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Abstract: This paper conducts a comprehensive analysis of undulating and oscillatory movements
in fish, utilizing numerical simulations to explore correlations among fin thrust and swimming
speed. The study distinguishes itself through a unique approach by employing kinematic equations
of motion control, specifically in oscillation and undulation, for computational fluid dynamics.
Despite increasing energy loss with undulation, the study reveals a reduction in power demand with
oscillation, underscoring its effectiveness in achieving desired speeds. The dynamics of undulating
fins in aquatic and aerial locomotion remain insufficiently understood. The trade-off between more
energy-consuming but highly propulsive movements or simpler and faster movements requires
sophisticated design techniques to reduce volume. The geometry, developed using Rhino 6 software,
incorporates precise fluid resistance calculations conducted with Ansys Fluent 19. Spanning flow
velocities from 1 to 4 m/s were used for the simulation condition. Critical factors such as flexibility,
viscosity, and shape change were meticulously examined for their impact on efficiency enhancement.

Keywords: tail undulation; caudal fin oscillation; wake characteristics; CFD Ansys Fluent

1. Introduction

The ocean is a vital source of resources for society, with the demand for seawater,
minerals, and biological resources surpassing that of land. The scientific community aims to
explore and utilize the ocean safely and effectively [1]. Modern multipurpose submersibles
can operate at various depths, from shallow to oceanic. New development goals focus on
optimizing performance, addressing complex hydrodynamic effects like swimming and
noise control, drawing inspiration from underwater animals [2]. In contrast to traditional
submarines, fish have evolved to use oscillatory motions, providing high thrust, excellent
maneuverability, and low noise levels in the flow field. The study also illustrates the ability
of aquatic animals to sense complex underwater environments. Research in fish biology,
inspired by nature and the design of fish robots, plays a crucial role in developing the next
generation of submarines [3,4].

While extensive research has been conducted in related fields, numerous scientific
and technological challenges persist. Computational fluid dynamics (CFDs) serve as a
key tool to bolster experimental research but face notable issues, particularly the demand
for substantial computational resources [5]. The fish’s propulsion ability arises from
the coordinated action of muscle groups, facilitating even weight distribution across the
body and an efficient movement structure that conserves space. These fluid recognition
systems empower aluminum foils to discern turbulence information within the flow field,
effectively harnessing energy to enhance efficiency. In conventional simulation studies,
the observation of vortex shedding in fluid flow often involves a simplified representation
of stationary objects due to the intricate nature of fluid dynamics [6]. However, in this
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particular investigation, a novel approach is taken, where the fluid flow is simulated
through a dynamically moving object. This unique methodology aims to provide insights
into and support the design of the streamlined shape for robotic fish.

Swimming, a phenomenon deeply ingrained in the evolutionary tapestry of nature,
continues to captivate the scientific and engineering communities [7,8]. Fish swimming, in
particular, has been a subject of keen interest, offering profound insights into the optimiza-
tion of underwater vehicles and biomimetic robots. The kinematic equation of motion is a
key focus area, where advanced equations of motion control, particularly in oscillation and
undulation, are leveraged to conduct fluid dynamics calculations. This approach aims to
unravel the underlying physics governing fish movements [9,10]. This interdisciplinary
exploration promises to provide valuable insights into the fluid dynamics and kinematics
of fish-inspired swimming. The knowledge gained has the potential to impact the opti-
mization of underwater vehicles and inspire advancements in biomimetic robotic systems.
This research embarks on a computational journey to explore the intricacies of fish-inspired
swimming, focusing on two fundamental forms of motion: undulatory and oscillatory. The
aims of this study are as follows:

– Utilize the equations of motion control (oscillation and undulation) for fluid dynamic
calculations.

– Develop the model’s shape and control the movement approach to aid in reaching the
desired fish swimming at high speed.

The rest of this paper is organized as follows: mathematical modeling of the oscillatory
and undulatory motion is presented in Section 2; computer simulation of the drag force of
the fish model is presented in Section 3; and conclusions are presented in Section 4.

