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Abstract: Recently, there has been considerable research on deepfake detection. However, most
existing methods face challenges in adapting to the advancements in new generative models within
unknown domains. In addition, the emergence of new generative models capable of producing and
editing high-quality images, such as diffusion, consistency, and LCM, poses a challenge for traditional
deepfake training models. These advancements highlight the need for adapting and evolving
existing deepfake detection techniques to effectively counter the threats posed by sophisticated image
manipulation technologies. In this paper, our objective is to detect deepfake videos in unknown
domains using unlabeled data. Specifically, our proposed approach employs Meta Pseudo Labels
(MPL) with supervised contrastive learning, so-called SupCon-MPL, allowing the model to be
trained on unlabeled images. MPL involves the simultaneous training of both a teacher model and
a student model, where the teacher model generates pseudo labels utilized to train the student
model. This method aims to enhance the adaptability and robustness of deepfake detection systems
against emerging unknown domains. Supervised contrastive learning utilizes labels to compare
samples within similar classes more intensively, while encouraging greater distinction from samples
in dissimilar classes. This facilitates the learning of features in a diverse set of deepfake images by the
model, consequently contributing to the performance of deepfake detection in unknown domains.
When utilizing the ResNet50 model as the backbone, SupCon-MPL exhibited an improvement of
1.58% in accuracy compared with traditional MPL in known domain detection. Moreover, in the
same generation of unknown domain detection, there was a 1.32% accuracy enhancement, while in
the detection of post-generation unknown domains, there was an 8.74% increase in accuracy.

Keywords: deepfake detection; deepfake unknown domain; meta pseudo labels; supervised contrastive
learning; generative misuse

1. Introduction

Recently, with the advancement of generative artificial intelligence models [1–15],
deepfakes have become increasingly similar to real images/videos, making them difficult
to distinguish. Deepfakes can be broadly categorized into three generations based on
the evolution of generative models. First-generation deepfake generative models [1–5]
typically attempt to generate simple and low-resolution images/videos based on probability
distributions or synthesize multiple images/videos by exploiting features in tasks such
as Face2Face and FaceSwap. In particular, generative adversarial network (GAN)-based
models such as CGAN [2], WGAN [4], and WGAN-GP [5], as well as autoencoder-based
models like VAE [6] and conditional VAE [7] have enabled the generation of various deepfake
images/videos. However, first-generation deepfakes often exhibit noticeable artifacts that
can be discerned by the human eye. With the transition to second-generation deepfake
generative models [6–8], there has been progress in generating high-resolution deepfake
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images that are more difficult to distinguish compared with first-generation ones, along
with performance improvements in various tasks. In particular, second-generation deepfake
generative models like StyleGAN, proposed by T. Karras et al. [8], produce deepfake images
that are difficult for the human eye to distinguish, excluding some flaws such as artifacts in
hair. Second-generation deepfakes can be generated using deepfake generation tools such
as DeepfaceLab [10], DeepSwap [11], Synthesia [12], and others. Finally, third-generation
deepfake generative models [9,13–15] produce images/videos that are even more flexible
and difficult to distinguish than those generated by second-generation models, across
various tasks. In particular, Stable Diffusion, proposed by R. Rombach et al. [13], is currently
being used for the generation of various human and artwork images, raising concerns
related to copyright and human rights issues. Furthermore, the consistency model proposed
by Y. Song et al. [15] has enabled state-of-the-art deepfake generative model training at
a lower cost by reducing the extensive iteration process required by previous diffusion
models for restoring original images from noise. As deepfakes increasingly become difficult
to distinguish from real images/videos, they are being utilized in various criminal activities.

To address issues caused by deepfakes, methods have been proposed to identify flaws
in landmarks that occur when deepfake generative models create images, aiding in the
detection of deepfakes [16–19]. Meanwhile, recent advancements in deepfake detection
for single models have shown improvement in detecting deepfake videos and images.
D.A. Coccomini et al. [20] enhanced the detection performance of deepfake videos and
images by combining EfficientNet [21] and Vision Transformer [22] when training a single
model. In other words, existing deepfake detection models [16–23] verify flaws in facial
landmarks during the preprocessing stage and construct large models for flexible predictions.

Previous studies have primarily focused on the detection performance of labeled
known domain (known domain) tasks in deepfake detection. However, deepfake generation
models are rapidly evolving, and similar generations of deepfake generation models
are also being developed diversely. Therefore, detecting deepfake images in unknown
domains (unknown domain) is also crucial. A few studies have proposed generalized
deepfake detection models using techniques such as contrastive learning, meta learning,
and others [24–36].

In this paper, we propose SupCon-MPL, a combination of the Meta Pseudo Labels
(MPL) [37] with supervised contrastive learning (SupCon) [38] to further train the model
with unlabeled images/videos, simultaneously enhancing the model’s generalization
ability to distinguish deepfakes in unknown domains. The proposed SupCon-MPL
utilizes the basic structure of MPL, where two models, namely teacher and student,
are simultaneously trained. Each model influences the other during training. The teacher
model constructs pseudo labels for unlabeled images and transfers them to the student
model. Through this approach, the student model learns from unlabeled data, providing
the potential to train effectively with limited labeled data. Furthermore, during the training
process, we apply the supervised contrastive loss (SupConLoss) [38] to the encoder of
each model, enabling contrastive representation learning, thereby inducing generalized
model training.

The performance evaluation experiments were conducted in two parts: model validation
experiments and deepfake detection experiment based on scenario. In the model validation
experiments, we utilized the data from five domains within FaceForensics++ [39]. We
evaluated the detection performance in labeled known domains by combining the data in
various ways and assessed the generalized detection performance in unknown domains.
The deepfake detection experiment based on scenario involves training the model with
first-generation deepfake datasets (FaceForensics++ [39], DFDC [40], Celeb-DF [41]) and
evaluating the detection performance on first- and second-generation unknown deepfake
datasets (StyleGAN [8], NeuralTextures [39]). The experimental results showed that
SupCon-MPL achieved performance improvements of 1.58%, 1.32%, and 8.74% over
the baseline MPL model in the proposed evaluation scenario, respectively. The main
contributions of this paper are as follows:
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(1) The proposed method enables additional training through unlabeled data. Especially,
while two models are trained simultaneously, the student model infers information
about unlabeled data from the other model and provides feedback, allowing for
additional training to be conducted with less bias towards a specific model. Ultimately,
the proposed method enhances the performance of deepfake detection by enabling
additional training with a large amount of unlabeled data.

