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Abstract: The widespread use of data makes privacy protection an urgent problem that must be
addressed. Anonymity is a traditional technique that is used to protect private information. In
multi-source data scenarios, if attackers have background knowledge of the data from one source,
they may obtain accurate quasi-identifier (QI) values for other data sources. By analyzing the
aggregated dataset, k-anonymity generalizes all or part of the QI values. Hence, some values remain
unchanged. This creates new privacy disclosures for inferring other information about an individual.
However, current techniques cannot address this problem. This study explores the additional privacy
disclosures of aggregated datasets. We propose a new attack called a multi-source linkability attack.
Subsequently, we design multi-source (k,d)-anonymity and multi-source (k,l,d)-diversity models and
algorithms to protect the quasi-identifiers and sensitive attributes, respectively. We experimentally
evaluate our algorithms on real datasets: that is, the Adult and Census datasets. Our work can
better prevent privacy disclosures in multi-source scenarios compared to existing Incognito, Flash,
Top-down, and Mondrian algorithms. The experimental results also demonstrate that our algorithms
perform well regarding information loss and efficiency.

Keywords: multi-source (k,d)-anonymity; multi-source (k,l,d)-diversity; privacy; IoV; k-anonymity;
aggregated dataset

1. Introduction

In recent years, with the rise and advancement of the Internet, numerous organizations
have made substantial amounts of data available for sharing and analyzing. Preventing
the disclosure of private information is a major research hot-spot. Specifically, protecting
private data that is included in multi-source aggregated data is a challenge.

Taking the Internet of Vehicles (IoV) scenario as an example, hardware and software
systems can detect and gather data regarding individual trajectories and environmental
conditions. IoV places particular emphasis on fostering information exchanges among
different entities. Vehicles can establish extensive communication using various wireless
communication technologies. Figure 1 illustrates the data interaction model. Many vehicle
devices are used in intelligent transportation, autonomous logistics, and smart cities [1].
However, there are several privacy challenges. For example, IoV services leverage personal
data, such as location, behavioral patterns, and videos, which may inadvertently share
information with third parties. Published data may leak private information about users.
Addressing the publication of information related to drivers, passengers, and vehicles
in IoV services has emerged as a crucial research focus, with the objective of preventing
the release of sensitive information during the data publication period. Simultaneously,
compliance with the General Data Protection Regulation (GDPR) [2] in the EU mandates
the legal requirements.
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Figure 1. Internet of Vehicles data interaction model.

The k-anonymity technique is used to address privacy threats. Privacy-preserving
data publishing (PPDP), introduced by Fung et al. in 2010 [3], has gained considerable
attention in the research community and has emerged as a pivotal aspect of data mining
and information sharing. Numerous studies have been devoted to anonymized data; they
often consider a data publisher’s table comprising explicit identifiers (EIs), quasi-identifiers
(QIs), sensitive attributes (SAs), and non-sensitive attributes (NSAs). EIs refer to attributes
that explicitly identify record owners. QIs are attributes that may be used to identify an
individual. An instance is {gender, ZIP code, birth} that can be potentially linked to other
tables for identifying the record owner. SAs are sensitive attribute such as illness and salary.
NSAs are the remaining attributes [4]. Additionally, these four attribute sets are disjointed.
EIs are directly linked to sensitive information; therefore, for privacy, they are typically
removed before data release. However, even with the removal of EIs, record owners can
potentially be re-identified, meaning their QIs can be linked to an external table [5]. To
resist this attack, data publishers release an anonymized table that includes QI′, SAs, and
NSAs, with QI′ representing the results of anonymizing QIs. The concept of k-anonymity
is a famous method to ensure privacy protection [6] by severing the connection between
specific records and their origin. This model guarantees that each record of an anonymized
dataset remains indistinguishable from at least k − 1 other records [7].

Anonymization algorithms, as discussed [8,9] in various studies such as [10–13],
primarily focus on optimizing efficiency and utility. However, these algorithms often
overlook the impact of effectiveness and efficiency. Another category is scenario-based
anonymization. Shi et al. [14] proposed “quasi-sensitive attributes” that consider that
the new condition of QIs and SAs are equivalent. Terrovitis et al. [15] argued that some
attributes are both quasi-identifiers (QIs) and sensitive attributes (SAs). Sei et al. [16]
introduced the notion of “sensitive quasi-identifiers” for l-diversity and t-closeness models.
These scenario-based approaches involve defining new attribute types to address various
privacy objectives. Methods that address location privacy preservation include enforcing
anonymized data identities [17], location obfuscation [18], space transformation [19], and
spatial anonymization [20]. Bamba et al. [21] presented the PrivacyGrid framework. It
anonymizes location-based queries and gives effective algorithms. Pan et al. [22] proposed
ICliqueCloak for location k-anonymity.