2. Methodology
2.1. Swimming Styles

Undulatory and oscillatory swimming are two fundamental modes of aquatic loco-
motion, each characterized by unique propulsion methods and body kinetics (as shown
in Figure 1). Undulatory swimmers, including eels and lampreys, propel themselves for-
ward by creating sinuous, wave-like motions that travel along their bodies. This rhythmic
flexion generates efficient thrust for propulsion. On the other hand, oscillatory swimmers
like tuna and rays employ the back-and-forth movement of their caudal fins to generate
thrust, often involving lifting and tilting motions. These distinct modes of swimming
enable precise navigation in aquatic environments.
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Figure 1. Gradation of swimming modes from (A) anguilliform, through (B) subcarangiform, to
(C) carangiform, and (D) thunniform.

2.1.1. Oscillatory Motion

Efficient sustained cruise swimming in certain aquatic animals is characterized by a
streamlined fusiform body shape, with the maximum depth around the midsection. This
body structure aligns with their unique swimming motion and helps minimize recoil [11].
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Some swimmers benefit from the cancellation of unsteady side forces and yawing
moments due to the presence of at least one body-length wavelength (as shown in Figure 2).
Others compensate for this lack by featuring a deep anterior body that narrows towards
the posterior. They create thrust by tilting this force forward through fin movement
perpendicular to the flow. Unlike propellers that rotate the wing around an axis, these
swimmers oscillate their fins back and forth (as shown in Figure 3). This oscillation
generates lateral forces that do not contribute to thrust and could induce swimming recoil.
However, these side forces tend to cancel out over a single flapping cycle, and any remaining
recoil is offset by other appendages [12,13].
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Figure 3. Riding along with the fin as it moves down-up.

To specify the motion of a dynamic zone in Ansys Fluent, we use DEFINE_CG_MOTION.
This requires providing linear and angular velocities at each time step, which Ansys Flu-
ent uses to update node positions. It is essential to remember that UDFs created with
DEFINE_CG_MOTION can only run as compiled UDFs.

.
x =

2x
2 fθ × tanθ

(1)

.
y = −y × fθ × sin( fθ × t) (2)
.

ω = −ω × fθ × cos( fθ × t) (3)

where
.
x, x is the position and velocity in the x direction (m/s, m);
.
y, y is the position and velocity in the y direction (m/s, m);
.

ω, ω is the angular amplitude and angular velocity (rad/s, rad);
fθ is the flapping frequency (Hz);
θ calculates the maximum angular displacement in radians.

2.1.2. Undulatory Motion

To estimate thrust in slender aquatic animals like snakes, eels, and marine worms, a
method was developed (as shown in Figure 4). It involves analyzing the equilibrium of a
flexible cylinder in water with constant-amplitude bending waves traveling down it at a
fixed speed. This approach, known as the ‘resistive model’ of thrust production, calculates
total thrust by integrating segment contributions along the body length.
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This approach, while valuable, has limitations. It assumes small-amplitude bending
waves, quasi-steady resistive forces for each segment, and drag coefficients based on
experiments with steady cylinders. For high Reynolds number flows with significant
accelerations and added mass effects, slender body theory-based approaches have largely
replaced resistive models. Nevertheless, the resistive model is still useful for low Reynolds
number applications, adapting to different cross-sections, locomotion profiles, and a wide
range of Reynolds numbers [15].

The wave begins small at the head and grows as it moves along the body. A more
flexible tail with increased wave amplitude boosts tail inclination and improves thrust [16].
By default, Ansys Fluent updates node positions on a dynamic zone using the solid-
body motion equation, resulting in no relative motion among the nodes. If individual
control over node motion is needed, the DEFINE_GRID_MOTION UDF (User-Defined
Function) is an option. This UDF allows for updating node positions, potentially incor-
porating deflections caused by fluid–structure interaction. However, UDFs created with
DEFINE_GRID_MOTION can only be used in compiled UDF form [17].

yn(t) =
∞

∑
n=1

yisin(2π fθ × tn)− 2π × x × k
l

(4)

yn−1(t) =
∞

∑
n=1

yisin(2π fθ × tn−1)− 2π × x × k
l

(5)

where
yn, yn−1 is the amplitude, y, and depends on the time step;
tn, tn−1 is the time step;
x is the x coordinate that determines y in the time step;
fθ , k is the flapping frequency and wavenumber;
l is the characteristic linear dimension.