(2) Our model enables generalized deepfake detection model training through contrastive
learning. We improved the generalized deepfake detection performance on unknown
data, which was previously low in the Meta Pseudo Labels-based deepfake detection
model [24], through contrastive learning.

(3) Our model exhibited higher deepfake detection performance compared with all
other models in the comparison with various generalized deepfake detection
models [24,31,34,35]. The experimental results demonstrate that our model outperforms
existing deepfake detection models, showing robust detection capability across diverse
labeled datasets and even unknown generational deepfakes.

2. Related Works

As deepfake generation models advance, various detection methods have also been
researched. A common approach in deepfake detection is to explore flaws in facial
images [16–19]. However, the continual development of new generative models has led to
the problem of being unable to train detection models using data from all generative
models. To address this problem, a few studies have explored training generalized
deepfake detection models [24–36].

2.1. Generalized Deepfake Detection

The generalization of deepfake detection implies the ability to detect deepfake videos
generated not only by the models used during training but also by unseen or new generative
models. In other word, as generative models progress from GANs and VAEs to diffusion
and consistency models, achieving the ability to detect deepfakes generated by various and
new generative models simultaneously is the main goal of generalized deepfake detection
techniques. Recently, research has been conducted on detecting deepfake videos that are
unknown from both the data and training perspectives.

On the data perspective, SBL [29] and OST [30] enhanced the generalization of deepfake
detection by synthesizing additional training data by combining original images from each
generative model with various other images and selectively using them. On the training
perspective, A. Jain et al. [25] utilized datasets from Google, Jigsaw, FaceForensics++ [39],
Celeb-DF [41], Deepfake-TIMIT [42], and their own database DF-Mobio to train a generalized
deepfake detection model using contrastive representation learning across various domains.
A. Nadimpalli et al. [26] proposed a hybrid learning technique combining supervised
learning and reinforcement learning. In particular, during the training process, the reinforce-
ment learning agent selects the top k augmentations that have the most significant impact
on performance improvement when training through convolutional neural networks (CNN)
and uses them for testing, enabling the training of a generalized deepfake detection model.
We employed the meta-learning technique, Meta Pseudo Labels, in the deepfake training
process, applying it after domain splitting for each data, resulting in training a model with
higher performance in the same model training [24], and conducted experiments using
various CNN-based models specialized in extracting features from images, including
EfficientNet [21], ResNet [43], ResNext [44], and WideResNet [45], which are image
classification models.

2.2. Contrastive Representation Learning in Deepfake Detection

Currently, research applying contrastive representation learning (CRL) for training
generalized deepfake detection models is conducted. CRL enables learning similar features
in the feature space between a specific image and from the same domain (positive images),
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while also learning features that differentiate from different domains (negative images).
H. Chih-Chung et al. [27] utilized contrastive loss [43] to train the encoder, following which
they trained the classifier to generalize the discriminative performance on deepfake images
generated by various GAN-based models. S. Fung et al. [36] trained the encoder using
unsupervised CRL with image pairs that include random augmentation applied to the
same image during the training process. Following this, they trained the classifier using
labeled images to develop a generalized deepfake detection model. X. Ying et al. [35]
addressed the issue of conventional CRL techniques not utilizing label information of
deepfake images by applying supervised contrastive learning (SupCon) [38], which uses
label information. However, CRL requires a large amount of data, especially a significant
number of negative samples. In this paper, we performed CRL using SupCon [38], while
simultaneously combining the SupCon model with meta-learning method, MPL [37]. This
approach also allows for additional CRL training on unlabeled data, even when using the
same labeled data, enabling the training of a more generalized deepfake detection model
compared with conventional Meta Pseudo Labels.

2.3. Meta Pseudo Labels

Meta Pseudo Labels (MPL) [37] trains the model using unlabeled images, and when the
same model is trained on an image classification task, it has shown improved performance
compared with conventional models. MPL gained significant attention by achieving over
90% Top 1 score on the ImageNet [44] classification task, marking a significant milestone.
Figure 1a shows the MPL facilitates the learning of the teacher model through feedback from
the student model, thus enhancing the conventional learning techniques such as knowledge
distillation [45] or noisy student [46], where the teacher model passes on information to
the student model. This improvement addresses the issue of inadequate learning of the
student model when the performance of the teacher model is subpar. The training process
of the MPL is shown in Figure 1b. The student model in MPL learns through the Pseudo
Labels inferred by the teacher model. Subsequently, it imparts the feedback value regarding
the learning to the teacher model. The teacher model learns through the labeled loss from
the labeled data, UDA loss [47], feedback from the student model, and MPL loss from
the unlabeled data. However, it consumes substantial computing resources due to the
simultaneous training of the two models.
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From the perspective of training a generalized deepfake detection model, MPL can
enhance the performance of generalized deepfake detection by enabling additional training
through unlabeled data, compared with models trained solely with labeled data. In this
paper, we experiment with the enhancement of detection capabilities for unknown domains
and post-generation deepfakes, using both MPL [37] and SupCon [38].

3. Proposed SupCon-MPL-Based Deepfake Detection

To detect deepfake videos in the deepfake unknown domain, the proposed method
introduces SupCon-MPL, a meta-learning model based on contrastive learning, utilizing
unlabeled images from the deepfake known domain. You can find notations used in the
rest of paper summarized in Table A1.