However, protecting private data from multi-source aggregated data is complex. On
the one hand, there are different types of private information, such as location, identity,
and privacy information. In addition, data from many sensors are included, such as global
positioning systems, radar, and cameras. Hence, many aggregated datasets have been
generated from multi-source data. When information is aggregated, it is easy to leak
the linked relationships. For example, an attacker can access the database of a vehicle
administration office. Thus, he knows a vehicle’s registration date, license plate, and color.
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By observing the values in an anonymized aggregation dataset, an attacker can obtain
accurate QI values from another data source. This creates new privacy disclosures in
multi-source scenarios. However, current techniques must address this problem. After
k-anonymity, some anonymized QIs of the data remain unchanged, as k-anonymity only
entails the records in the QI group. This privacy disclosure differs from identity disclosure
and attribute disclosure because it leaks more information about the attack objective,
which is harmful. Considering the aggregation of datasets, it may differ from general
privacy-preserving data publishing or location privacy.

Therefore, we exploit this new attack and propose countermeasures. The main contri-
butions of this study are as follows.

• We propose a multi-source linkability attack by analyzing the problem of the aggre-
gated dataset in IoV.

• We proposed multi-source (k,d)-anonymity and multi-source (k,l,d)-diversity to protect
privacy disclosure in IoV. The former prevents the acquisition of accurate quasi-
identifier values when the attacker possesses background knowledge. The latter has a
similar privacy capability and can protect sensitive attributes. In addition, we provide
heuristically efficient algorithms.

• We experimentally evaluated our algorithms using real datasets. The experimental
results demonstrate that our algorithms perform well regarding privacy disclosure,
information loss, and efficiency.

In Section 2, we describe related works, including the k-anonymity model and data
utility of anonymity. Section 3 provides an introduction to the aggregated dataset and
new attacks, elucidating the motivation behind our research. Our novel algorithms are
presented in Section 4, and Section 5 showcases the results with regard to privacy, utility,
and efficiency. Finally, Sections 6 and 7 discuss and conclude the study.

2. Related Works
2.1. k-Anonymity

Sweeney proposed the k-anonymity model [7,23]. This technique gained widespread
popularity within the academic community. Another notable privacy model, l-diversity,
was introduced by Machanavajjhala et al. in 2007 [24]; l-diversity ensures that each equiv-
alence class contains at least l “well-represented” sensitive attribute values. To illustrate,
consider Table 1, which is an original table detailing patient records, with Patient Name as
an EI, Patient Age, Patient Sex, and Patient ZIP Code as QIs, and Disease as an SA. Table 2 lists
the results achieved through 3-anonymity and 3-diversity. Even if data analysts possess
Elle’s QI values, discerning his specific records from the first three becomes challenging.
Furthermore, the accurate identification of a sensitive disease is difficult because of the
presence of three different values in each group. Over the years, various k-anonymity algo-
rithms have been devised by employing techniques such as generalization, suppression,
clustering, and micro-aggregation.

Table 1. Example of patient information.

Patient Name Patient Age Patient Sex Patient ZIP Code Patient Disease

Cart 24 Male 17227 Flu
Bob 23 Male 17672 Hepatitis
Gaul 24 Female 17537 HIV
Elle 48 Female 19240 Hangnail
Alice 51 Male 18824 Bronchitis
Helen 46 Female 18824 Flu
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Table 2. Example of 3-anonymity 3-diversity patient.

Patient
Age

Patient Sex
(* Denotes the

Value is
Suppressed)

Patient Address Patient
Disease

[23–24] * [17226–17672] HIV
[23–24] * [17226–17672] Hepatitis
[23–24] * [17226–17672] Flu
[46–51] * [18824–19240] Flu
[46–51] * [18824–19240] Hangnail
[46–51] * [18824–19240] Bronchitis

LeFevre et al. [10] developed an efficient full-domain k-anonymity algorithm. It exe-
cutes a breadth-first search strategy and pruning strategy to find the optimal anonymization
result. Mondrian [11] proposed a partitioning algorithm that recursively partitions the
domain values of QI to obtain a generalized range. Liang et al. [12] proposed optimized
k-anonymity. It mathematically formulates the k-anonymity optimization problem and
identifies the equivalence class with minimal information loss using an optimization solver.
Shi et al. [14] introduced the concept of “quasi-sensitive attributes”. These attributes are
not inherently sensitive. However, they may be sensitive when linked to an external table.
Therefore, they indirectly disclose sensitive information. Terrovitis et al. [15] proposed a
separation-based algorithm that addresses the condition that some attributes serve as both
QIs and sensitive attributes. Sei et al. [16] introduced the sensitive quasi-identifier concept
for l-diversity and t-closeness models. Jayapradha et al. [25] proposed heap bucketization
anonymity (HBA) to protect multiple sensitive attributes while keeping balance between
privacy and utility.

Onesimu et al. [26] designed a clustering-based anonymity model. It protects data for
healthcare services systems. Onesimu et al. [27] proposed an attribute-focused privacy-
preserving data publishing scheme. It has two different anonymity methods. The first
is a fixed-interval approach, which works for numerical attributes. The last is l-diverse
slicing for sensitive attributes. Yao et al. [28] proposed a utility-aware (α, β) privacy
model, MSAAC, that can balance data privacy and utility by setting privacy parameters.
Parameshwarappa et al. [29] presented a multi-level clustering-based approach to enforce
an l-diversity model by using a non-metric weighted distance measure. Based on a cluster-
ing technique, Srijayanthi et al. [30] proposed an anonymization privacy-preserving model
along with feature selection. It designs a preserved anonymization algorithm to reduce
the dimensionality of the data to accelerate the action of generating clusters. Karuna and
Sumalatha [31] proposed a solution that identifies the optimal seed values for aggregating
similar records that can be anonymized uniformly to minimize data loss. It presents a me-
thodical strategy for selecting seeds to cluster records by applying an adaptive k-anonymity
algorithm. Guo et al. [32] proposed an entropy-based k-anonymity model. It can address
static and long-term data. Prabha and Saraswathi [33] combine k-anonymity and a Laplace
differential and name their technique (K, L) anonymity. It can prevent linkage attacks.

