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Abstract: As a transitional vehicle between fuel and electric vehicles, hybrid vehicles achieve energy
savings and emission reductions without range anxiety. Regenerative braking has a direct impact on
the fuel consumption of the whole vehicle; however, the current regenerative braking strategy for
commercial vehicles is not yet perfect and has a poor adaptability in terms of working conditions and
whole-vehicle load changes. Therefore, this paper proposes a regenerative braking strategy based on
the identification of working conditions, by considering the influence of the vehicle load state and
driving conditions on braking. Firstly, historical driving data of commercial vehicles were obtained
from GPS data, driving conditions were classified using principal component analysis (PCA) and
K-means, and a working condition recogniser was constructed using a back propagation neural
network (BPNN) optimised with the Coati optimisation algorithm (COA). The recognition accuracy
of the COA-BPNN was 7.6% better than that of the BPNN. Secondly, front and rear axle braking force
distribution strategies are proposed, according to the braking intensity magnitude and load state
under empty-, half-, and full-load conditions. Finally, a genetic algorithm (GA) was used to find the
optimal control parameters for each category of working conditions, and the COA-BPNN condition
recogniser identified the current category of working conditions needed to retrieve the corresponding
optimal control parameters in the offline parameter library. The simulation results under C-WTVC
and synthetic conditions show that the energy recovery rate of the proposed strategy in this paper
reached up to 69.65%, which is at most 206.3% higher than that of the fixed-ratio strategy and at most
37.4% higher than that of the fuzzy control strategy.

Keywords: hybrid commercial vehicles; condition classification; condition identification; brake energy
recovery; vehicle load

1. Introduction

With the increase in car ownership, the environmental pressure caused by conventional-
fuel vehicles is becoming ever more apparent, with a significant impact on the global
environment [1,2]. Hybrid vehicles are a model for the transition from traditional-fuel
vehicles to pure electrification and are currently the most promising models in the transport
electrification industry [3,4].

Hybrid vehicles have two power sources—the combustion engine and the electric
motor—so their advantage lies in the fact that their energy utilisation efficiency can be
maximised through energy management strategies, and the electric motor can be used
as a generator to recover braking energy. Commercial vehicles generate more braking
energy due to their larger mass, making the recovery of this braking energy even more
important [5].

The usual brake force distribution strategy is a front and rear axle brake force distri-
bution, as well as mechanical braking of the drive axle, and an electric machine power
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distribution strategy. A balanced distribution of the electromechanical brake force between
the front and rear axles is crucial for energy recovery [6,7].

In research on front and rear axle brake force distribution, many scholars use different
strategies to distribute the brake force between the front and rear axles. Geng C et al. [8]
proposed a zigzag distribution curve combining the I curve, the f-group line (the front
and rear brake force distribution line in the case of only the front wheels locking or the
front wheels locking first), and the ECE regulation curve based on the brake intensity.
Jiang B et al. [9] proposed a variable-ratio brake force distribution strategy for the front and
rear axle, based on brake intensity, to find the optimal brake force distribution coefficient β,
to improve energy recovery efficiency. Yin.Z et al. [10] set three thresholds for the battery
state of charge (SOC), velocity, and braking intensity. This approach allows the front
and rear axle braking force distribution to be reclassified, improving braking safety and
significantly enhancing braking energy recovery effectiveness. Wei W et al. [11] proposed a
braking energy maximisation control strategy, setting three braking intensity thresholds
corresponding to three braking force allocation strategies. Itani K et al. [12] proposed
a sliding mode controller to regulate the sliding film ratio of wheel braking, effectively
improving the braking stability of the whole vehicle; however, due to the over-assurance of
stability, this approach led to low energy recovery. Sandrini G [13] proposed a regenerative
braking logic for front-wheel drive (FWD), rear-wheel drive (RWD) or all-wheel drive
(AWD) use. El-bakkouri J et al. [14] proposed an objective and constraints for the braking
torque distribution of a hybrid anti-lock braking system (ABS) based on the extreme search
technique, which constitutes a better treatment. Regenerative energy is maximised, and the
battery’s state of charge is improved, by optimising the electric braking system’s efficiency.

In their research on driving axle mechanical and electric motor brake force distribution,
many scholars use algorithmic optimisation or fuzzy control to find the optimal distribution
coefficient trajectory. Li X et al. [15] used a fuzzy control strategy to design a brake energy
recovery strategy with the braking intensity, velocity, and SOC as inputs and electrome-
chanical brake power distribution coefficients as outputs. The simulation results show that
the method effectively improves the energy recovery rate. Zhai Y et al. [16] used historical
100 s driving information to predict velocity in a future period, to determine the opti-
mum dual-motor torque distribution under the predicted operating conditions to improve
energy recovery. Li W et al. [17] proposed a fuzzy control strategy considering braking
intensity, and the simulation results showed that the energy recovery rate reached 39.6%.
Mei P et al. [18] proposed an adaptive fuzzy control strategy, wherein a genetic algorithm
was used to determine the optimal allocation parameters, and the strategy also incorporated
the driver’s influence on the weight factor to achieve dynamic control. Li L et al. [19] opti-
mised the torque distribution across the regenerative braking system, and the mechanical
braking system was optimised using a particle swarm optimisation algorithm.

In summary, research on brake energy recovery technology for the passenger car sector
has shown some progress, but there is still limited-application research in the commercial
vehicle sector. Due to the large mass variation in commercial vehicles, which are primarily
rear-driven, the established recovery strategies are relatively simplistic, leading to low
energy utilisation, poor braking smoothness, and little consideration of the effects of
working conditions and loads on braking safety and energy recovery efficiency. As a result,
these strategies cannot be effectively applied to scenarios encountered in the actual driving
process. In real driving situations, emergencies sometimes occur, and the existing strategies
are ambiguous regarding whether energy recovery should be performed when braking is
intense. The safety of braking should be fully considered during emergency braking, when
all of the braking force needs to be provided by the mechanical brake, without regenerative
braking, to ensure that the car can stop quickly.