3.1. Proposed Training Strategy
3.1.1. Known Domain and Unknown Domain in Deepfake

A deepfake domain can be defined as a collection of images and their features,
generated from a “specific deepfake generative model”. In this paper, we distinguish
deepfake domains into the known domain (K) and unknown domain (U). The known
domain (K) refers to a collection of deepfake images that are labeled when training models.
The data in K is labeled and therefore can be directly used for training. Meanwhile, the
unknown domain (U) refers to data created by unknown deepfake generative models.
The data in U is not labeled, hence it is not possible to determine whether the image is
real or fake. Also, as they are created from various generative models, they can involve
various features. The known domain K can be defined as K = {K1, K2, · · · } where Ki is
i-th known deepfake generative model, and the deepfake dataset DK =

{
DK1 , DK2 , · · ·

}
consists of a dataset DKi = {(xi, yi)} composed with a set of deepfake images xi and
labels yi generated by Ki. On the other hand, the unknown domain U can be defined as
U = {U1, U2, · · · } where Ui is i-th unknown deepfake generative model, and the deepfake
dataset DU =

{
DU1 , DU2 , · · ·

}
consists of a dataset DUi = {(xi)} composed with a set of

deepfake images xi generated by Ui.
In this paper, to address U, we first experiment by distinguishing DK into a labeled

dataset (DL) and an unlabeled dataset (DUL), as shown in Figure 2a. Subsequently, to
verify the influence of DU on the training process, we assume DU as DUL and perform
experiments, as shown in Figure 2b. In the deepfake training scenario, from the perspective
of generative models by generation, both DL and DUL constitute with first-generation DK,
and evaluation is conducted using the first- and second-generation DU.
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3.1.2. Training Strategy for Deepfake Unknown Domain Detection

The training process is employed based on a comparison between the base model and
the student model of the MPL (SupCon-MPL). Upon completion of training the base model
with the entire dataset DK, the model is subsequently employed as the teacher model to
train the student model. In other words, we aim to verify performance improvement when
training the model under the same conditions. If performance enhancement is validated at
this method, it suggests that superior performing models can be trained under identical
training conditions, even when employing larger or state-of-the-art (SOTA) models.

The training images are constructed considering the problems of existing deepfake
detection. While deepfakes by known generative models exist in K, deepfake images by
unknown generative models also exist in U. Therefore, during the training phase, we
enhance the deepfake detection performance in K using labeled data and contribute to the
generalization of the learning model by using data DK and DU from K and U as unlabeled
data, respectively. Consistent with this approach, the data DL and DUL are structured into
DK, with images from dataset DU serving as DUL.

In the proposed method, we combine data in three strategies to detect the unknown
domain dataset DU. The first strategy is to use the data from DL and DUL as the same
domain, aiming to verify whether unlabeled data from a specific K contributes to the
improvement of model performance. Figure 2a illustrates the training strategy of using
DK as unlabeled data. The second strategy aims to solve the realistic deepfake problem
by experimenting with the impact of unlabeled data on the detection performance of the
corresponding domain. Figure 2b illustrates the feasibility of improving model performance
by employing dataset DK as labeled data DL and dataset DU as unlabeled data DUL. Finally,
in the deepfake scenario experiment, after training the model using the first-generation
deepfake dataset as DL and DUL, the generalized deepfake detection model learning is
assessed through the first-generation DK and the first- and second-generation DU.

3.2. SupCon-MPL: Supervised Contrastive Learning with Meta Pseudo Labels

In the proposed method, following the strategy in Figure 2b, the MPL model is
trained for the detection of deepfakes in the unknown domain U. SupCon-MPL allows
supplementary training utilizing unlabeled videos, and with the aid of CRL, it enhances
the deepfake detection in feature space. Furthermore, it affords the flexibility to employ
diverse encoder models during the training phase and enables the fine tuning of the
SupCon-MPL-trained model.
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In particular, the limitations of deepfake detection with limited labeled data can be
mitigated by using unlabeled data, and a generalized detection model can be trained
through CRL. Another notable advantage lies in the capability to conduct concurrent
learning via feedback from the student model, even if the performance of the T model is
low. The details of the proposed method are elucidated in Figure 3. The most significant
distinction from the conventional MPL and SupCon model training is that learning through
unlabeled data not only resolves the training issue of CRL due to limited data but also
enhances detection capabilities in both K and U. Ultimately, the final goal is to enhance the
detection capabilities of deepfakes in domains that are not targeted, especially in a situation
where new deepfake models in U continue to be developed.
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Supcon-MPL consists of a teacher model T and a student model S. Each model has the
same structure but different parameter values. The teacher model (T) utilizes a pre-trained
model, while the student model (S) starts its training from the initial state before being
trained. Each model consists of an identical structure of an encoder and a classifier. The
encoder is modified to extract a 128-dimensional feature by removing the classifier layer of
a specific model, allowing it to primarily learn the representations of labeled and unlabeled
images. The classifier is composed of a single linear layer, which performs classification
based on the representation values received from the encoder.

The training of the SupCon-MPL is conducted by first having the student model T
use unlabeled data to perform CRL, followed by fine tuning with labeled data. In this
process, the teacher model T’s classifier learns through the feedback from S, while S learns
dependently on T.

3.3. SupCon-MPL Loss Function

SupCon-MPL, as shown in Figure 3, is composed of a teacher model (T) and a student
model (S), each of which consists of an encoder and a linear classifier. SupCon-MPL has two
loss functions in order to sequentially train each model. One involves the teacher model
T distilling knowledge to the student model S, while the other entails the teacher model
T training from the feedback factor provided by S on the labeled data. The knowledge
distilled by T includes previously learned content about deepfakes.

In SupCon-MPL, let the parameters of T classifier and S classifier be θT , θS, respectively,
and denote the batch of images and labels on the labeled data as (xl , yl) ∈ DK, and the
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batch of images on the unlabeled data as xu ∈ DU . The goal of SupCon-MPL is to minimize
the parameters θPL

S of the generalized deepfake detection model S:

θPL
S = argmin

θS

Exu [CE(T(xu; θT), S(xu; θS))]︸ ︷︷ ︸
Lu :=(θT ,θS)

(1)

Hence, the objective function of SupCon-MPL is defined as follows.

Ll with respective to θT :

min
θT

Ll
(
θPL

S (θT)
)
,

where θPL
S (θT) = argmin

θS

Lu(θT , θS).

(2)

For optimization, SupCon-MPL approximates θPL
S (θT) by the learning rate ηs, and then,

θPL
S (θT) ≈ θS − ηs · ∇θS Lu(θT , θS) (3)

defines the final objective function as follows:

Ll with respective to θT :

min
θT

Ll
(
θS − ηs · ∇θS Lu(θT , θS)

)
,

where θPL
S (θT) = argmin

θS

Lu(θT , θS).