For better privacy protection of LBS information, Ma et al. [34] take into account the
camouflage range and place type. Kang et al. [35] introduced MoveWithMe. It is built into a
mobile app and can generate decoy queries. This app ensures that the reported movements
are semantically different from the real trace. Cheng et al. [36] proposed a privacy-level
allocation method that disturbs the location points before publishing in correspondence to
different privacy budgets.

2.2. Anonymity Utility

Researchers designed many metrics for data utility of anonymized data. Notable
measures found in the literature include the discernibility metric (DM) [37], which computes
the sum of the squares of the cardinality of equivalence classes; the classification metric
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(CM) [38], which involves class labels for tuple classification; the normalized certainty penalty
(NCP) [39], defined as the sum of the ranges of quasi-identifiers in each equivalence class;
and the global certainty penalty (GCP) [40], which normalizes the sum of the NCP across
all equivalence classes. Notably, the CM is particularly suitable when anonymized data
are used for decision making. These metrics effectively reflect the cardinality and domain
extent of each equivalence class.

3. Models

In this section, the motivation and assumptions for the proposed attack are introduced,
and a privacy model is proposed.

3.1. Notations

Consider a dataset, denoted as T, with schema T(A1, ..., Aν), where P represents the
primary key, and A1, A2, ..., Aν) are attributes, where ν denotes the number of attributes.
Each record in dataset T is represented as r, and the total number of tuples is denoted as n.
The aggregated and anonymized datasets are denoted as AT and AT′, respectively. The
notation used in this study is listed in Table 3.

Table 3. Symbols and descriptions.

Symbol Description

T Original Dataset
AT Aggregated Data
AT′ Anonymized Aggregation Data

k K-Anonymity Parameter
r Record
A Attribute
ν Number of Attributes
n Number of Records

NCP, GCP Information Loss Metric Function

3.2. Motivation

The aggregated datasets formed in the IoV scenario can result in a new privacy
problem. We begin by outlining the representation of aggregated datasets. Within IoV
scenarios, data play a crucial role in supporting users through features such as automatic
driving, navigation, and intelligent transportation systems. In the utilization of data, IoV
services may incorporate personal information (e.g., location, behavioral patterns, and
personal profiles), which could inadvertently include details about third parties, such as
private properties. Additionally, IoV encompasses a variety of sensors, such as global
positioning systems, radar, and cameras. Consequently, numerous aggregated datasets
have been generated through the integration of data from multiple sources.

First, we describe the creation of aggregated datasets. Typically, data obtained from
various devices can be utilized directly or can undergo aggregation before use. The former
scenario does not lead to the formation of aggregated datasets, whereas the latter involves
concatenating pertinent information about individuals, potentially leading to the exposure
of sensitive details. We delve into the most straightforward case in the aggregated scenario,
for which the data are from distinct sensing devices or associated databases. Figure 2
illustrates the process of publishing aggregated datasets, which can be categorized into
three phases. During the data collection stage, data are gathered from different sensing
devices or related databases. In the data aggregation stage, vehicle information, personal
profiles, and location information are combined for publication, with each record containing
information about an individual. Finally, the aggregated dataset may be released to a
data analyzer or online servers for purposes such as data mining and decision making.
A common practice is to anonymize private information during this stage to obfuscate
sensitive information regarding the identities of individuals.
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Figure 3 illustrates an aggregated dataset in the data aggregation phase; the aggregated
dataset encompasses attributes such as license plates, registration dates, and colors. Here,
the license plate is an EI, the address is an SA, and the others are QIs. For anonymization,
the EIs are removed to prevent them from providing identification information that could
reveal the unique vehicle owner. The presence of EIs is a potential source of identity
disclosures. Similarly, QIs such as registration date and color, which can individually
identify a unique vehicle, need to be transformed into anonymous results. For instance,
values such as {2017, White, 110/30, ...} may be transformed into {[2017–2018, White,
[110/30, 112/28], ...}. Figure 3 provides an example of 2-anonymity and 2-diversity for
the original and anonymized datasets, respectively. In addition, a set of records sharing
the same QI values constitutes an equivalence class. Failure to properly anonymize EIs or
QIs may result in leakage of sensitive values. For instance, if the sensitive attribute is the
address, and two records within the same equivalence class have the same anonymized QI
values (e.g., No. 20 M Street), this could lead to attribute disclosure.

Figure 2. Example of publishing aggregated datasets.

Figure 3. Example of anonymized aggregation dataset.

Definition 1 (Quasi-Identifier Attribute). A quasi-identifier set QI is a minimal set of attributes
in original dataset T that can be joined with external information to re-identify individual record r.