Aiming to address the above problems in brake energy recovery strategies for com-
mercial vehicles, this paper proposes a strategy based on the identification of working
conditions. Firstly, taking into account the effect of braking in the whole vehicle load state,
the strategy of distributing the braking force of the front and rear axles in the empty-, half-
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and full-load states is proposed, according to the braking intensity magnitude and load
state. Secondly, according to the GPS data on the historical driving data of commercial
vehicles, and according to the performance parameter indicators of the vehicle, and the
time–velocity sequence of data pre-processing, the use of pre-processed data, through the
Coati optimisation algorithm (COA), was used for the optimisation of the back propagation
neural network (BPNN) to construct the working condition identifier. Finally, a genetic
algorithm was used to determine the optimal control parameters of the three loads under
each working condition category, and the COA-BPNN working condition identifier identi-
fied the current working condition category to retrieve the corresponding optimal control
parameters in the offline parameter library.

The paper is structured as follows: In Section 2, the whole-vehicle model of a hybrid
commercial vehicle is introduced, and its construction in AVL-Cruise v.2019 software
is described. In Section 3, the data processing, state classification, and state recognition
construction are presented. In Section 4, the development of front and rear axle brake power
distribution strategies, based on different loads and energy recovery strategies based on
state recognition, is described, as is the construction of the strategy model in Simulink.
In Section 5, the simulation of the strategies is described, and the results are studied. In
Section 6, conclusions are drawn.

2. HEV Model

In this study, the P2 hybrid commercial vehicle was selected as the model, and its
topology is shown in Figure 1. The electric motor of the P2 hybrid vehicle is located between
the combustion engine and the transmission, and the torque coupling between the electric
motor and the combustion engine is controlled by the clutch, so that different vehicle control
and energy management strategies can be set, to achieve different driving modes and
improve the overall vehicle dynamics and fuel economy [20]. With the rapid development
of new energy vehicles, the P2 structure has been widely adopted by major manufacturers
due to its low cost [21]. Table 1 shows the vehicle parameters of the hybrid vehicle.
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Table 1. Vehicle parameters.

Parameter Value Unit

Vehicle total mass 4495 kg
Wheel radius 0.375 m

Rolling resistance coefficient 0.012 kg/m3

Aerodynamic drag coefficient 0.492 -
Final drive gear ratio 5.571 -

Transmission efficiency 92 %
Rotating mass conversion factor 1.03
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2.1. Vehicle Model

When a car travels, it must overcome rolling resistance, air resistance, gradient resis-
tance, and acceleration resistance; thus, the following equation for the car’s movement can
be formed:

Ft = G f cos α +
CD A
21.15

u2
a + Gsin α + δm

du
dt

(1)

where Ft is the driving force, and it can be expressed in terms of:

Ft =
Ttpigi0ηT

r
(2)

where Ttp is the combustion engine torque; ig is the transmission ratio; i0 is the main
transmission ratio; ηT is the transmission efficiency; r is the tyre radius; G is gravity; f is
the tyre rolling resistance coefficient; α is the slope angle; CD is the air resistance coefficient;
A is the upwind area; ua is the car velocity; δ is the mass conversion coefficient; and m is
the total mass of the car.

2.2. Combustion Engine Parameter Matching

The performance of the car cannot be sacrificed when improving its economy. The
performance index for a car is assessed using the maximum speed Vmax, acceleration time
t and maximum gradient climb imax [22]. Regarding the pure combustion engine drive,
when the car is at maximum velocity under the demand power Pev and the maximum
gradient-climbing demand power Pei needed to produce the total combustion engine power
Pemax, both need to satisfy the following formula:

Pemax ≥ {Pev, Pei} (3)

1. The total power is determined from the maximum velocity.

Pev max =
vmax

3600ηt

(
m1g f +

CD A
21.15

v2
max

)
+ Pf (4)

where Pev max is the total combustion engine power at the maximum velocity; vmax is the
maximum velocity; ηt is the transmission efficiency; m1 is the unladen mass; f is the rolling
resistance coefficient; CD is the air resistance coefficient; A is the windward area of the
vehicle; and Pf is the demanded power of the high voltage appliance, which takes the value
10% × Pev max.

2. The total power is calculated based on the maximum gradient climbed.

Pei max =
vi

3600ηt

(
mg f cos α+mgsin α +

CD A
21.15

v2
i

)
+ Pf (5)

where vi is the velocity when climbing the slope; m is the full-load mass; α is the maximum
climbing angle, α = arctani, i = 30%; and Pf takes the value 10% × Pei max.

In summary, the main combustion engine parameters are obtained, as shown in
Table 2:

Table 2. Combustion engine parameters.

Parameter Value Unit

Typology Diesel engine -
Combustion engine displacement 2.4 L
Maximum power at 2500 r/min 100 kW
Maximum torque at 1400 r/min 350 Nm

Maximum speed 3000 r/min
Moment of inertia 0.213 kg·m2
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Two- and three-dimensional contour maps of the combustion engine are shown in
Figure 2.
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2.3. Electric Motor Parameter Matching

When the electric motor is driven alone, it is necessary to simultaneously satisfy
the demand power Pmv at maximum velocity in EV mode, the demand power Pmi at the
maximum gradient climb, and the demand power Pma at maximum acceleration, where
Pmi and Pmv should be kept equal to the electric motor parameters.

Neglecting the gradient resistance, the electric motor power demand Pma is calculated
from the maximum acceleration as:

Pma max =
vn

3600ηt

(
m1g f +

CD A
21.15

v2
n + δm1

vnx
tn

(
t
tn

)x−1
)
+ Pf (6)

where vn is the final velocity of acceleration, km/h; tn is the total time of acceleration, s;
and x is the fitting coefficient, taken as 0.5.

The maximum electric motor speed is calculated using the following formula:

nmax =
vmaxi0
0.377r

(7)

The electric motor rated speed is calculated using the formula:

ne =
nmax

ξ
(8)

where vmax is the maximum velocity; i0 is the main deceleration ratio; r is the tyre radius;
and ξ is the expanded constant power zone coefficient, which takes the value of 2.

The torque of the electric motor can be obtained from Equation (9).

Pm =
Tmne

9550
(9)

In summary, the main electric motor parameters are obtained, as shown in Table 3.
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Table 3. Electric motor parameters.

Parameter Value Unit

Typology AC asynchronous motor
Maximum power 90 kW

Rated power 50 kW
Maximum torque 375 Nm

Rated torque 272 Nm
Maximum speed 3500 r/min

Rated speed 1750 r/min

Two- and three-dimensional efficiency maps of the electric motor are shown in Figure 3.
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2.4. Power Battery Models

The power battery is mainly used to provide power to the electric motor; taking into
account the role of energy recovery, the battery pack in this study consisted of 550 single
lithium batteries. The relationship between the

.
SOC rate of change and the current is

as follows:
.