2.2. Mathematical Modeling

To study single-phase flow around robotic fish, three-dimensional, steady-state, incom-
pressible, isothermal, and turbulent flow is considered. The mass conservation equation is
as follows:

∂ρ

∂t
+∇·(ρU) = 0 (6)

The momentum conservation equation is as follows:

∂(ρU)

∂t
+∇·(ρU·U)−∇·

(
νe f f∇U

)
= −∇p′ +∇·

(
νe f f∇U

)T
+ ρg (7)

where p′ is the corrected pressure, g is the local gravity acceleration vector (adopted value
9.81 m/s2), and νe f f is the effective viscosity, calculated as follows:

νe f f = ν + νt (8)

where



Appl. Sci. 2024, 14, 3239 5 of 13

νe f f is the effective viscosity;
ν is the kinematic viscosity;
νt is the turbulence viscosity.
Incorporating turbulence model equations is essential for capturing the turbulent

phenomenon within the flow. Turbulence encompasses dynamic fluctuations in both time
and space within the velocity and pressure fields. This intricate process can profoundly
influence the flow’s behavior. Turbulence arises when the inertial forces exerted on the fluid
outweigh the viscous forces, typically manifesting in flows with high Reynolds numbers.
Additionally, turbulence can be induced by surface roughness, giving rise to secondary
flow patterns [18]. Mesh for mathematical modeling is shown in Figure 5.

Figure 5. Details of mesh around the regions of head (a), dorsal fin, (b) and tail (c).

The exact k − ε equations contain many unknown and unmeasurable terms. For a
much more practical approach, the standard k − ε turbulence model is used, which is
based on our best understanding of the relevant processes, thus minimizing unknowns
and presenting a set of equations which can be applied to a large number of turbulent
applications. For turbulent kinetic energy, k,

∂(ρk)
∂t

+
∂(ρkui)

∂xi
=

∂

∂xi

[
ui
σk

∂k
∂xj

]
+ 2µiEijEij − ρε (9)

For dissipation, ε,

∂(ρε)

∂t
+

∂(ρεui)

∂xi
=

∂

∂xj

[
ui
σε

∂ε

∂xj

]
+ C1ε

ε

k
2µiEijEij − C2ερ

ε2

k
(10)

The rate of change in k or ε in time + the transport of k or ε by advection = the transport
of k or ε by diffusion + the rate of production of k or ε—the rate of destruction of k or ε [19],
where

ui is the velocity component in corresponding direction;
Eij is the component of rate of deformation;

µi = ρCµ
k2

ε is the Eddy viscosity.
The equations also consist of some adjustable constants, σk = 1.00, σε = 1.30,

C1ε = 1.44, C2ε = 1.92, and Cµ = 0.09. The values of these constants have been arrived at
by numerous iterations of data fitting for a wide range of turbulent flows.

Viscosity affects fluid flow near surfaces, reducing momentum within the boundary
layer and influencing overall behavior. This interaction requires analyzing viscosity’s
retarding effect and the associated pressure distribution to determine the drag coefficient.
Drag on a submerged body combines frictional drag, from surface shear stress, and pressure
drag, related to flow pressure variations and wake formation. A dimensionless drag
coefficient quantifies these interactions. The total drag coefficient is calculated by the
following [20]:

CD = CF + CP =
0.075(

log10 Re − 2
)2 +

FP

0.5ρU2S0
(11)
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where CD is the total drag coefficient, CF is the friction drag coefficient, CP is the pressure
drag coefficient, FP is the pressure drag force, U is the free stream parallel fluid velocity, S0
the wetted surface area at rest, and FD is the drag force [21].

The Reynolds number is the ratio of inertial forces to viscous forces within a fluid
subjected to relative internal movement due to different fluid velocities. A region where
these forces change behavior is known as a boundary layer. This relative movement
generates fluid friction, a factor in developing turbulent flow. Counteracting this effect is
the fluid’s viscosity, which tends to inhibit turbulence. The Reynolds number quantifies
the relative importance of these two types of forces for given flow conditions and is a guide
to when turbulent flow will occur in a particular situation:

Re =
UL
υ

(12)

where U is the flow speed (m/s), L is a characteristic length (m), and υ is the kinematic
viscosity of the fluid (m2/s).