Definition 2 (Equivalence Class). A set of records that contains all the same QI values, consti-
tuting an equivalence class.



Appl. Sci. 2024, 14, 3230 7 of 20

In addition to identity disclosures and attribute disclosures [41], a new form of privacy
disclosure emerges; it is specifically based on linkability [42]. This form of disclosure may
exist in an aggregated dataset. Linkability, in this context, refers to a data analyzer’s ability
to successfully discern whether two items of interest (IOIs) are linked, allowing the data
analyzer to gain new information through the linkage. The definition of linkability is rooted
in the literature by Pfitzmann and Hansen [43]. Linkability can potentially lead to inference.
When a data analyzer links two IOIs, it may be possible to infer the actual identity from
their connection.

In the IoV scenario, when data are multi-source, like related datasets or different
sensors, the data from another source are valuable if the attacker owns all source data. For
example, an attacker can access the database of the vehicle administration office. Thus, he
knows a vehicle’s registration date, license plate, and color. By observing the values in the
anonymized aggregation dataset, the attacker obtains an accurate postcode value of 100200
in Figure 3, which is from another data source. This creates new privacy disclosures in multi-
source scenarios. However, current techniques do not address this issue. This situation
infers sensitive information, such as the postcode of the vehicle owner. K-anonymity may
generalize only a few QI attributes. K-anonymity entails only the number of records in
the QI group. Hence, some values remain unchanged. This privacy disclosure differs
from identity and attribute disclosure because it leaks more information about the attack
objective, which is harmful.

We propose a new multi-source linkability attack based on the properties of the
aggregated dataset that we described.

Definition 3 (Multi-source Linkability Attack). A multi-source linkability attack occurs when
QI data from a source are linked with some extra knowledge. These data are then linked to other QIs.
Attackers can obtain accurate information from other QIs.

The core problem is that an attacker can identify an individual based on a data source.
The inference is limited to the same record; thus, the extra data belong to the same person.
Any extra single piece of knowledge can expand the information about the objective.

3.3. Proposed Privacy Models

This section describes the proposed threat model and privacy model. The latter
formulates and protects the proposed privacy problem in IoV.

3.3.1. Threat Model

We assume that the attacker obtains the values of the QI from one or more data
sources and identifies a specific person in the original table T. Based on this knowledge,
the adversary may identify a person, obtain more information from other data sources, and
access sensitive values by joining knowledge and the anonymized dataset T∗ to QI so that
the record may be accurately linked to a specific person’s sensitive attribute values. We
consider the problem of generating an anonymized aggregation dataset. Therefore, the
inference of an anonymized dataset should be avoided.

3.3.2. Multi-Source Anonymity

In this subsection, we describe the new privacy countermeasure. Domains are sets of
terms wherein each term is an instance of a concept. Figure 4 showcases the original and
generalized values for the age attribute in the taxonomy tree. As shown in the figure, the
domain value of the age attribute is {0, 1, ..., 78, 79}.

A multi-source linkability attack can occur with a higher probability when the data
analyzer obtains accurate values of QIs from a source. Therefore, we define a new privacy
model: multi-source (k,d)-anonymity for multi-source linkability attacks.
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Figure 4. Examples of original and generalized values (* denotes the value is suppressed).

Definition 4 (Multi-Source (k,d)-anonymity). A dataset satisfies multi-source (k,d)-anonymity
if each record is indistinguishable from at least k − 1 other records within the dataset and each
generalized value contains at least d domain values for QI attributes. The probability of obtaining
the exact values of all QIs is less than 1/d.

In addition, we consider sensitive attributes. Multi-source (k,l,d)-diversity is proposed.

Definition 5 (Multi-Source (k,l,d)-diversity). A dataset satisfies multi-source (l,d)-anonymity if
it satisfies multi-source (k,d)-anonymity and each indistinguishable group has at least l different
values for sensitive attributes.

Example 1. We continue using the vehicle dataset mentioned earlier for illustration purposes.
Figure 5 depicts an example dataset adhering to multi-source (3,2)-anonymity. The upper subfigure
illustrates the generalized dataset meeting the (3,2)-anonymity criteria. The lower subfigure displays
the domain values encompassed by the generalized values. In Figure 5, if the attacker knows that
the age is 27 and the postcode is 1000195, there are at least two potential values for the color and
registration date that they could infer: specifically, [2017–2018] and [white, red]. The likelihood of
the data analyzer obtaining a precise combination of color and registration date is 1/2, mirroring the
probability of accurately inferring from the attribute values. Consequently, attackers cannot obtain
accurate values.

Figure 5. Example of multi-source (3,2)-anonymity.



Appl. Sci. 2024, 14, 3230 9 of 20

4. Algorithms

In addition, we provide a multi-source linkability attack Algorithm 1. This can verify
the privacy disclosure. It inputs the anonymized aggregated dataset AT′ and the attribute
set QIs. QIs are the attacker’s data attributes. Attackers can identify individuals from
QIs and can thereby obtain accurate information by linking other QIs. The output is set
as In f erenceSet. It contains the accuracy value that the attackers obtain from other QI
attributes. Lines 1–5 define parameters and variables and return anonymized equivalence
class ECs. The loop of ECs checks each value of the other QI attributes. If it is the original
value, it is added to In f erenceSet. Finally, this algorithm returns all original values from
the other QI attributes. The overhead of this algorithm is O(|ECs| ∗m), where |ECs| is the
number of equivalence classes and m is the number of QId; the method is efficient.