(4)

Both T and S consist o-f an encoder and a classifier and are trained according to their
respective loss functions. The loss function of ENCT, the encoder of T, is composed of
SupConLoss [38], and the loss function of CLFT, the classifier, is composed of labeled loss for
the labeled data xl and MPL loss, reflecting the feedback from S. First and foremost, g(t)T,contrast
the loss function of ENCT, receives image pairs (RandAugmenta(xl), RandAugmentb(xl), yl)
as inputs that reflect different random augmentations on the same image xl and the label yl .
Subsequently, the loss value is obtained by passing image pairs through SupConLoss [38].
At this juncture, given the similarity between the current training process and that of the
original MPL’s UDA loss, the utilization of the UDA loss is no longer used:

g(t)T,contrast = ∇θT SupConLoss(RandAugmenta(xl), RandAugmentb(xl), yl)|θT=θ
(t)
T

(5)

ENCT is promptly updated following the computation of the g(t)T,contrast:

θ
(t+1)
T,ENC = θ

(t)
T,ENC − ηS · g(t)T,contrast (6)

The labeled loss of ClFT , g(t)T,supervised, measures the difference between yl and the label

predicted by T through cross-entropy loss (CE Loss). Here, embT
l denotes the embedding

value derived by passing the labeled data xl through ENCT :

g(t)T,supervised = ∇θT CE
(

yl , CLFT

(
embT

l ; θT

))
|
θT=θ

(t)
T

(7)

The MPL loss g(t)T calculates the difference between the hard pseudo label yu, which
is the maximum value extracted from the pseudo labels generated by T through xu, and
the logit. Here, embT

u denotes the embedding value derived by passing the labeled data xu
through ENCT :
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g(t)T = h · ∇θT CE
(

ŷu, CLFT

(
embT

u ; θT

))
|
θT=θ

(t)
T

(8)

The feedback factor h of S was calculated in the same way as the original Meta Pseudo
Labels [37], using Taylor expansion to calculate the difference before and after the training
of S. In the proposed method, we approximated h using the difference from the CE loss
value for the labeled data after S was trained to the value before training. This allows the
final loss value to converge as the training progresses.

h = CE
(

yl , S
(

xl ; θ
(t+1)
S

))
− CE

(
yl , S

(
xl ; θ

(t)
S

))
(9)

The final loss function of ClFT is composed of the sum of each loss function value:

θ
(t+1)
T = θ

(t)
T − ηs ·

(
g(t)T + g(t)T,supervised

)
(10)

S is trained through unlabeled data. The loss function of the student model’s encoder
ENCS, denoted as g(t)S,contrast, is trained utilizing SupConLoss [38], akin to ENCT . It leverages
(xu, ŷu), comprising an unlabeled image xu paired with pseudo labels ŷu, generated by T:

g(t)S,contrast

= ∇θT SupConLoss(RandAugmenta(xu), RandAugmentb(xu), ŷu)|
θS=θ

(t)
S

(11)

ENCS is also promptly updated following the computation of the g(t)S,contrast:

θ
(t+1)
S,ENC = θ

(t)
S,ENC − ηS · g(t)S,contrast (12)

The loss function of CLFS is calculated using CE loss for the hard pseudo label ŷu of T
for xu and the prediction of S. Here, embS

u denotes the embedding value derived by passing
the labeled data xu through ENCS:

θ
(t+1)
S = θ

(t)
S − ηs · ∇θS CE

(
ŷu, CLFS

(
embS

u; θS

))
|
θS=θ

(t)
S

(13)

The SupConLoss in g(t)T,contrast, g(t)S,contrast on the teacher model T and student model S
are as follows:

SupConLoss = ∑
i∈I

SupConLossi = ∑
i∈I

−1
|P(i)| ∑

p∈P(i)
log

exp
(
zi · zp/τ

)
∑a∈A(i) exp(zi · za/τ)

(14)

Here, i ∈ I ≡ {1, · · · , 2N} is the index of the randomly augmented data, and
P(i) ≡

{
p ∈ A(i) : yp = yi

}
is the set of indices for all positives in the batch (since

yp and yi are labels of images that have been randomly augmented from yl , they are
the same as yl). zi and zp are the embedding values of each randomly augmented
image in (RandAugmenta(xl), RandAugmentb(xl)) passed through the encoder ENC, and
A(i) ≡ I\{i}, and τ is the temperature parameter. In other words, the inner product
between positive pairs (i and p are the same class but different samples) is maximized
through exp

(
zi · zp/τ

)
, and the inner product between negative pairs is minimized through

exp(zi · za/τ), so that the SupConLoss is minimized.
The training process of the proposed SupCon-MPL model for deepfake detection is

shown in Algorithm 1.
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Algorithm 1 The Deepfake detection method based on SupCon-MPL (Pseudo code)

Set Labeled data, Unlabeled data with domain splitting [37].
Input: Labeled data xl , yl and unlabeled data xu.

Initialize θ
(0)
T and θ

(0)
S .

Pretrain Teacher model with xl , yl .
For t = 0 to N − 1 do

Sample an unlabeled example xu and a labeled example xl , yl .
Sample a pseudo label ŷu ∼ P(·|xu; θT).
Compute contrastive loss of student encoder ENCS using the pseudo label ŷu:

g(t)S,contrast = ∇θT SupConLoss(RandAugmenta(xu), RandAugmentb(xu), ŷu)|θS=θ
(t)
S

Update the student encoder ENCS using the pseudo label ŷ:
θ
(t+1)
S,ENC = θ

(t)
S,ENC − ηS · g(t)S, contrast

Update the student classifier CLFS using the pseudo label ŷu:
θ
(t+1)
S = θ

(t)
S − ηs · ∇θS CE

(
ŷu, CLFS

(
embS

u ; θS
))∣∣

θS=θ
(t)
S

Compute contrastive loss of teacher encoder ENCT using the labeled data (xl , yl):
g(t)T,contrast = ∇θT SupConLoss(RandAugmenta(xl), RandAugmentb(xl), yl)|θT=θ