In dimensional analysis, the Strouhal number is a dimensionless number describing
oscillating flow mechanisms. The Strouhal number is an integral part of the fundamentals
of fluid mechanics. The Strouhal number is often given as

St =
f L
U

(13)

where f is the frequency of vortex shedding. The Strouhal number represents the ratio
of inertial forces due to the local acceleration of the flow to the inertial forces due to the
convective acceleration. Depending on the time scale of the problem, this ratio may be of
order unity, and, therefore, its importance is not obvious [22].

2.3. The Numerical Meshes and Boundary Conditions

The use of an overset mesh, also known as “chimera” or “overlapping” mesh, can
streamline and expedite simulations involving moving components. Complex fluid flow
simulations often encounter challenges when representing certain geometries with a single
contiguous mesh. In such cases, different mesh types may be best-suited for distinct
geometric features, making the preparation of a unified mesh time-consuming and intricate.
This can lead to the creation of large poorly structured meshes that demand excessive
solving time and compromise accuracy [19].

Ansys Fluent offers support for overset mesh, which proves valuable in optimizing
simulations encompassing various aspects, including structured mesh around individual
parts, part swapping, moving cell zones (eliminating the need for remeshing or smoothing),
and design exploration studies (as shown in Figure 6). Overset mesh is particularly
advantageous when dealing with significant relative motion between components. In
comparison to remeshing, it provides enhanced control over local mesh characteristics
as the geometry moves within the domain, as individual mesh zones do not need to
deform to accommodate moving geometry. When applied appropriately, overset mesh can
facilitate the optimization of local cell types and quality, reduce cell count (thus decreasing
computation time), and simplify model setup. This technology, complemented by other
robust mesh-related features in Ansys Fluent, forms a comprehensive toolkit for simulating
fluid dynamics in the presence of intricate moving geometries [16].

Overset mesh limitations include several constraints to consider. Firstly, the overset
interface cannot encompass solid cell zones. Secondly, component meshes cannot establish
connections with a non-conformal interface. Additionally, background meshes should not
feature non-conformal interfaces between them, and component zones are restricted from
having periodic boundaries. It is worth noting that for all overset mesh problems, it is
recommended to utilize double precision. These limitations underscore the importance of
careful planning and adherence to guidelines when working with overset mesh techniques
in simulations. The boundary conditions are shown in Figure 7 and Table 1.
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Figure 6. Meshes created in the studied domain.

Figure 7. Physical specifications of the domain with the boundary conditions.

Table 1. Parameter conditions used in the simulations.

Properties Condition Value

Inlet Prescribed velocity 1–4 m/s
Outlet Prescribed pressure Gauge pressure

Fish surface Prescribed velocity
Wall No slip and smooth wall

Overset region Inner interior
Background region Outer interior

Density of water - 999.7 kg/m3

Kinematic viscosity - 1.3084 × 10−6 m2/s

This model was calibrated using numerical simulations in conjunction with the least-
square error technique. All simulations were performed using the commercial software
Ansys Fluent 19.0, which employs the finite volume method based on finite elements to
address the research problem.

3. Results and Discussion
3.1. Robotic Fish with Different Base Dimension

The 3D model is meticulously crafted and edited with the assistance of Rhino 6 soft-
ware (as shown in Figure 8). This software not only facilitates the construction of intricate
models but also offers convenient accessibility to the body plan, making it exceptionally
well-suited for manufacturing applications.
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The entire calculation is performed with dimensionless parameters.
Implementation of the dimensionless model is shown in Figures 9 and 10. Expressing

the body’s meridian section equation in coordinates (X, Y) using a polynomial for the
sectional–area curve [23] is shown as

πY2 = A1X + A2X2 + . . . + AnXn (14)

The function f(x) is of degree six, while the function f(y) is of degree two:

y2 = a1x + a2x2 + . . . + anxn (15)

The dimensionless combinations of the primary geometric quantities are as follows:

x =
X
L

, y =
Y
d

; m =
xm

L
; ro =

RoL
d2 ; rt =

RtL
d2 (16)
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Table 2 is used to explain the notation in Equations (14). The model utilized in this
research study is derived from approximate specifications representing an adult shark. It
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is important to note that this model is primarily designed for conducting computational
fluid dynamic (CFD) simulations rather than resembling a robotic fish. Consequently,
various details typically associated with a robotic fish, such as joints, connections, and
openings, have intentionally been omitted from the design. This streamlined and simplified
approach ensures that the model serves its primary purpose of facilitating CFD simulations
effectively, allowing for a focused and comprehensive analysis of fluid dynamics and
related phenomena without unnecessary complexities (as shown in Figure 11).