Algorithm 1 The multi-source linkability attack algorithm.
Input: AT′,QIs
Output: In f erenceSet
1: In f erenceSet = new HashMap()
2: de f ine EI, QI, SA attributes
3: de f ineQIs, QId
4: ECs = EquivalenceClass(AT′)
5: m = the attribute number o f QId
6: for i = 0 to |ECs| do
7: r = AT′[i]
8: QIkey = r.QIs
9: for j = 0 to m do

10: if QId[j] is original value then
11: if !In f erenceSet.contian(QIkey) then
12: valueList = []
13: valueList.set(j, QId[j])
14: In f erenceSet.put(QIkey, valueList)
15: else
16: valueList = In f erenceSet.get(QIkey)
17: valueList.set(j, QId[j])
18: end if
19: end if
20: end for
21: end for
22: return In f erenceSet

We provide an implementation algorithm for the multi-source (k,d)-anonymity model.
This algorithm can deliver good data utility and efficiency using the Hilbert curve. The
Hilbert curve [40] is a well-known spatial mapping technique. It can map a point-of-space
region to an integer. If two points are close in multidimensional space, they are likely to
have similar Hilbert transform values. For example, Figure 6 illustrates the transformation
of the data from 2-D to 1-D for attributes such as postcode and age. The dataset exhibits
complete ordering with respect to the 1-D Hilbert values. For instance, the value {55,100195}
is transformed to the 1-D value 1, whereas the value {62,100196} is transformed to a 1-D
value of 63.
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Figure 6. Example of Hilbert curve for postcode and age attributes.

In the data mapping process, each attribute value must be assigned an integer value
to facilitate sorting. For numerical attributes, attribute values can be used directly owing
to their inherent orderliness. As illustrated in the figure, both age and postcode can be
arranged in ascending order, and each attribute value is assigned as a distinct integer.
For categorical attributes, the assignment of integers is based on a taxonomy tree. For
instance, considering a taxonomy tree with nodes “India” and “Japan” sharing the parent
“Europe”, NCP(India, Japan) = 1/2. On the other hand, when comparing nodes “Cambo-
dia” and “England” with the common parent “Country”, NCP(Cambodia, England) = 1.
Therefore, distances for nodes sharing the same parent node should be smaller. Figure 7
showcases this.

Figure 7. Taxonomy tree of country attribute.

We propose an efficient and heuristic multi-source (k,d)-anonymity algorithm. Algorithm 2
describes the primary implementation process. The algorithm inputs the original aggre-
gated dataset AT and anonymity requirements k, t. First, it defines the EIs, QIs, and SAs.
Subsequently, the EIs are deleted to satisfy the anonymization requirements. The term
dQI denotes the number of QIs. Domains are a set containing domain values of the QIs.
Lines 4–7 obtain the domain values. The DOMAIN function obtains all domain values
of QIi. Based on the domain value Domain and dimension dQI , a Hilbert curve is plotted
on AT. It implements the mapping from dQI-D to 1-D by Hilbert transform. It sort the
records with dQI-D attributes in the dataset AT. Then, the loop is entered until AT = ∅. In
the loop, if the number of records is less than k or the distinct domain value of a QI is less
than d, the loop is stopped. Lines 15–18 iterate through the sorted data and obtain record
r from dataset AT. The loop determine whether the set Records satisfies the condition
of anonymity. If this condition is satisfied, the group is anonymized by generalizing the
QI values. An anonymized equivalence class is generated. In the last step, anonymized
values are incorporated into the set AT′. The ultimate output is AT′, which encompasses
all anonymized records that adhere to anonymity requirements k and d. The computational
overhead of this algorithm is O(d), which ensures its efficiency. The I/O cost is linear.

Algorithm 3 shows the multi-source (k,l,d)-anonymity algorithm. The algorithm inputs
the original aggregated dataset AT and anonymity requirements k, l, and t. First, it defines
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the EIs, QIs, and SAs. Subsequently, the EIs are deleted to satisfy the requirements of
anonymization. The term dQI denotes the number of QIs. Domains is a set containing
domain values of the QIs. Lines 5–7 obtain the domain values. The DOMAIN function
obtains all the domain values of QIi. SADomain is the domain value of the SA. Curve
implements the mapping from dQI-D to 1-D using the Hilbert transform. The records are
sorted according to their SA values and assigned to m domains based on the sensitive
attribute value of the SA domain. Let F be the set of the first records in each bucket of H.
Then, the loop is entered until AT = ∅. In the loop, if the number of records is less than k or
the distinct domain value of a QI is less than d, the loop stops. Lines 18–21 iterate through
the sorted data and take the record r from the dataset AT. The loops then determines
whether the set Records satisfies the condition of (k,d)-anonymity. In addition, if the distinct
SA values of this group are less than l, another loop continues. Lines 22–35 get records
with different SA values and the minimum curvePoint in F. After adding records with
different SA values, if the condition of this group is satisfied, the values are anonymized
by generalizing the QIs. The anonymized equivalence class is created, and, ultimately, the
output AT′ includes all anonymized records that meet the anonymity requirements k, d,
and l. With a computational overhead of O(d), the method proves to be efficient. Given
that the input dataset AT is ordered, the proposed approach requires only a single pass
through the data. The I/O cost is linear.