(t)
T

Update the teacher encoder ENCT using the labeled data (xl , yl):
θ
(t+1)
T,ENC = θ

(t)
T,ENC − ηS · g(t)T, contrast

Compute gradient on labeled data (xl , yl):
g(t)T, supervised = ∇θT CE

(
yl , CLFT

(
embT

l ; θT
))∣∣

θT=θ
(t)
T

Compute feedback factor h from student:
h = CE

(
yl , S

(
xl ; θ

(t+1)
S

))
− CE

(
yl , S

(
xl ; θ

(t)
S

))
Compute MPL loss from unlabeled data xl :

g(t)T = h · ∇θT CE
(
ŷu, CLFT

(
embT

u ; θT
))∣∣

θT=θ
(t)
T

Update the teacher classifier CLFT :
θ
(t+1)
T = θ

(t)
T − ηs ·

(
g(t)T + g(t)T, supervised

)
end for
return θ

(N)
S,ENC, θ

(N)
S ▷ Only the student encoder and classifier are returned for evaluations.

4. Experiment

In this chapter, we first describe the experimental setup. Subsequently, we present the
experimental results for Figure 2a,b in Sections 4.2 and 4.3, respectively. Our main results
consist of comparisons with the pretrained model and SupCon model in Section 4.4 and
comparisons with state-of-the-art models in Section 4.5.

4.1. Experiment Setup

The experiments are conducted using NVIDIA Tesla V100 32 and NVIDIA RTX-3090
(NVIDIA, Santa Clara, CA, USA) with ubuntu 20.04 environment for reproducibility and
stability. The single-domain experiment and the multi-domain experiment are existing
outputs of the Meta Learning-based Deepfake Detection Project [24]. The pretrained
model, Meta Pseudo Labels model (MPL model), SupCon model, and SupCon-MPL
model are experimented for their training performance under the same conditions and
hyperparameters. The training dataset uses the videos of the deepfakes (DF), Face2Face
(F2F), FaceSwap (FS), NeuralTextures (NT), and real videos in FaceForensics++ [39], with
DFDC [40], and Celeb-DF [41]. In scenario evaluation, deepfake videos of first-generation’s
unknown domain are NeuralTextures(NT) [39] with real videos, and for post-generation’s
unknown domain, we selected StyleGAN [8] images with CelebA [48] videos. We used
MTCNN [49] to extract face images frame by frame of each video.

In the single-domain experiment, 260,000 real and 340,000 fake data from each domain
in the FaceForensics++ [39] are used. During training, the amount of validation data used
is 20% of the training data, and the evaluation dataset uses 150,000 per each data domain.
In the multi-domain experiment, 200,000 labeled data are randomly extracted from four
domains, and 180,000 unlabeled data are extracted from a single domain for use.
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The generational deepfake scenario trains using 170,000 each of the first-generation
known domain’s FaceForensics++ (DF, F2F, FS, Real) [39], DFDC [40], Celeb-DF [41] data,
and then evaluates using 51,200 each of first- and second-generation unknown domain
data. In the backbone model in scenario evaluation, we used ResNet50 [50] due to lack of
computational resources.

The hyperparameters used in the experiment are a learning rate of 10−4, an image
size of 64, and a batch size of 512. In the MPL, SupCon-MPL models, the batch sizes of
labeled and unlabeled images are 64 and 448, respectively. Finally, the threshold is set
at 0.95. The training models used were ResNet50 [50], ResNet101 [50], ResNext50 [51],
EfficientNet-b5 [21], and WideResNet50 [52].

Experiment data and evaluation data use a mix of fake and real data. In the experiment
in Section 4.2, video data from one domain is used as labeled and unlabeled data, and in
the experiment in Section 4.3, videos from multiple domains are used as labeled data, and
one domain is used as unlabeled data.

4.2. Single-Domain Experiment

In this section, single-domain experiments evaluate the detection performance for
a single deepfake generation model, while, in Section 4.3, the performance on new deepfakes
is evaluated through training on various deepfake generation models. Sections 4.4 and 4.5
assess the performance of deepfake detection across diverse deepfake datasets and scenario-
based deepfake detection, respectively.

In the experiment using only one domain, as shown in Table 1, the performance of the
known domain increased in most of the situation. Furthermore, it was confirmed that the
performance in unknown domains also increased in most of the situation. Based on Efficient-
Net-b5 [21] in Table 1, ACC and AUC in K improved by an average of 4.47% and 4.53%,
respectively, and ACC in U improved by an average of 0.20%, but AUC decreased by an average
of 0.13%. However, overall, out of a total of 64 ACC and AUC validations recorded in Tables 1–8,
44 and 41 cases improved, respectively. Through this, it was confirmed that when using the
same data, the performance of the MPL model is higher than the pretrained model.

Table 1. The performance of pretrained and MPL model on the known domain (EfficientNetb5 [21]).

Baseline
Model

Train
Dataset

Test
Dataset

Pretrained Model MPL Model
ACC AUC F1 Score ACC AUC F1 Score

EfficientNetb5
[21]

DF DF 89.35 89.35 89.19 90.08 90.08 90.36
F2F F2F 77.21 77.21 77.61 80.35 80.35 79.45
FS FS 84.52 84.31 83.20 87.90 87.43 85.98
NT NT 64.13 63.33 58.18 74.79 74.47 71.36

Table 2. The performance of pretrained and MPL model on the unknown domain (EfficientNetb5 [21]).

Baseline
Model

Train
Dataset

Test
Dataset

Pretrained Model MPL Model
ACC AUC F1 Score ACC AUC F1 Score

EfficientNetb5
[21]

DF
F2F 51.59 51.60 22.09 51.70 51.70 23.01
FS 55.97 52.06 23.23 56.45 52.65 25.01
NT 55.37 51.26 20.06 55.41 51.37 21.28

F2F
DF 57.56 57.55 47.78 53.87 53.84 32.11
FS 56.47 54.05 39.66 55.48 51.92 26.57
NT 54.63 51.91 33.96 54.76 50.99 23.26

FS
DF 57.25 57.22 39.84 57.61 57.88 36.54
F2F 51.76 51.77 25.78 51.98 51.99 20.16
NT 53.79 49.89 20.80 54.32 49.80 12.35

NT
DF 58.72 58.71 52.73 61.03 61.00 52.78
F2F 54.52 54.53 45.23 55.88 55.89 43.68
FS 51.65 49.42 34.03 53.29 49.34 27.25
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Table 3. The performance of pretrained and MPL model on the known domain (ResNet50 [50]).