SOC(t) = − Ibat(t)
Qbat

(10)

The capacity of the power battery pack can be calculated based on the nationally
specified range, the target constant velocity, and the power requirement of the electric
motor. The capacity requirement for the power battery pack for the target range is:

C =
SobjPre

VobjηmU
(11)

where Vobj is the uniform velocity; Sobj is the target driving range; ηm is the working
efficiency of the electric motor; U is the voltage of the power battery pack; and Pre is the
power required by the electric motor.

2.5. Vehicle Model Construction

AVL-Cruise v.2019 is a piece of software developed by AVL for the power components
of the whole vehicle; it can be used to study the fuel consumption and dynamics of different
vehicles under different working conditions. The way the software divides the whole
vehicle into several small modules makes it easy for the user to build different vehicle
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models according to their own ideas, and its complete solver can quickly output accurate
results; therefore, AVL-Cruise v.2019 software was used in this study, and whole-vehicle
modelling was carried out based on the topology of the P2 hybrid vehicle as described in
the previous section. The specific steps are as follows:

Step 1: According to the structure of the P2 hybrid vehicle, build the mechanical
connection model between the vehicle, wheels, combustion engine, electric motor, clutch,
transmission, brake, power battery, main reduction gear, and differential, etc., in Cruise.

Step 2: Enter the basic parameters of the whole vehicle and the parameters of the
selected components.

Step 3: Set the mechanical and electrical connections, outputs, and output signals
between the components.

Figure 4 shows the Cruise vehicle model created in this study.
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3. Working Condition Identification Model Construction
3.1. Data Pre-Processing

In this study, the data collected came from the driver’s random autonomous driving,
which is random and more responsive to the road driving characteristics in the region and
the driving needs of ordinary drivers. Some of the time–velocity information is shown in
Figure 5.
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It is particularly important to pre-process the data to ensure that they are accurate and
reliable. In this study, the data were pre-processed as follows:

When the data distortion was greater than 5 s, the distorted work segment was
excluded, and for the part less than or equal to 5 s, the mean value was used to make up
the difference. The formula for this is as follows:

vt =
vt−1 + vt−2

2
(12)

where vt is the velocity at the point of distortion; vt−1 is the velocity one second before the
distortion; and vt−2 is the velocity two seconds before the distortion.

The complete dataset after the complementary difference adjustment was subjected
to wavelet filtering. According to the multi-scale transformation of wavelet filtering, the
signal noise was classified into low- and high-frequency signals, and the noise was usually
a high-frequency signal. The one-dimensional noise signal can be expressed as:

s(t) = f (t) + σ × e(t) t = 0, 1, 2 . . . .n (13)

where s(t) is the original signal; f (t) is the real signal; σ is the noise standard deviation;
and e(t) is the noise.

In the wavelet denoising process, the original signal was first decomposed, and then
each layer was processed using thresholding; finally, the signal was reconstructed after
each layer had been processed. The continuous wavelet transform for any function f (t) is:

W f (a, b) = |a|−
1
2

∫ R

0
f (t)ψ

−t − b
a

dt (14)

where a is the scaling factor; b is the translation factor that changes the displacement of the
continuous wavelet; Wf(j, t) is the discrete wavelet transform of f (t); and the discretisation
method is a = 2j; b = k2j; j, k ∈ Z, where Z is the set of integers. In this study, soft-
threshold signal processing was chosen, and its expression is as follows:

wλ =

{
[sign(w)](|w| − λ), |w| ≥ λ
0, |w| < λ

(15)

where w is the wavelet coefficient and λ is the threshold. If the absolute value of the wavelet
coefficient was equal to the given threshold, it was subtracted from the threshold, and if it
was less than the given threshold, it was set to 0. Due to the large size of the original data,
filtering was implemented. Figure 6 shows some of the velocity segments after filtering.
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3.2. Classification of Working Conditions

In this study, the working condition classification was based on a number of kinematic
segments; each kinematic segment had different characteristics, so the pre-processed
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driving condition time series were divided into kinematic segment libraries, the data
from which were the basis for the working condition classification. The processed vehicle
velocity was divided into kinematic segments, and the pre-screening process was as follows:

Step 1: Due to the large timespan of the collected data, there were a large number
of idle segments on the road; idle segments of >200 s were reduced to 200 s to meet the
requirements of kinematic segments.

Step 2: This paper focuses on the study of commercial vehicles; according to the actual
situation, the acceleration and deceleration speed should be less than 5 m/s2, so it was
necessary to omit kinematic segments with acceleration and deceleration speeds greater
than 5 m/s2.

The kinematic segment feature parameters can be used to describe themselves; how-
ever, due to certain correlations between the feature parameters, too many feature param-
eters would make the information redundant. Therefore, this study selected parameters
based on relevant research [23–25]. The following were chosen as the characteristic param-
eters of kinematic segments: acceleration segment average acceleration (a); deceleration
segment average deceleration (d); maximum deceleration (dmax); maximum acceleration
(amax); deceleration ratio (Pd); acceleration ratio (Pa); stopping ratio (Ps); motion ratio (Pr);
average running velocity (vrun); maximum velocity (vmax); and average velocity (v). Table 4
shows the characteristic data of the kinematic segments.

Table 4. Characteristic values of kinematic fragment library.

Number v vmax vrun Pr Ps amax dmax a d Pd Pa

1 34.9 52.8 35.1 99.6 0.4 0.80 −1.29 0.28 −0.31 24.7 21.2
2 21.6 60.6 32.81 65.7 34.3 1.01 −1.11 0.32 −0.31 13.9 18.9
3 21.34 44.7 34.2 62.4 37.6 0.92 −6.09 0.32 −0.50 20.5 24.3
4 0.21 1.6 1.48 14.1 85.9 0.21 −0.21 0.19 −0.21 4.15 3.51
5 7.52 38.1 23.65 31.8 68.2 0.76 −0.83 0.34 −0.46 13.5 14.3
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The high dimensionality of the original feature parameter data, and the presence of a
large data overlap, increase the computational complexity of K-means cluster analysis [26].
Principal component analysis (PCA) replaces the original data feature parameters with
fewer principal components by mapping the high-latitude feature parameters to the low-
latitude ones; after the dimensionality reduction, each feature of the data is independent of
the others, and if the data are affected by noise, discarding some of the data can help to
reduce noise. Therefore, the data’s dimensionality was reduced using PCA. The principal
components of the kinematic fragment library and their contribution values were obtained
according to the PCA step in the literature [27], as shown in Table 5.