Table 2. Fish parameters used in the simulations.

Notation Unit Range

L m 0.3–1.2 The length
d m 0.3 The maximum diameter
x (Dimensionless) 0–1 The axial
y (Dimensionless) 0–0.1 The radius
m (Dimensionless) 0.4 The distance of the maximum section from the nose
ro (Dimensionless) 0.1 The radius of curvature at the nose
rt (Dimensionless) 0.1 The radius of curvature at the tail
an (Dimensionless) The shape coefficients
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To perform this simulation, the initial step involves creating a 3D model of the object
or structure for which drag force calculations are required. This model should include all
relevant surfaces and boundary conditions necessary for the simulation. Once the model is
prepared, Ansys Fluent is used to set up the simulation project. This involves specifying the
flow conditions, initial pressures, and boundary conditions. Turbulence model k-epsilon
is chosen to accurately capture turbulent effects. Within the simulation setup, the drag
force calculation feature is enabled. Once all parameters are configured, the simulation
is executed. Ansys Fluent utilizes the provided information about the flow and object
geometry to calculate the drag force based on the Navier–Stokes equations and relevant
experimental or computational data. Upon completion of the simulation, the results are
available for analysis within Ansys Fluent, displaying the magnitude and direction of
the calculated drag force. These results are invaluable for optimizing designs, assessing
performance, and making informed decisions in engineering and design processes.

The flow velocity across the range of 1 to 4 m/s exhibits an interesting trend in the con-
text of drag coefficient calculations. While one might intuitively expect an increase in drag
coefficient with higher flow velocities due to increased fluid resistance, the observed results
from both theoretical and numerical methods are different. The average theoretical drag co-
efficient recorded in these conditions is approximately 0.256. This finding suggests that the
fish model under consideration may exhibit unique hydrodynamics, leading to a nonlinear
relationship between velocity and drag (as shown in Table 3). Conversely, when employing
numerical methods to calculate the drag coefficient, the trend still shows a decrease in
this coefficient as the flow velocity increases, although the decrease is not substantial. The
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average simulation-based drag coefficient under these conditions is approximately 0.275.
This observation implies that the simulation accounts for certain complexities or factors
that influence drag differently than what is typically captured by theoretical measurements.

Table 3. Comparison between theoretical and numerical results of the drag coefficients for flow.

U
(m/s)

Re×106

(−)
Theoretical Numerical

Difference between Numerical and
Theoretical (%)

|CDnumerical−CDtheoretical|
CDtheoretical ×100%

1.0 1.146 0.264 0.290 9.930
1.5 1.720 0.260 0.282 8.297
2.0 2.293 0.257 0.277 7.607
2.5 2.866 0.255 0.274 7.097
3.0 3.439 0.254 0.271 6.794
3.6 4.127 0.251 0.268 6.544
4.0 4.586 0.250 0.266 6.345

Upon analyzing the outcomes, it becomes evident that the disparities between the
predicted and theoretical drag coefficients are relatively minor. Specifically, the maximum
difference stands at 9.93%, while the average difference is a mere 7.516% (as shown in
Figure 12). These variations can be ascribed to a combination of factors, including the-
oretical inaccuracies, numerical approximations, and the slight distinctions between the
hull geometry employed in computational simulations and that employed in the theoret-
ical setup. The narrow discrepancies observed across the results serve as a validation of
the methodology adopted in this study, affirming its capability to accurately depict the
underlying physical phenomenon under investigation.
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Figure 12. The comparison of the drag coefficients between the results of theoretical and numerical
methods.

3.2. Robotic Fish with Oscillatory and Undulatory Motion

The first simulation involves oscillation in two primary directions: investigating
variations in flapping frequency and its interaction with the flow. During each up or down
cycle of the model, resistance is generated across the entire wetted surface, resulting in
rearward thrust opposing the direction of motion. It is crucial to emphasize that the drag
coefficient of a particular foil depends not only on its profile shape but also on its Reynolds
number. Thus, maximizing thrust and efficiency at a specific Reynolds number presents
an optimization challenge, requiring the identification of the model shape with the lowest
drag coefficient for a given motion profile (as shown in Figure 13).
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Figure 13. The velocity field around the oscillatory motion of the fish.