Baseline
Model

Train
Dataset

Test
Dataset

Pretrained Model MPL Model
ACC AUC F1 Score ACC AUC F1 Score

ResNet50 [50]

DF DF 91.16 91.16 90.91 91.29 91.30 90.97
F2F F2F 82.47 82.48 81.84 83.98 83.97 82.75
FS FS 87.55 87.21 86.01 88.31 88.09 87.06
NT NT 74.96 74.28 71.20 76.22 75.84 73.15

Table 4. The performance of pretrained and MPL model on the unknown domain (ResNet50 [50]).

Baseline
Model

Train
Dataset

Test
Dataset

Pretrained Model MPL Model
ACC AUC F1 Score ACC AUC F1 Score

ResNet50 [50]

DF
F2F 52.91 52.89 22.41 51.92 51.86 20.36
FS 56.80 52.68 21.41 57.02 53.00 22.63
NT 55.91 51.77 18.54 55.45 51.33 18.53

F2F
DF 53.94 53.90 31.72 53.79 53.75 28.28
FS 54.62 50.97 24.47 55.32 51.35 21.84
NT 54.76 51.20 24.07 54.96 51.04 21.00

FS
DF 56.34 56.30 33.89 59.57 59.53 41.50
F2F 51.16 51.10 20.08 51.57 51.52 21.01
NT 53.67 49.44 14.32 53.81 49.61 15.49

NT
DF 60.45 60.43 49.93 60.17 60.15 50.85
F2F 54.74 54.70 38.88 53.56 53.51 36.77
FS 51.59 48.15 22.30 51.84 48.51 25.20

Table 5. The performance of pretrained and MPL model on the known domain (ResNet101 [50]).

Baseline
Model

Train
Dataset

Test
Dataset

Pretrained Model MPL Model
ACC AUC F1 Score ACC AUC F1 Score

ResNet101 [50]

DF DF 91.16 91.16 90.84 91.13 91.13 90.85
F2F F2F 81.41 81.41 80.27 83.50 83.49 82.73
FS FS 87.59 87.37 86.13 87.75 87.66 86.39
NT NT 74.17 74.56 73.16 76.03 75.53 73.22

Table 6. The performance of pretrained and MPL model on the unknown domain (ResNet101 [50]).

Baseline
Model

Train
Dataset

Test
Dataset

Pretrained Model MPL Model
ACC AUC F1 Score ACC AUC F1 Score

ResNet101 [50]

DF
F2F 52.69 52.63 21.22 51.26 51.20 18.01
FS 56.90 52.73 20.42 56.02 51.84 18.71
NT 55.93 51.74 18.33 54.93 50.73 16.53

F2F
DF 53.63 53.59 30.44 53.50 53.46 27.42
FS 54.33 50.08 22.82 54.86 50.85 19.67
NT 54.62 51.01 23.30 55.17 51.28 20.98

FS
DF 57.04 57.70 37.00 59.55 59.51 42.55
F2F 51.43 51.37 20.63 51.84 51.79 24.60
NT 53.66 49.55 15.04 53.61 49.59 17.59

NT
DF 62.66 62.65 59.08 60.16 60.14 49.99
F2F 52.69 52.63 47.55 51.26 51.20 37.97
FS 56.90 52.73 29.98 56.02 51.84 21.29
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Table 7. The performance of pretrained and MPL model on the known domain (ResNext50 [51]).

Baseline
Model

Train
Dataset

Test
Dataset

Pretrained Model MPL Model
ACC AUC F1 Score ACC AUC F1 Sore

ResNext50 [51]

DF DF 90.29 90.29 90.01 91.14 91.14 91.02
F2F F2F 81.19 81.17 80.07 82.87 82.85 82.11
FS FS 87.04 86.77 85.44 87.36 87.36 86.36
NT NT 74.26 74.43 73.21 76.32 75.78 73.30

Table 8. The performance of pretrained and MPL model on the unknown domain (ResNext50 [51]).

Baseline
Model

Train
Dataset

Test
Dataset

Pretrained Model MPL Model
ACC AUC F1 Score ACC AUC F1 Score

ResNext50 [51]

DF
F2F 51.83 51.73 20.17 51.66 51.56 18.92
FS 56.57 52.53 21.48 57.24 53.21 23.08
NT 55.25 51.57 18.50 54.72 50.50 15.47

F2F
DF 54.57 54.58 31.56 54.46 54.47 31.25
FS 54.31 50.38 18.21 55.28 51.45 22.28
NT 54.67 50.89 21.12 54.80 51.02 21.58

FS
DF 59.23 59.23 41.25 60.33 60.33 46.22
F2F 52.02 51.93 23.43 52.98 52.89 27.91
NT 53.31 49.22 15.05 53.41 49.55 17.30

NT
DF 60.58 60.58 43.46 58.50 58.51 44.82
F2F 54.16 54.11 30.69 52.46 52.38 31.00
FS 49.17 46.78 19.36 51.26 47.80 21.71

4.3. Multi-Domain Experiment

In the multi-domain experiment, the combination of data is configured considering the
actual deepfake situation. The situation is assumed to have K deepfake data from multiple
domains and DUL data from U. Afterwards, the evaluation is conducted through the U
data used as DUL. Therefore, MPL trains with deepfake videos from multiple domains,
and, after training, MPL experiments the ability to detect unlabeled data using unlabeled
data. As a result of the experiment, ACC and AUC increased by an average of 1.59% and
1.26% in two models in Tables 9 and 10. Through this, it was confirmed that the MPL
model improved the deepfake detection ability of the unknown model by learning with
unlabeled data.

Table 9. The performance of pretrained and MPL model on the targeted unknown domain
(ResNext50 [51]).