As shown in Table 5, the cumulative contribution rate of the first four principal com-
ponents reached 87.077%, which is sufficient for characterising all the feature information
of the driving condition data in this paper, and the first four principal components were
selected as the clustering features.

According to the characteristics of the driving condition kinematic segments, the K-
means algorithm was used to cluster the segments; the K-means algorithm converges faster
and can overcome the shortcomings of spectral clustering, making the classification results
more accurate and reasonable. According to the K-means clustering steps outlined in the
literature [28], this study finally clustered the original data into four categories. Figure 7
presents a clustering effect diagram.

In Figure 7, Type 1, Type 2, Type 3 and Type 4 are the scatter plots of four categories
under the dimensions of Principal Component 1, Principal Component 2 and Principal
Component 3, which demonstrate that there are clear boundaries between the categories,
that the distribution patterns are clearly unique, and that there are fewer samples in each
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category that deviate significantly from the centre of the clusters, suggesting that the
clustering works well.

Table 5. Principal component eigenvalues and contributions.

Principal
Component Characteristic Root Contribution Rate (%) Cumulative

Contribution Rate (%)

1 4.83 43.908 43.908
2 2.474 22.495 66.403
3 1.38 12.542 78.945
4 0.894 8.132 87.077
5 0.635 5.776 92.853
6 0.398 3.614 96.467
7 0.348 3.168 99.635
8 0.033 0.303 99.937
9 0.007 0.063 100

10 0.00 0.00 100
11 0.00 0.00 100
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Figure 8 shows the results of the category of working conditions. As can be seen in
Figure 8, the variability of the characteristics of the four categories is distinct. Figure 8a
shows the highest velocity, maintained close to 90 km/h, with a short idle time, low number
of times, and high velocity maintained for a long time, reflecting highway conditions.
Figure 8b shows the maintenance of the velocity close to 60 km/h; compared to the
working condition (a), the number of idle times is increased, the idle time is increased, and
the duration of high velocity is moderate, which corresponds to the working conditions of
suburban environments. Figure 8c shows that the velocity is kept close to 30 km/h, the
number of start–stops is higher, the idle time is longer, and the velocity fluctuation is greater,
corresponding to the working conditions of a smooth urban environment. Figure 8d shows
the lowest velocity, below 10 km/h; the start–stops are frequent, the idle ratio is large,
and the high velocity is maintained for a short period of time, which is in line with the
low-velocity working conditions of urban congestion.

3.3. COA-BPNN Working Condition Identification Construction

The backpropagation neural network (BPNN) is a multilayer feedforward neural
network trained using error backpropagation. Due to the learnability of its weights and
thresholds, the BPNN has a strong nonlinear fitting ability and works better for category
recognition [29]. The BPNN consists of an input layer, hidden layer, and output layer, and
its structure is shown in Figure 9.
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Where x1, x2. . . xn are input neurons and y1, y2, y3, and y4 are output neurons. The
output thresholds of the hidden layer and the output layer are θj and bk, respectively, where
the input layer is the characteristic parameter of the driving conditions and the output layer
is the category of the working conditions. The weights of the neuron connections between
the input layer and the implicit layer, and between the implicit layer and the output layer,
are wij and wjk, respectively. wij, wjk, θj, and bk directly affect the recognition accuracy of
the BPNN and reduce the accuracy of work recognition; thus, this study, with the help
of the COA intelligent optimisation algorithm proposed by Mohammad et al. [30], took
advantage of the higher convergence speed of the COA algorithm and the ability of global
optimisation to search for wij, wjk, θj, and bk and obtain the optimal solution to be applied
to the BPNN. The specific steps of the COA-BPNN algorithm are as follows:

Step 1: Population initialisation. Translate wij, wjk, θj, and bk to each Coati position.
Determine the population size N and the maximum number of iterations T.

Step 2: Find the best individual position in the population.
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xt+1
i = xt

i (j) + r
(

xt
best(j)− Ixt

i (j)
)
, i = 1, 2, . . . ,

N
2

(16)

Step 3: Update the position. If the new position improves the value of the objective
function, the new position is acceptable; otherwise, the raccoon stays put. Use the average
of the squared error between the actual output and the desired output as the fitness function.

f itness =
1
n

n

∑
i=1

(yi − ŷi)
2 (17)

xt+1
i =

xt+1
i , i f f itness

(
xt+1

i

)
< f itness

(
x
′
i

)
xt

i , else
(18)

Step 4: Coati avoidance strategy.

xt+1
i (j) = xt

i (j)− (1 − 2r)
(

lblocal
j + r

(
ublocal

j − lblocal
j

))
i =, 2, . . . , N (19)

Step 5: Greedy selection. If the computed position improves the value of the objective
function, it is acceptable; otherwise, keep it as it is.

3.4. COA-BPNN Working Condition Identifier Verification

Online working condition identification was used to retrieve the characteristics of the
historical time window ∆T during driving and identify the category of the current time
window Hp. As explored in Section 3.2, the data of the four working condition category
combinations were divided according to the 10 s historical time window, and the total
number of samples was set to 1800; 70% was selected as the training set, 20% was used as
the test set, and 10% was used as the validation set. The number of iterations was set to
500, and the target accuracy of iteration was 0.001. Each window feature parameter was
calculated as the training data. The number of nodes in the input layer of the BPNN was
11, the number of nodes in the hidden layer was 15, and the number of nodes in the output
layer was 4.

Figure 10 shows a comparison of the iteration process between COA-BPNN and
BPNN. As can be seen in the figure, after 100 iterations, the mean square error of the
COA-BPNN algorithm was stable, and the convergence speed was significantly higher
than that of the BPNN. When the iteration was carried out 500 times, the final mean square
error of the COA-BPNN was 0.001 and that of the BPNN was 0.009, which shows that the
recognition accuracy of the COA-BPNN was significantly superior to that of the BPNN,
which reached 98.9%.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 26 
 

3.4. COA-BPNN Working Condition Identifier Verification 

Online working condition identification was used to retrieve the characteristics of the 

historical time window Δ� during driving and identify the category of the current time 

window ��. As explored in Section 3.2, the data of the four working condition category 

combinations were divided according to the 10 s historical time window, and the total 

number of samples was set to 1800; 70% was selected as the training set, 20% was used as 

the test set, and 10% was used as the validation set. The number of iterations was set to 

500, and the target accuracy of iteration was 0.001. Each window feature parameter was 

calculated as the training data. The number of nodes in the input layer of the BPNN was 

11, the number of nodes in the hidden layer was 15, and the number of nodes in the output 

layer was 4. 

