontier.
Then, a check is performed to detect any duplicate frontiers. If duplicates are found, the
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robot’s current frontier goal is set as a random frontier that no other robot with higher
priority has set as a goal. If all other frontiers are taken, then the robot will not pick a goal
frontier and stay stationary until a new frontier is discovered. Using the above rule, the
inefficient scenario of multiple robots exploring the same frontier is avoided. An exception
is made when the robot with higher priority is located outside a certain range, chosen as
the laser scanner’s maximum distance. In that case, both robots head to the same goal
and it is assumed that a new nearest frontier will be discovered during exploration. This
approach minimizes redundancy and maximizes exploration coverage, thereby optimizing
the collective exploration efforts of the multi-robot system.

Finally, the inclusion of other robots inside the workspace breaks the earlier assump-
tion that all obstacles are static. Since our approach is distributed, a simple solution such
as active collision avoidance is executed using the LIDAR data that overrides the HMT
controller to avoid an imminent collision when robots are located close to each other.

4. Results

To verify the validity of the proposed HMT Exploration method, we tested on simu-
lated and real-world environments both the single-robot and multi-robot cases. The results
of the multi-robot simulation are compared with recent methods to highlight its advantages
and limitations. All experiments presented have supplemental video material available at
https://vimeo.com/showcase/11030898 (last accessed 13 March 2024). The calculations
and simulations where performed on a computer with an AMD Ryzen 5 5500U CPU @
2.10 GHz and 8 GB RAM. The software versions used were MATLAB 2023a and Robotic
Operating System (ROS) Noetic running on Ubuntu 20.04 LTS.

4.1. Single Robot Results
4.1.1. Simulation Results

We simulated the following scenario in the Gazebo simulator. The proposed method
was applied on a single TurtleBot3 Burger to explore a 13.5 m × 14.5 m workspace with
a large wall as an inner obstacle. For SLAM, a simulated LIDAR with a 5 m laser range
is utilized. The resulting path can be seen in Figure 7. The robot manages to explore the
workspace covering a path distance (PD) of 51.40 m with an elapsed time (ET) of 276.68 s.
It should be noted that ET in simulated experiments refers to the simulated ET.

-8 -6 -4 -2 0 2 4 6 8

-8

-6

-4

-2

0

2

4

6

8

Figure 7. The path taken by the robot, in blue, to explore the workspace, whose boundary is denoted
with a black line.

https://vimeo.com/showcase/11030898
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4.1.2. Experimental Results

A real-world experiment was conducted to validate the simulated results. A rectangu-
lar workspace, with approximate dimensions of 2.6 m × 4 m, was constructed and three
inner obstacles were placed inside it. The obstacles consist of two rectangular boxes and
a T-shaped barrier. The workspace is visible in Figure 8. To explore the workspace, an
AmigoBot robot is chosen due to its small size, versatility, and its ROS integration through
the RosAria package. The AmigoBot is connected to an ODROID computer to run ROS
locally. Additionally, an RPLIDAR A1 and the odometer data provided by the robot are
used for SLAM that is provided by the gmapping ROS package. The robot manages to fully
explore the workspace. The resulting PD is 7.33 m and the ET 124.2 s. The full path can be
observed in Figure 9.

Figure 8. Some of the HMT’s for Exploration calculated online during the exploration experiment.
Top left is the initial transform and bottom right is the final when the workspace is considered fully
explored. The boundaries are shown with a black line, the frontiers with a green line and their
mapping on the HMT is shown as a red circle. The mapping of the inner boundaries on the HMT is
shown with a red dot.

2 2.5 3 3.5 4 4.5 5 5.5 6

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

Figure 9. The path taken by the robot, in blue, to explore the workspace, whose boundary is denoted
with a black line.

4.2. Multi-Robot Results

The suggested multi-robot method was tested in Gazebo using the same simulated
workspace as in the single robot simulation scenario. Three TurtleBot3 Burger robots were
used. Multiple simulations were performed to reduce randomness in the results. The
mean values and standard divination of ET, PD, and total PD are presented in Table 1. The
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simulation is designed to replicate the methodology outlined in the simulation scenario 1
from Ning et al. [15], facilitating a direct comparison of results between our method and
theirs. The comparative results are shown in Table 2.

Table 1. HMT for Exploration Simulation Results.

ET (s) PD Robot 1
(m)

PD Robot 2
(m)

PD Robot 3
(m) Total PD (m)

Mean Values 168.75 15.10 23.86 17.54 56.50
Std Dev 1.2698 1.9450 2.3356 1.1087 9.1234

Table 2. Comparison of Multi-Robot Exploration Simulated Experiments.