Baseline
Model

Train
Dataset

Unlabeled
Dataset

Pretrained Model MPL Model
ACC AUC F1 Score ACC AUC F1 Score

ResNext50 [51]

F2F, FS, NT DF 63.33 63.32 70.02 66.23 66.22 70.35
DF, FS, NT F2F 57.35 57.39 60.69 58.04 58.08 61.64
DF, F2F, NT FS 50.69 50.53 46.69 51.81 51.54 47.22
DF, F2F, FS NT 53.63 53.05 47.65 53.89 53.06 46.28

Table 10. The performance of pretrained and MPL model on the targeted unknown domain
(WideResNet50 [52]).

Baseline
Model

Train
Dataset

Unlabeled
Dataset

Pretrained Model MPL Model
ACC AUC F1 Score ACC AUC F1 Score

WideResNet50
[52]

F2F, FS, NT DF 63.17 63.14 69.19 66.03 66.00 70.15
DF, FS, NT F2F 56.86 56.87 60.76 57.60 57.60 58.91
DF, F2F, NT FS 48.37 47.74 39.32 52.86 51.13 41.60
DF, F2F, FS NT 54.22 53.43 47.37 53.92 51.96 39.87
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4.4. SupCon-MPL Experiment

The experiment uses the labeled data identically to the multi-domain experiment and
evaluates according to each combination of known domain and unknown domain. At this
time, Celeb-DF [41] is used as unlabeled data in the training of the SupCon-MPL model.
As a result of the experiment, shown in Table 11, when evaluating FS data as an unknown
domain compared with the SupCon model [35], ACC and AUC decreased, but in other
validations, the performance of the SupCon-MPL model was similar or higher than the
performance of the two models being compared. This shows that the SupCon-MPL model
has been trained as a generalized detection model compared with the existing deepfake
detection model.

Table 11. The performance of SupCon-MPL compared with the baseline model and SupCon
model [35].

Baseline
Model

Train
Dataset

Unlabeled
Dataset

Pretrained
Model

SupCon
Model [35]

SupCon-MPL(Ours)
Model

ACC AUC F1
Score ACC AUC F1

Score ACC AUC F1
Score

ResNet50
[50]

FF
(without DF)

DF (unknown) 64.24 64.27 65.49 62.88 62.84 58.55 64.60 64.55 61.60
F2F + FS + NT

(known) 70.56 71.36 83.36 75.44 75.52 83.01 75.84 76.00 83.50

FF
(without F2F)

F2F (unknown) 55.76 55.64 40.63 56.61 56.64 49.47 58.74 58.77 51.52
DF + FS + NT

(known) 77.26 76.89 81.66 75.54 75.54 84.13 78.11 78.28 85.84

FF
(without FS)

FS (unknown) 54.47 52.07 79.18 55.75 53.68 77.20 55.72 53.41 79.29
DF + F2F + NT

(known) 75.99 75.87 81.66 76.02 75.88 84.84 77.22 77.12 85.84

FF
(without NT)

NT (unknown) 56.71 54.95 62.66 56.58 54.31 66.27 56.76 54.02 69.43
DF + F2F + FS

(known) 77.39 77.41 81.66 79.09 79.26 84.13 81.22 81.32 85.84

4.5. Deepfake Scenario Experiment

In this section, we construct a training scenario for a deepfake detection model in the real
world and train the model. The scenario involves training a deepfake model with first-generation
deepfake data, then experimenting with the detection of first-generation deepfakes (NT)
that were not participated while training, and post-generation (second-generation) deepfakes
(StyleGAN) that are newly developed and unknown. Table 12 shows the training results of
various models according to the scenario. As a result of the experiment, among various
models, the SupCon-MPL model achieved highest performance in all scenario evaluations
compared with other models.

Table 12. The performance of SupCon-MPL compared with other deepfake detection methods.

Model Scenario Deepfakes
(Known)

Current-Generation
Deepfakes
(Unknown)

Post-Generation
Deepfakes
(Unknown)

Tar [34] 52.40 44.62 49.96
DDT [31] 80.41 44.62 49.49
MPL [24] 79.82 56.53 43.16

SupCon [35] 79.01 56.66 47.77
SupCon-MPL (ours) 81.40 57.85 51.90
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4.6. Limitations

The main goal of the SupCon-MPL is to enhance the deepfake detection performance in
unknown domains using meta-learning. Therefore, in this paper, we conducted experiments
by reconfiguring a limited deepfake dataset into scenarios.

The main limitation is related to computing resources. As the training in Section 4.3.
and Section 4.4. was conducted using NVIDIA RTX-3090, only ResNet50 [50] could be
used as the backbone model in SupCon-MPL, which uses two models. The ResNet50 [50]
model currently stands out among various image classification models for its stability and
consistently decent performance scores. Additionally, within the given resources, it can be
utilized for training the SupCon-MPL model. Subsequent experiments are needed with
various backbone models and larger image sizes through more computing resources.

The next limitation is that we could not find a verified deepfake dataset for the third
generation and higher. Further experiments are needed through the corresponding dataset
in the future.

5. Conclusions

With the development of various deepfake generative models, it has become important
to develop a generalized deepfake detection model that guarantees the detection performance
of unknown domain deepfakes, not just the data of the domain used for training. The
proposed SupCon-MPL allows for training from unlabeled data and performs contrastive
learning to enhance the detection performance of unknown deepfakes. This enables
contrastive learning with a diverse range of data, and, during training, the teacher model
and the student model infer information and provide feedback to each other, facilitating
the student model to surpass the performance of the teacher model.

Our model improved all detection performances over other generalized deepfake
detection models’ known and unknown domains in deepfake scenario evaluation. Indeed,
one of the significant features of SupCon-MPL is its ability to train models using a large
amount of unlabeled data. This provides a method to enhance the model’s performance
utilizing the countless images and videos available on the internet and so on. Through this,
our model enables the training of a generalized deepfake detection model and provides
robust detection capability for real-world deepfakes. SupCon-MPL can contribute to the
detection of newly developed deepfake generative models as they become increasingly
difficult to distinguish from real images, especially with the development of various
deepfake generative models.

Future research will focus on improving the detection performance of higher generation
deepfake images/videos using these methods. Additionally, studies on reducing the
training cost of SupCon-MPL will be conducted. The goal is to develop a more efficient
and economical deepfake detection model through these efforts.
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Appendix A

Table A1. Summary of notations.