Algorithm 2 The multi-source (k,d)-anonymity algorithm.
Input: AT, k, d
Output: AT′

1: de f ine EI, QI, SA attributes
2: delete EI attributes f rom AT
3: dQI = number o f QI attribute
4: Domains = {}
5: for i = 0 to dQI do
6: domValues = DOMAIN(QIi)
7: Domaini.addAll(domValues)
8: end for
9: Curve← Hilbert(Domains, dQI)

10: while |AT| ̸= ∅ do
11: if |AT| <= k or distinct domain value o f QI < d then
12: Break
13: end if
14: Records = {}
15: while |Records| < k and distinct domain value o f QI < d do
16: r = Curve.nextPoint()
17: Records.add(r)
18: end while
19: anonymized(Records)
20: AT′.addAll(Records)
21: end while
22: return AT′
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Algorithm 3 The multi-source (k,l,d)-diversity algorithm.
Input: AT, k, l, d
Output: AT′

1: de f ine EI, QI, SA attributes
2: delete EI attributes f rom AT
3: dQI = number o f QI attribute
4: Domains = {}
5: for i = 0 to dQI do
6: domValues = DOMAIN(QIi)
7: Domaini.addAll(domValues)
8: end for
9: SADomain = DOMAIN(SA)

10: Curve← Hilbert(Domains, dQI)
11: H[i] = Split records of Curve into m buckets based on SADomain value
12: F = set of first record in each bucket
13: while |AT| ̸= ∅ do
14: if |AT| <= k or distinct domain value o f QI < d then
15: Break
16: end if
17: Records = {}
18: while |Records| < k and distinct domain value o f QI < d do
19: r = Curve.nextPoint()
20: Records.add(r)
21: end while
22: while distinct value o f SA < l do
23: SAvalues = getAllSAValue(Records)
24: index = −1, 1DNumber = MAXVALUE
25: for i = 0 to m do
26: if !SAvalues.contain(SADomain[i]) then
27: curvePoint = curvePoint o f F[i]
28: if curvePoint < 1DNumber then
29: index = i, 1DNumber = 1D
30: end if
31: end if
32: end for
33: Records.add(F[i])
34: updateSet(F)
35: end while
36: anonymized(Records)
37: AT′.addAll(Records)
38: end while
39: return AT′

5. Experimental Evaluation

We conduct an experimental evaluation to assess the algorithms’ performance re-
garding privacy, data utility, and efficiency. Section 5.2 presents the evaluation of privacy
disclosure in the multi-source dataset. Section 5.3 provides experimental results showing
the data utility achieved by our algorithms. Finally, in Section 5.4, we present experiments
focused on assessing the efficiency of our algorithms.

5.1. Experiment Description

Dataset: We evaluate our algorithms using publicly available datasets. The Adult
dataset from the UC Irvine Machine Learning Repository (https://archive.ics.uci.edu/
dataset/2/adult (accessed on 10 September 2023)) and the Census dataset from the US
full 1990 census (https://archive.ics.uci.edu/dataset/116/us+census+data+1990 (accessed
on 10 September 2023)) are selected. These datasets are the de facto standards for the

https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/116/us+census+data+1990


Appl. Sci. 2024, 14, 3230 13 of 20

evaluation of anonymization. The Census dataset contains a one-percent sample of the
Public Use Microdata Samples (PUMS) person records. The Adult dataset consists of
32,562 records with 14 attributes, of which three are numerical and the rest are categorical.
The Census dataset consists of 2,458,285 records. All attributes are categorical. Six attributes
from the Adult and Census datasets were used in our experiment. For the Adult dataset,
we consider {age, workclass, marital} as attribute set QI1 and {occupation, relationship,
native-country} as attribute set QI2. For the Census dataset, we consider {dAge, dAncstry1,
dAncstry2} as attribute set QI1 and {iClass, dDepart, dHispanic } as attribute set QI2. The
experiments simulate the condition of aggregated datasets from two different sources.

Experimental environment and algorithms: The experiments are carried out on a ma-
chine featuring a 3.0 GHz Intel(R) Core(TM) i5 processor with 12 GB RAM. The operating
system used is Ubuntu 22.04, and the implementation is developed and executed on an
IntelliJ IDEA 2023. Java is used as the programming language, and the JDK version is 15.
In addition, we implement the well-known Top-down [44], Mondrian [11], Incognito [10],
and Flash [45] anonymity as our compared algorithms for privacy disclosure experiments.
The experiments are repeated ten times, and the average result for each trial is calcu-
lated. The default parameters {k,d,l} are 20, 2, 3 and 200, 2, 3 on the Adult and Census
datasets, respectively.