Figure 10 shows a comparison of the iteration process between COA-BPNN and 

BPNN. As can be seen in the figure, after 100 iterations, the mean square error of the COA-

BPNN algorithm was stable, and the convergence speed was significantly higher than that 

of the BPNN. When the iteration was carried out 500 times, the final mean square error of 

the COA-BPNN was 0.001 and that of the BPNN was 0.009, which shows that the recog-

nition accuracy of the COA-BPNN was significantly superior to that of the BPNN, which 

reached 98.9%. 

0 50 100 150 200 250 300 350 400 450 500
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 COA-BPNN

 BPNN

 Target value

M
ea

n
 s

q
u

a
re

 e
rr

o
r

Number of iterations

486 488 490 492 494 496 498

0.00

0.01

0.02

 

Figure 10. Comparison of COA-BPNN and BPNN iterations. 

4. Construction of Regenerative Brake Strategy Based on Condition Identification 

This section describes how a distribution strategy was designed to develop the front 

and rear axle braking force distribution coefficients as a variable ratio value, based on the 

no-load, half-load and full-load braking force. Then, based on the six key control param-

eters affecting the electric motor braking energy recovery efficiency, each category of 

working conditions derived from the clustering in Section 3 was individually treated as a 

working condition velocity, and a genetic algorithm was used to determine the optimal 

control parameters for the three kinds of loads under each category of working conditions; 

then, through the COA-BPNN online working condition recogniser, the algorithm identi-

fied the current category of working conditions and retrieved the corresponding optimal 

control parameters in the offline parameter library, and the electric motor demand braking 

force and mechanical braking force were calculated. Figure 11 shows the framework of 

the condition recognition-based regenerative braking strategy. 

Figure 10. Comparison of COA-BPNN and BPNN iterations.



Appl. Sci. 2024, 14, 3235 13 of 25

4. Construction of Regenerative Brake Strategy Based on Condition Identification

This section describes how a distribution strategy was designed to develop the front
and rear axle braking force distribution coefficients as a variable ratio value, based on the
no-load, half-load and full-load braking force. Then, based on the six key control parameters
affecting the electric motor braking energy recovery efficiency, each category of working
conditions derived from the clustering in Section 3 was individually treated as a working
condition velocity, and a genetic algorithm was used to determine the optimal control
parameters for the three kinds of loads under each category of working conditions; then,
through the COA-BPNN online working condition recogniser, the algorithm identified the
current category of working conditions and retrieved the corresponding optimal control
parameters in the offline parameter library, and the electric motor demand braking force
and mechanical braking force were calculated. Figure 11 shows the framework of the
condition recognition-based regenerative braking strategy.
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4.1. Front and Rear Axle Brake Force Distribution Strategy
4.1.1. Front and Rear Axle Brake Force Distribution Curve Analysis

1. Ideal brake force distribution curve

In the braking process, when the braking force can meet the vehicle braking conditions,
the front and rear wheels exhibit the following three states: first, the front wheels take the
lead in holding and slipping; second, the rear wheels take the lead in holding and slipping;
third, the front and rear wheels are simultaneously responsible for holding and slipping.
These are the most ideal conditions, as they can avoid rear axle side slip, ensuring the best
utilisation rate for adhesion under these conditions, thereby meeting the requirements of
vehicle braking safety and stability. At this point, both the front and rear wheels can be in
an ideal state of holding dead simultaneously. This occurs when the front and rear axle
braking force distribution curve forms what is referred to as an I curve. The formula for
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the ideal braking relationship function between the front and rear axle braking forces is
as follows:

Fur =
1
2

[
G
hg

√
b2 +

4hgL
G

Fu f −
(

Gb
hg

− 2Fu f

)]
(20)

where Fu f is the front axle brake force; Fur is the rear axle brake force; L is the wheelbase of
the vehicle; G is the gravitational force of the vehicle; hg is the height of the centre of mass
of the vehicle; and b is the distance from the rear axle to the centre of mass of the vehicle.

2. ECE regulation requirements

For lorries with a gross mass of more than 3.5 tonnes, the UNECE braking regulation
ECER13 sets out requirements for the distribution of braking force between the front and
rear axles of such vehicles. The distribution of braking force between the front and rear
axles is expressed by the braking force distribution coefficient β, i.e., the ratio of the braking
force of the front axle and the total braking force required by the vehicle. According to an
analysis of the regulation, the front and rear axle brake force distribution coefficient β and
the braking intensity are defined as follows:

0 ≤ β ≤ 1 0 ≤ z ≤ 0.1

0 ≤ β ≤
(z + 0.07)

(
b + zhg

)
0.85zL

0.1 ≤ z ≤ 0.15

1 −
(z + 0.08)

(
a − zhg

)
zL

≤ β ≤ 1 −
(z − 0.08)

(
a − zhg

)
zL

0.15 ≤ z ≤ 0.3

(z − 0.08)
(
b + zhg

)
zL

≤ β ≤
(z + 0.08)

(
b + zhg

)
zL

0.15 ≤ z ≤ 0.3

1 −
(z − 0.02)

(
a − zhg

)
0.74zL

≤ β ≤
(z − 0.02)

(
b + zhg

)
0.74zL

0.3 ≤ z ≤ 0.8

(21)

4.1.2. Front and Rear Axle Brake Force Distribution Strategy

According to the level of braking intensity, braking is divided into four modes: light,
medium, heavy, and emergency braking. As the rear wheel first locking in the braking pro-
cess represents an unstable condition, an empty-, half-, and full-load/front- and rear-axle
braking force distribution strategy was developed, based on the comprehensive considera-
tion of the f-group line (the front wheel first locking and the rear wheel not being wrapped),
ECE braking regulations, and the ideal braking force distribution curve of different loads.
Brake force distribution curves for the front and rear axles are shown in Figure 12.

As shown in Figure 12, the brake force distribution rules are as follows:

(1) Light braking mode: When the braking intensity is between 0 and 0.15 (0 ≤ z < 0.15),
regardless of the current vehicle load, all of the braking force is distributed to the
rear axle according to the AB curve. The maximum braking force is provided by the
electric motor, and the mechanical brake plays a complementary role.