The dorsal fin in ray-finned fish generates significant lateral momentum during loco-
motion, resulting in roll and yaw torques. To achieve stable swimming, other fins must
counterbalance these torques. The tail fin may offset roll torques, and coordination between
the tail and pectoral fins helps correct yaw torques. Theoretical research highlights the
existence of a multifaceted force equilibrium among all fins, the body, and the tail, even
during consistent swimming. This challenges the conventional classification of locomo-
tion as either BCF (body-caudal fin) or MPF (median-paired fin), as median fins actively
contribute to body stability (as shown in Figure 14).
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Figure 14. The velocity field around the undulatory motion of the fish.

To comprehend this force equilibrium, data on buoyancy, body shape, and fin forces
are crucial. Fish frequently maintain a positive angle of attack to their bodies, impacting
lift forces due to body airflow. The three-dimensional flow dynamics around the body
and tail introduce further complexity. Vortex wake patterns generated by different fins
interact, creating a dynamic hydrodynamic environment. Comprehensive theoretical
investigation is essential to fully grasp these interactions, underscoring the significance of
three-dimensional effects in understanding fish undulatory hydrodynamics.

At a flapping frequency of 2 Hz, it is observed that both types of motion experience a
reduction in their respective drag coefficients, while the overall drag forces they encounter
increase. Upon closer examination of each specific motion, it becomes apparent that the
undulatory motion exhibits a higher drag coefficient when compared to the oscillatory
motion. Conversely, the oscillatory motion demonstrates a lower drag force in comparison
to the undulatory motion. These findings suggest that the dynamics of these two distinct
types of motion play a crucial role in shaping their drag characteristics, with undulatory
motion displaying a more pronounced resistance to flow and oscillatory motion exhibiting
a relatively lower drag force (as shown in Figure 15 and Table 4).

In contrast to the 2 Hz flapping frequency, there are distinct results observed at the
5 Hz flapping frequency. At 5 Hz, the drag coefficient is significantly higher compared to
2 Hz, although it still exhibits a decreasing trend. The drag force at 5 Hz is also greater than
at 2 Hz, but there is a notable difference: it decreases as the flow velocity increases. When
examining each motion separately, the undulatory motion still maintains a higher drag
coefficient than the oscillatory motion. However, as velocities get higher, the drag force
decreases and now becomes closer between the two types of motion.
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Table 4. The drag coefficient and drag force for each type of motion depending on the flow velocity.

Flow
Velocity

(m/s)

Flapping Frequency fθ=2 Hz Flapping Frequency fθ=5 Hz
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1.0 0.300 1.812 47.931 4.497 73.343 0.750 16.228 429.269 28.196 745.845
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3.0 0.100 0.314 74.845 0.516 118.954 0.250 1.830 422.292 2.283 543.528
3.6 0.083 0.296 101.434 0.486 166.652 0.208 1.232 422.245 1.430 490.055
4.0 0.075 0.291 123.065 0.473 218.566 0.188 0.969 409.942 1.077 455.868

4. Conclusions

This research uniquely concentrates on a detailed examination of fish motion, particu-
larly highlighting the intricacies of undulating and oscillatory movements, distinguishing
itself from current studies. The emphasis shifts towards utilizing kinematic equations of
motion control for fluid dynamic calculations. The design, created using Rhino 6 software,
incorporates precise fluid resistance computations via Ansys Fluent 19, investigating flow
velocities spanning from 1 to 4 m/s.

As flow velocity linearly increases, the drag force exhibits an inverse variation in tail
flap frequency between oscillation and undulation. Using this information, optimization
of the motion control equation is necessary for attaining maximum thrust under various
tail flapping frequencies causing a resistance to surge. Remarkably, at high tail flapping
frequencies, a decreasing trend in drag force is observed (746 N at 1 m/s and 456 N
at 4 m/s). The integration of kinematic equations of motion control has facilitated the
discovery of this intriguing phenomenon. This research has contributed to analyzing the
development of fish shape and motion control to generate thrust under various flapping
frequencies from 2 Hz to 5 Hz and under various flow velocities from 1 m/s to 4 m/s.
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