Experimental objectives: We have three main objectives for the following experiments:
Privacy Disclosure Evaluation—this evaluation tests the effects of a multi-source linkability
attack using Algorithm 2. This verifies the effectiveness of the proposed method. Data
utility—the experiments focus on information loss of the proposed anonymity algorithm
under different conditions. Efficiency—experiments are conducted to evaluate the required
overhead with different numbers of records.

5.2. Privacy Disclosure

In this subsection, we present the experimental privacy disclosure results for the
aggregated datasets from different sources. QI1 and QI2 are two QI attribute sets from
two source. Assume that the attacker can acquire background knowledge of the original
QI1 or QI2. The multi-source linkability attack algorithm (Algorithm 2) can get accurate
original values of another QI set. The experiment results are obtained via executing
Algorithm 2. We test privacy disclosure on the Adult dataset and the Census dataset.

Tables 4 and 5 present the privacy disclosures of k-anonymity and l-diversity, re-
spectively, on the Adult dataset. Our techniques are multi-source (k,d)-anonymity and
multi-source (k,l,d)-diversity. As described above, for the Adult dataset, the {a1, a2, a3}
attributes are {age, workclass, marital}, and for {a4, a5, a6}, the attributes are {occupation,
relationship, native-country}. The values in {a1, ..., a6} represent the number of distinct
original values in an equivalence class. For example, if an equivalence class has {[40–59],
Private,...} in {a1, ..., a6}, a2 has a distinct original value. However, a1 has a generalized
value that cannot leak accurate age information. The rows of {a1, ..., a6} store distinct
original values. Top-down has the most equivalence classes, and its privacy disclosure
is significant. The sum of QI1 and QI2 is 6085. Mondrian has fewer privacy disclosures.
For the Incognito and Flash algorithms, the results are interesting and different. These
two algorithms generate only 10–200 equivalence classes. Hence, the number of distinct
original values is small. Incognito has zero, in that all values in an equivalence class are
range values instead of accurate values. Our algorithm performs well, with zero distinct
original values. Table 5 presents the l-diversity algorithm. Incognito and Flash can execute
l-diversity. These results are similar to those shown in Table 5.
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Table 4. Privacy disclosures of k-anonymity on adult dataset.

Algorithm
QI1 Set QI2 Set

Number of Equivalence Classes Privacy Leakage
of QI1 Set

Privacy leakage
of QI2 Set Privacy Leakage

a1 a2 a3 a4 a5 a6

Top-down [44] 0 1206 1364 1098 1242 1175 1364 2570 3515 6085

Mondrian [11] 2 696 646 122 622 538 987 1344 1282 2626

Incognito [10] 0 0 0 0 0 0 15 0 0 0

Flash [45] 1 18 184 18 184 6 184 203 208 411

Our 0 0 0 0 0 0 388 0 0 0

Table 5. Privacy disclosures of l-diversity on Adult dataset.

Algorithm
QI1 Set QI2 Set

Number of Equivalence Classes Privacy Leakage
of QI1 Set

Privacy Leakage
of QI2 Set Privacy Leakage

a1 a2 a3 a4 a5 a6

Incognito [10] 0 0 0 0 0 0 15 0 0 0

Flash [45] 1 18 184 18 184 6 184 203 208 411

Our 0 0 0 0 0 0 389 0 0 0

Tables 6 and 7 present the privacy disclosures of k-anonymity and l-diversity on the
Census dataset. As the number of records increases, the number of equivalence classes and
privacy leaks increase. These results are similar.

Table 6. Privacy disclosures of k-anonymity on Census dataset.

Algorithm
QI1 Set QI2 Set

Number of Equivalence Classes Privacy Leakage
of QI1 Set

Privacy Leakage
of QI2 Set Privacy Leakage

a1 a2 a3 a4 a5 a6

Mondrian [11] 823 1679 2467 1534 1539 2583 2920 4969 5656 10,625

Incognito [10] 0 0 0 0 76 0 76 76 76 152

Flash [45] 1 818 818 818 818 818 818 1637 2454 4091

Our 0 0 0 0 0 0 137 0 0 0

Table 7. Privacy disclosures of l-diversity on Census dataset.

Algorithm
QI1 Set QI2 Set

Number of Equivalence Classes Privacy Leakage
of QI1 Set

Privacy Leakage
of QI2 Set Privacy Leakage

a1 a2 a3 a4 a5 a6

Incognito [10] 0 0 0 0 76 0 76 76 76 152

Flash [45] 1 818 818 818 818 818 818 1637 2454 4091

Our 0 0 0 0 0 0 138 0 0 0

5.3. Data Utility

In this subsection, we show the results of multi-source (k,d)-anonymity and multi-
source (k,l,d)-diversity in terms of data utility. We measure the information loss of the
anonymized dataset using the global certainty penalty and discernibility metric. Figure 8a
shows the GCP information loss metric for the Adult and Census datasets. Figure 8b shows
the DM information loss metric. The parameters {k,d,l} are 20, 2, 3 and 200, 2, 3 on the adult
and census datasets, respectively. The higher the GCP and DM, the greater the information
loss. Multi-source (k,d)-anonymity and multi-source (k,l,d)-diversity have a similar result
on two different datasets for GCP and DM. Multi-source (k,d)-anonymity outperforms
multi-source (k,l,d)-diversity in that privacy constraints are easier to achieve. Figure 9a–d
shows the variation in the information loss with increasing k values for the two algorithms.
Figure 9a,b show the GCP metric on the Adult and Census datasets, respectively. Then,
Figure 9c,d show the DM metric on the Adult and Census datasets, respectively. As shown
in the figure, for all k values (10 <= k <= 20 for the Adult dataset and 100 <= k <= 200
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for the Census dataset), these two algorithms have similar results in terms of GCP and
DM. Meanwhile, the information loss of the two algorithms remains stable with increasing
k values.