(2) Medium braking mode: The vehicle distributes the braking force according to the BC
curve, the braking force of the rear axle remains unchanged, and the braking force
of the front axle increases linearly with the increase in braking intensity, until the
no-load threshold zE1 = 0.42, half-load threshold zH1 = 0.29, and full-load threshold
zF1 = 0.23 are reached.

(3) Hard braking mode: The vehicle distributes the brake force along the CD curve, and
the brake force distribution curve is always below the ideal brake force distribution
coefficient I curve and close to the I curve, until it coincides again with the ideal brake
force distribution coefficient I curve, at which point zE2 = zH2 = zF2 = 0.7.

(4) Emergency braking mode: If z > 0.7, no regenerative braking is performed under any
load condition, and the braking force is fully distributed to the mechanical brakes of
the front and rear axles, according to the DE curve.
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4.2. Optimisation of Regenerative Braking Parameters Based on GA

The efficiency of regenerative braking energy recovery is mainly affected by the vehicle
velocity, battery charge state, battery charging power, electric motor characteristics, and the
ratio of brake force distribution between mechanical and electric motor; the braking torque
requirement of the electric motor can be calculated using the following equation:

TReqMot = K1 × TReqWheel × (1 − β)× γ × Vk ×
SOCk

ηt
(22)

where TReqWheel is the vehicle demand brake torque; TReqMot is the electric motor brake de-
mand torque; Vk is the velocity correction factor; SOCk is the SOC correction coefficient; ηt
is the transmission efficiency; K1 is the electric motor brake demand torque gain coefficient;
and γ is the mechanical and electric motor brake force distribution coefficient, i.e., the ratio
of the electric motor brake torque to the total brake torque of the rear axle.

When SOC > 60%, the battery limits the maximum charge power to limit the power
generated by the electric motor, thus extending the life of the battery.

Plim = K2Pb_max (23)

where Plim is the generating power of the electric motor; Pb_max is the maximum charging
power of the battery; and K2 is the maximum charging power gain coefficient of the battery.

The electric motor speed affects the efficiency of the electric motor’s power generation,
and the regenerative braking minimum electric motor speed keeps the electric motor in a
more efficient working range.

Pk =
T × nk
9550

(24)

where Pk is the power at minimum speed and nk is the minimum speed of regenerative
braking, in rpm.

In this study, the velocity correction factor Vk was set within the range [0.8, 1.2];
the battery SOC correction factor SOCk was set within the range [0.8, 1.2]; the electric
motor braking demand torque gain coefficient K1 was set within the range [1, 4]; the
maximum battery charging power amplification coefficient K2 was set within the range
[0.5, 1]; the minimum speed of the electric motor for regenerative braking nk was set within
the range [400, 800]; and the mechanical and electric motor braking force distribution
coefficients γ were optimised in the range [0, 1] to obtain the best regenerative braking
energy recovery efficiency.
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Four driving conditions were defined and obtained, as described in Section 3; Figure 13
shows some of the time–velocity curves synthesised for the four conditions, where (a), (b),
(c), and (d) were synthesised using only kinematic segments of the highway, suburban,
urban smooth, and urban congestion working conditions, respectively, and parameter
optimisation was performed under each of the four conditions.
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The genetic algorithm (GA) is an adaptive global search method for finding optimal
solutions through the simulation of the evolutionary process, which defines the search space
of optimal solutions as an evolutionary process and solves them with a set of stochastic
rules. GAs do not have the restriction of the hard rules found in traditional algorithms,
giving them superior parallel solving abilities and global optimality search abilities, and
they can also effectively solve multi-objective optimisation problems; therefore, a GA was
chosen for offline parameter determination in this study. The steps of the GA used in this
study for parameter optimisation were as follows:

Step 1: The target parameters and their constraints were determined, and the six
control parameters were formed into an individual component of the genetic algorithm.

Step 2: The target working conditions and the target load state were determined. The
four synthetic working conditions clustered above were used to run the strategy separately,
to derive the optimal control parameters under different working conditions.

Step 3: Coding and population initialisation. The binary coding method was used
to encode the six control parameters into individuals; the random method was used to
initialise the population.

Step 4: Setting and calculating the fitness function. Considering the brake energy
recovery efficiency and brake safety, the sum of the minimum brake energy loss and brake
safety was selected as the objective function, as shown in Equation (25).

f itness = δ1 J1 + δ2 J2

J1 = 1 −
K1K2TReqWheel(1 − β)γVkSOCkηmTsn

9550ηt

(
1
2

m
(
v2

0 − v2
t
)
+ Tsv

(
mg f +

Cd Av2

21.15

))
J2 =

√(
z − φ f

)2
+ (z − φr)

2

(25)

where δ1 decreases as the braking intensity becomes larger, and vice versa for δ2. Equation (26)
is the weighting factor rule.

δ1 = 1, δ2 = 0 z ∈ [0, 0.3]

δ1 = 1 − z−0.3
0.6 , δ2 = z−0.3

0.6 z ∈ (0.3, 0.6]

δ1 = 0.5, δ2 = 0.5 z ∈ (0.6, 1]

(26)
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Step 5: According to the degree of adaptation of the individual determining the
probability of the individual to be selected, the better the adaptation of the individual, the
greater is the probability of being selected.

Step 6: If the value of the objective function satisfies the condition or reaches the
maximum number of iterations, then stop the iteration and output the optimal value; if it
does not satisfy the condition, then return to Step 4.

Table 6 shows the values of the optimum control parameters for different loads,
obtained according to the above steps.

Table 6. The optimal control parameters of different loads under four working conditions.