Algorithm ET (s) Total PD (m) PD (m) Mean-PD Std-PD

M-RRTs [8] 244.21 110.30 {32.49, 25.38, 52.43} 36.7667 14.0229
RRT-GFB [27] 234.49 107.82 {27.41, 34.87, 45.54} 35.9400 9.1122
RRT-BFS [28] 202.10 97.34 {26.28, 30.47, 40.59} 32.4467 7.3569

E-RRT [29] 219.07 102.89 {29.70, 27.52, 45.67} 34.2967 9.9097
ID-RRT [30] 194.33 86.26 {17.69, 25.01, 43.56} 28.7533 13.3351

HMS-RRT [15] 144.18 67.28 {21.33, 16.43, 29.52} 22.4267 6.6135

HMT 168.75 56.50 {15.10, 23.86, 17.54} 18.8333 4.5209

The smallest value of each column is denoted with bold.

The paths produced by the robot are visualized along with the workspace in Figure 10.
The final maps generated by SLAM and the map merging process is presented in Figure 11.
Notice that our method outperforms the other in terms of path length, exhibiting slightly
longer execution than the best one.

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 10. The path taken by the robots to explore the workspace. Robots with priority numbers 1, 2,
and 3 are depicted with blue, orange, and green, respectively.
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Figure 11. The final map produced by each robot. (a–c) are the partial maps and (d) is the merged
map of the robot that produced (a).

5. Conclusions

This paper proposes a method for robotic exploration, suitable for both single-robot
and multi-robot setups. Firstly, we present a Harmonic Map Transformation for Exploration,
and introduce a novel approach for frontier detection and navigation. Then, the concept is
extended to distributed multi-robot systems, using map merging to effectively exchange
information and a greedy frontier allocation strategy. An algorithm to further optimize the
frontier allocation by ensuring that each robot heads to a unique frontier is also presented.
The proposed approach is verified through both simulations and real-world experiments
and the results are compared with recent multi-robot cooperative exploration methods. It
is concluded that the proposed method is efficient as it outperforms existing approaches in
terms of path distance.

The proposed method is heavily reliant on the accuracy of the maps produced by the
SLAM algorithm, since the HMT only uses the boundaries provided by the map. Filtering
of the map before boundary extraction does reduce sensitivity to noise and improves
accuracy. The issue of added noise in the map during the map merging process is also of
concern for the aforementioned reasons. This issue is addressed by assuming that each
robot’s local map is accurate and using it unmodified in the merged map, ensuring that
the local region of the robot is correct despite possible inaccuracies in the merged global
map. Nevertheless, the experiments confirm that the proposed method is able to perform
in realistic conditions while retaining the total PD and ET low when compared to other
recent methods.

In future work, we are considering improving and extending the proposed method.
We aim to incorporate map altasing methodologies to facilitate exploration of expansive
spaces and integrate sophisticated heuristics for frontier selection to refine the exploration
strategy. Finally, it would be of great interest to explore the efficacy of extending the
application of the HMT to three-dimensional environments as it would prove useful for
aerial robotic navigation and exploration.

Author Contributions: Conceptualization, T.-F.B. and C.P.B.; methodology, T.-F.B.; software, T.-F.B.;
validation, T.-F.B.; formal analysis, T.-F.B.; investigation, T.-F.B.; writing—original draft prepara-
tion, T.-F.B.; writing—review and editing, C.P.B.; visualization, T.-F.B.; supervision, C.P.B.; project
administration, C.P.B. All authors have read and agreed to the published version of the manuscript.

Funding: The work of C.P.B. was supported by the project “Applied Research for Autonomous
Robotic Systems” (MIS 5200632) which is implemented within the framework of the National Recov-
ery and Resilience Plan “Greece 2.0” (Measure: 16618—Basic and Applied Research) and is funded
by the European Union—NextGenerationEU.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2024, 14, 3215 14 of 15

Abbreviations
The following abbreviations are used in this manuscript:

HMT Harmonic Map Transformation
SLAM Simultaneous Localization And Mapping
DRL Deep Reinforcement Learning
RRT Rapidly-exploring Random Tree
LIDAR Laser Imaging, Detection, and Ranging
ROS Robotic Operating System
PD Path Distance
ET Elapsed Time
CPU Central Processing Unit
RAM Random Access Memory
M-RRTs Multiple-RRTs
RRT-GFB RRT-Greedy Frontier-Based
RRT-BFS RRT-Breadth-First Search
E-RRT Extended-RRT
ID-RRT Information-Driven-RRT
HMS-RRT Hybrid Multi-Strategy-RRT
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