Figure 8. Information loss on Adult and Census datasets.

Figure 9. Information loss for different values of k.

In Figure 10a–d, we vary parameter d. That is the privacy parameter of multi-source
(k,d)-anonymity and multi-source (k,l,d)-diversity. Figure 10a,b show the GCP metric on the
Adult and Census datasets, respectively. Then, Figure 10c,d show the DM metric on the
Adult and Census datasets, respectively. As the value of d increases, GCP and DM sharply
increase. When d is 1, the GCP is close to 0.12–0.14 for multi-source (k,d)-anonymity and
multi-source (k,l,d)-diversity. And when d is 5, the results are high: 0.6 and 0.8, respectively.
For the DM metric, the changes were also large, ranging from 106 to 108 on the Adult
dataset. In Figure 11, we compare algorithms with different values of l. Figure 11a,b show
the GCP metric on the Adult and Census datasets, respectively. Then, Figure 11c,d show
the DM metric on the Adult and Census datasets, respectively. These experiments can
only perform multi-source (k,l,d)-diversity). The results show that the trend is steady for
different values of l using the GCP and DM metrics.
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Figure 10. Information loss for different values of d.

Figure 11. Information loss for different values of l.

5.4. Efficiency

Table 8 presents a comparison of the execution times in milliseconds. We can consider
the Adult dataset (32,562 records) and the Census dataset (2,458,285 records) as small
and large datasets, respectively. The execution time results do not include reading the
original data from the disk or writing generalized data to the disk. For the Adult dataset,
the execution time is approximately 0.3 s. For the Census dataset, the execution time
is approximately 61–68 s. Multi-source (k,l,d)-diversity spends more time compared to
multi-source (k,d)-anonymity. Given the superior quality of the results, the running time
of our algorithms is acceptable in practice. Figure 12 shows the scalability experiment. It
evaluates scalability by changing the number of QIs and increasing the size of records on
the Census dataset. The different records and QIs did not significantly affect the execution
time. We vary QIs and the size of the records, and the running time curve remains steady.

Table 8. Comparison of average execution times.

Dataset\Algorithm Multi-Source
(k,d)-Anonymity

Multi-Source
(k,l,d)-Diversity

Adult 300 332

Census 61,899 67,715
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Figure 12. Scalability experiments.

6. Discussion

Anonymization and differential privacy [46] are two distinct privacy-preserving tech-
niques in data science and analysis. Differential privacy is a mathematical framework for
ensuring individual privacy when analyzing or releasing statistical data. It provides a
guarantee that the inclusion or exclusion of any single individual’s data will have a minimal
impact on the output of an analysis. By adding carefully calibrated “noise” to query results,
differential privacy ensures that no one, not even the data holder, can confidently infer
whether any particular individual’s data are part of the dataset. This approach allows for
meaningful aggregated insights while protecting against attacks that might try to uncover
sensitive information about specific individuals.

Anonymization refers to the process of removing or obfuscating personally identifiable
information from datasets so that individuals cannot be recognized. This typically involves
techniques like aggregation, generalization, or suppression of attributes. The goal is to
create a dataset wherein the connections between specific records and their original subjects
are severed.

In summary, anonymization focuses on removing direct identifiers, whereas differ-
ential privacy injects controlled randomness into data processing to limit the leakage of
information. They are different tools to provide privacy protection for data.

7. Conclusions and Future Work

In this study, we explore a new attack method: a multi-source linkability attack. It
occurs when QI data from a source are linked to some extra knowledge. These data are
then linked to other QIs. Hence, attackers can obtain accurate information from other QIs.
This paper presents a new perspective on addressing the multi-source linkability problem
of the IoV scenario. We describe its implementations and cases of this new attack on a
multi-source dataset.

Then, we provide two new privacy models. We extend k-anonymity to multi-source
(k,d)-anonymity and multi-source (k,l,d)-diversity for two different targets. The former
solves the problem of protecting privacy through multi-source QIs, while the latter simulta-
neously focuses on multi-source QIs and SAs. The algorithms of the above models are based
on the Hilbert curve, and they are efficient on two real-world datasets. Through experi-
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ments on the real datasets, we demonstrate that our algorithms are effective for new privacy
challenges. We also experimentally test privacy disclosure, data utility, and efficiency.

In the future, we will study the following problems: better support for other models
and higher efficiency. Specifically, we will explore further privacy problems, because in the
IoV scenario, aggregated datasets change the relations among multi-source data. Further,
higher efficiency can improve the practicability of our algorithms.
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