Payloads Condition K1 K2 γ Vk SOCk nk

Empty

Highway 2.52 0.91 0.72 1.11 1.06 780
Suburban 2.61 0.83 0.63 1.06 1.03 765

Urban smooth 3.13 0.86 0.56 0.98 0.98 565
Urban congestion 3.50 0.78 0.53 0.88 0.96 466

Half

Highway 2.31 0.83 0.90 1.06 1.03 782
Suburban 2.34 0.75 0.81 0.98 1.01 694

Urban smooth 2.98 0.76 0.74 0.97 1.01 596
Urban congestion 3.12 0.79 0.66 0.91 0.95 501

Full

Highway 1.92 0.78 0.89 1.13 0.99 786
Suburban 2.21 0.72 0.87 1.04 0.99 765

Urban smooth 2.71 0.71 0.79 0.98 0.97 583
Urban congestion 2.93 0.69 0.73 0.96 0.91 436

Fixed ratio - 1 1 0.5 1 1 400

4.3. Regenerative Braking Strategy Modelling Based on Condition Identification

Simulink is a visual simulation tool in Matlab that is widely used in modelling and sim-
ulation applications for linear systems, nonlinear systems, digital control, and digital signal
processing, and it can convert the constructed control model into a DLL file to perform data
transfer and a joint simulation with AVL-Cruise software to improve research efficiency.
Thus, based on the regenerative braking strategy designed in the previous chapters, in this
study, the regenerative braking strategy model based on condition identification was built
in Simulink, as shown in Figures 14 and 15.
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5. Simulation Analysis

The most commonly used verification method in the simulation process of energy
management strategy construction is Matlab/Simulink 2022(a) and AVL-Cruise v.2019 joint
simulation. To ensure the rigour of the simulation, the C-WTVC cycle, and a sampling
synthesis of the cycle based on the clustering results of the previous paper, were selected.
The joint simulation analysis was conducted using the Matlab DLL interface method to
verify the design of this paper’s control strategy’s effectiveness. With reference to the
duration of the international standard conditions, the duration of the synthetic cycle in this
study was set to 1800 s, in which the duration of each type of conditions was determined
according to the following formula:

ti =
Ti
Tn

tn (27)

where ti is the duration of the i category of the synthetic conditions; Ti is the time occupied
by the ith category of all kinematic segments; Tn is the duration of all kinematic segments;
and tn is the target duration of the synthetic conditions.

To ensure that the research was rigorous, a fixed-ratio strategy where β = 0.6 and
γ = 0.5, and a fuzzy control strategy with the vehicle velocity, SOC, and brake pedal
opening as inputs, and the electromechanical brake force distribution as the output, were
selected for comparison in the simulation process for the simulation analysis.

The braking energy recovery rate, i.e., the ratio of energy recovered to the energy
consumed during braking, was used as an evaluation index for the simulation, as shown in
Equation (28).

ηb =
Ein

Ebout
× 100% (28)



Appl. Sci. 2024, 14, 3235 19 of 25

where ηb is the brake consumption energy recovery rate; Ein is the recovered energy (kJ);
and Ebout is the consumed energy (kJ).

5.1. Comparative Analysis of Simulation under C-WTVC Cycle

The simulation was carried out at room temperature (20 ◦C) with a road adhesion
coefficient of 0.7 and windless environment. During the simulation, the COA-BPNN
identified the characteristic information of the working conditions for 10 s of history, and
since the first identification occurred in less than 10 s, the simulated velocity was set to 0
for the first 10 s. Figure 16 shows the results of the working condition identification for the
C-WTVC; the red line is the category of a moment identified by the COA-BPNN, where 1, 2,
3, and 4 correspond to highway, suburban, urban smooth, and urban congestion conditions,
respectively; the blue line is the vehicle velocity; and the accuracy of the identification
results is 97.3%, indicating an almost perfectly accurate recognition.
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Figure 16. C-WTVC cycle category recognition effect.

Figure 17 shows the electric motor working points during braking under three loads
under C-WTVC conditions, from which it can be clearly seen that the regenerative braking
strategy based on the condition identification in this paper is obviously more clustered in
the medium- and high-efficiency range during braking, with fewer low-speed and low-
torque working points. On the other hand, the electric motor working points are more
scattered for the fuzzy control strategy and the fixed-ratio strategy. The period in which the
electric motor efficiency is higher than the 89% contour is referred to as the high-efficiency
interval. Within this interval, the proportions of the regenerative brake strategy based on
condition detection under empty-, half- and full-load states are 89.2%, 88.1%, and 89.6%,
respectively; for the fuzzy control strategy, the proportions are 67.5%, 68.6%, and 69.1%,
respectively; and for the fixed-ratio strategy, they are 67.3%, 67.9%, and 68.8%, respectively.
It can be seen that the regenerative braking strategy based on the identification of the
working conditions can effectively limit the electric motor to work in the high-efficiency
zone and increase the recovery efficiency.

Figure 18 shows a comparison of the total energy consumed and energy recovered
from braking for the three load states under the C-WTVC cycle, and it can be clearly
seen that, as the load mass of the vehicle rises, the total energy generated during braking
increases, and the energy recovered from regenerative braking thus also increases. It is
also clear from the graph that the strategy outlined in this paper recovers more energy,
regardless of the load.
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simulation process, and the accuracy of the identification results is 98.76%. 
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Table 7 shows the simulation results for three kinds of loads under the C-WTVC
cycle, from which it can be seen that under empty-, half- and full-load states, the energy
recovery rate of this study’s strategy is improved by 34.6%, 36.9%, and 36%, respectively,
compared to that observed with the fuzzy control strategy, and the energy recovery rate
with the fixed-ratio strategy is improved by 175%, 186.3%, and 197.6%. This indicates that
the regenerative braking strategy based on the identification of working conditions can
effectively improve the energy recovery rate of the whole vehicle, by ensuring that the
braking effect of the whole vehicle is used.

Table 7. Comparison of simulation results under C-WTVC cycle.

Payloads Projects Condition
Recognition

Fuzzy Control
Strategy

Fixed-Ratio
Strategy

Empty

Proportion of high efficiency (%) 89.2 67.5 67.3
Energy consumption (kJ) 6795.37 6795.37 6795.37

Energy recovery (kJ) 4215.17 3132.67 1533.04
Energy recovery rate (%) 62.03 46.1 22.56

Half

Proportion of high efficiency (%) 88.1 68.6 67.9
Energy consumption (kJ) 7943.62 7943.62 7943.62

Energy recovery (kJ) 5253.11 3838.35 1834.98
Energy recovery rate (%) 66.13 48.32 23.1

Full

Proportion of high efficiency (%) 89.6 69.1 68.8
Energy consumption (kJ) 8941.43 8941.43 8941.43

Energy recovery (kJ) 6227.71 4578.01 2092.29
Energy recovery rate (%) 69.65 51.2 23.4

5.2. Comparative Analysis of Simulation under Synthetic Cycle

The synthetic cycle includes urban congestion, urban smooth, suburban, and highway
conditions, with more aggressive driving behaviours, including higher rates of acceleration
and deceleration. The entire cycle lasts for a total of 1800 s. Figure 19 shows the working
condition identification results for the synthetic working conditions in the simulation
process, and the accuracy of the identification results is 98.76%.
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Figure 20. Comparison of electric motor working point distribution under synthetic conditions. 

Figure 21 shows a comparison of the total energy consumed and energy recovered 
for braking in the three load states under a synthetic cycle, from which it is clear that the 
strategy of this paper recovers more energy at any load. 

Figure 19. Synthetic cycle category recognition effect.

Figure 20 shows the working points of the electric motor during braking under syn-
thetic conditions, and it can be seen that, under synthetic conditions, the approximate
distribution of the working points is consistent with that of the C-WTVC cycle, indicating
that the strategy in this paper is highly adaptable to working conditions.

Figure 21 shows a comparison of the total energy consumed and energy recovered
for braking in the three load states under a synthetic cycle, from which it is clear that the
strategy of this paper recovers more energy at any load.



Appl. Sci. 2024, 14, 3235 22 of 25

Appl. Sci. 2024, 14, x FOR PEER REVIEW 25 of 28 
 

0 200 400 600 800 1000 1200 1400 1600 1800
0

20

40

60

80

100

time(s)

V
el

oc
ity

(k
m

/h
)

 Velocity
 Classification

0

1

2

3

4

5

 C
la

ss
ifi

ca
tio

n

 
Figure 19. Synthetic cycle category recognition effect. 

Figure 20 shows the working points of the electric motor during braking under 
synthetic conditions, and it can be seen that, under synthetic conditions, the approximate 
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Figure 20. Comparison of electric motor working point distribution under synthetic conditions. 

Figure 21 shows a comparison of the total energy consumed and energy recovered 
for braking in the three load states under a synthetic cycle, from which it is clear that the 
strategy of this paper recovers more energy at any load. 
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Figure 21. Comparison of energy consumed and energy recovered under synthetic conditions. 

Table 8 shows the simulation results for the three loads under synthetic conditions, 
from which it can be seen that the energy recovery of the strategy in this study was 
improved by 34.2%, 37.4%, and 31.3% compared with that achieved with the fuzzy control 
strategy, and by 206.3%, 218.5%, and 197.2% compared with that observed with the fixed-
ratio strategy, respectively, under empty, half, and full loads. It can be seen that the 
regenerative braking strategy based on condition identification resulted in a much higher 
braking energy recovery than the fuzzy control strategy and the fixed-ratio strategy in 
both the C-WTVC and synthetic cycles, showing the superiority of the strategy in this 
paper. 

Table 8. Comparison of simulation results under synthetic conditions. 

Payloads Projects Condition  
Recognition 

Fuzzy Control  
Strategy 

Fixed-Ratio  
Strategy 

Empty 

Proportion of high efficiency (%) 91.3 69.4 67.6 
Energy consumption (kJ) 7110.21 7110.21 7110.21 

Energy recovery (kJ) 4486.54 3342.51 1464.7 
Energy recovery rate (%) 63.1 47.01 20.6 

Half 

Proportion of high efficiency (%) 93.5 68.3 69.7 
Energy consumption (kJ) 8428.35 8428.35 8428.35 

Energy recovery (kJ) 5664.69 4121.46 1778.38 
Energy recovery rate (%) 67.21 48.9 21.1 

Full 

Proportion of high efficiency (%) 93.4 68.9 66.8 
Energy consumption (kJ) 9641.8 9641.8 9641.8 

Energy recovery (kJ) 6681.76 5090.87 2248.47 
Energy recovery rate (%) 69.3 52.8 23.32 

Figure 21. Comparison of energy consumed and energy recovered under synthetic conditions.
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Table 8 shows the simulation results for the three loads under synthetic conditions,
from which it can be seen that the energy recovery of the strategy in this study was
improved by 34.2%, 37.4%, and 31.3% compared with that achieved with the fuzzy control
strategy, and by 206.3%, 218.5%, and 197.2% compared with that observed with the fixed-
ratio strategy, respectively, under empty, half, and full loads. It can be seen that the
regenerative braking strategy based on condition identification resulted in a much higher
braking energy recovery than the fuzzy control strategy and the fixed-ratio strategy in both
the C-WTVC and synthetic cycles, showing the superiority of the strategy in this paper.

Table 8. Comparison of simulation results under synthetic conditions.

Payloads Projects Condition
Recognition

Fuzzy Control
Strategy

Fixed-Ratio
Strategy

Empty

Proportion of high efficiency (%) 91.3 69.4 67.6
Energy consumption (kJ) 7110.21 7110.21 7110.21

Energy recovery (kJ) 4486.54 3342.51 1464.7
Energy recovery rate (%) 63.1 47.01 20.6

Half

Proportion of high efficiency (%) 93.5 68.3 69.7
Energy consumption (kJ) 8428.35 8428.35 8428.35

Energy recovery (kJ) 5664.69 4121.46 1778.38
Energy recovery rate (%) 67.21 48.9 21.1

Full

Proportion of high efficiency (%) 93.4 68.9 66.8
Energy consumption (kJ) 9641.8 9641.8 9641.8

Energy recovery (kJ) 6681.76 5090.87 2248.47
Energy recovery rate (%) 69.3 52.8 23.32

6. Conclusions

In this paper, we propose a regenerative braking strategy based on condition recog-
nition. First, the whole-vehicle model was built in AVL-Cruise. Second, based on the
historical driving data, the historical velocity information was divided into four categories
of working conditions with obvious differences, and the COA-BPNN online working
condition recognition model was constructed. Third, a GA was used to find the optimal
parameters in each category, and the offline parameter library was built; additionally, the
COA-BPNN was used to identify the online working conditions and retrieve the corre-
sponding parameters. This strategy considered the influence of the overall vehicle load
state and driving conditions on braking, making it more adaptable to working conditions
and overall vehicle load, and solved the problem of large changes in geographical and
commercial vehicle loads. The constructed COA-BPNN working condition recogniser im-
proved the recognition accuracy by 7.6% compared to the BPNN. The simulation results
under C-WTVC and synthetic working conditions show that the energy recovery rate of the
strategy proposed in this paper reached up to 69.65%, which is much better than the rates
achieved with the fixed-ratio strategy and fuzzy control strategy. In this study, brake force
distribution coefficients for different loads were proposed, but the real-time identification
of vehicle mass was not considered, so the load change needs to be judged by the driver
autonomously, and adaptive mass identification can be added for future research.
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