Symbol Definition

CRL Contrastive Representation Learning.
MPL Meta Pseudo Labels.
GAN Generative Adversarial Networks.
VAE Variational Auto Encoder.

K Known domain which involves a set of known deepfake generative models.
U Unknown domain which involves a set of unknown deepfake generative models.

DK Deepfake datasets of the known domain which are labeled.
DU Deepfake datasets of the unknown domain which are unlabeled.
Ki i-th known deepfake generative model in known domain.
Ui i-th unknown deepfake generative model in unknown domain.
xi Images of real and deepfake.
yi Labels of real and deepfake.
DL Labeled dataset used while training.

DUL Unlabeled dataset used while training.
T Teacher model of SupCon-MPL.
S Student model of SupCon-MPL.
θT Parameters of the teacher model’s classifier.
θS Parameters of the student model’s classifier.

θPL
S Minimized parameters of model in SupCon-MPL.

θ
(t)
T,ENC Parameters of teacher encoder.

θ
(t)
S,ENC Parameters of student encoder.

ηs Learning rate used while training.
ClFT Classifier in the teacher model.

ENCT Encoder in the teacher model.
CLFS Classifier in the student model.
ENCS Encoder in the student model.

xl Labeled images used while training.
xu Unlabeled images used while training.
yl Labels used while training.
ŷu Pseudo label generated by the teacher model.

embT
l Embedding value derived by passing the labeled data through the teacher encoder.

embS
u Embedding value derived by passing the unlabeled data through the student encoder.

h Student model’s feedback factor.
I Index of the randomly augmented data.

P(i) Set of indices for all positives in the batch.
zi, zp Embedding values of each randomly augmented image.

References
1. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Bengio, Y. Generative adversarial nets. Adv.

Neural Inf. Process. Syst. 2014, 27, 1–9. [CrossRef]
2. Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784.
3. Choi, Y.; Choi, M.; Kim, M.; Ha, J.W.; Kim, S.; Choo, J. Stargan: Unified generative adversarial networks for multi-domain

image-to-image translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–23 June 2018; pp. 8789–8797. [CrossRef]

4. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference
on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 214–223.

5. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein gans. Adv. Neural Inf.
Process. Syst. 2017, 30, 1–11.

https://doi.org/10.1007/978-3-658-40442-0_9
https://doi.org/10.1109/CVPR.2018.00916


Appl. Sci. 2024, 14, 3249 17 of 18

6. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
7. Sohn, K.; Lee, H.; Yan, X. Learning structured output representation using deep conditional generative models. Adv. Neural Inf.

Process. Syst. 2015, 28, 1–9.
8. Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4401–4410.
[CrossRef]

9. Ramesh, A.; Pavlov, M.; Goh, G.; Gray, S.; Voss, C.; Radford, A.; Sutskever, I. Zero-shot text-to-image generation. In Proceedings
of the ICML 2021 Workshop on Unsupervised Reinforcement Learning, Virtual, 18–24 July 2021; pp. 8821–8831.

10. DeepFaceLab. Available online: https://github.com/iperov/DeepFaceLab (accessed on 5 March 2024).
11. Deepswap. Available online: https://deepfaceswap.ai/ (accessed on 5 March 2024).
12. Synthesia. Available online: https://www.synthesia.io (accessed on 5 March 2024).
13. Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 10684–10695. [CrossRef]

14. Saharia, C.; Chan, W.; Saxena, S.; Li, L.; Whang, J.; Denton, E.L.; Norouzi, M. Photorealistic text-to-image diffusion models with
deep language understanding. Adv. Neural Inf. Process. Syst. 2022, 35, 36479–36494.

15. Song, Y.; Dhariwal, P.; Chen, M.; Sutskever, I. Consistency models. arXiv 2023, arXiv:2303.01469.
16. Li, Y.; Lyu, S. Exposing deepfake videos by detecting face warping artifacts. arXiv 2018, arXiv:1811.00656.
17. Matern, F.; Riess, C.; Stamminger, M. Exploiting visual artifacts to expose deepfakes and face manipulations. In Proceedings of

the 2019 IEEE Winter Applications of Computer Vision Workshops, Waikoloa, HI, USA, 7–11 June 2019; pp. 83–92. [CrossRef]
18. Li, Y.; Chang, M.C.; Lyu, S. In ictu oculi: Exposing ai generated fake face videos by detecting eye blinking. arXiv 2018,

arXiv:1806.02877.
19. Ciftci, U.A.; Demir, I.; Yin, L. Fakecatcher: Detection of synthetic portrait videos using biological signals. IEEE Trans. Pattern Anal.

Mach. Intell. 2020, early access. [CrossRef]
20. Coccomini, D.A.; Messina, N.; Gennaro, C.; Falchi, F. Combining efficientnet and vision transformers for video deepfake detection.

In Proceedings of the International Conference on Image Analysis and Processing, Lecce, Italy, 23–27 May 2022; pp. 219–229.
[CrossRef]

21. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, Los Angeles, CA, USA, 9–15 June 2019; pp. 6105–6114.

22. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Houlsby, N. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

23. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [CrossRef]

24. Moon, K.-H.; Ok, S.-Y.; Seo, J.; Lee, S.-H. Meta Pseudo Labels Based Deepfake Video Detection. J. Korea Multimed. Soc. 2024, 27,
9–21. [CrossRef]

25. Jain, A.; Korshunov, P.; Marcel, S. Improving generalization of deepfake detection by training for attribution. In Proceedings
of the 2021 IEEE 23rd International Workshop on Multimedia Signal Processing, Tampere, Finland, 6–8 October 2021; pp. 1–6.
[CrossRef]

26. Nadimpalli, A.V.; Rattani, A. On improving cross-dataset generalization of deepfake detectors. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 91–99. [CrossRef]

27. Hsu, C.C.; Lee, C.Y.; Zhuang, Y.X. Learning to detect fake face images in the wild. In Proceedings of the 2018 International
Symposium on Computer, Consumer and Control, Taichung, Taiwan, 6–8 December 2018; pp. 388–391. [CrossRef]

28. Dong, F.; Zou, X.; Wang, J.; Liu, X. Contrastive learning-based general Deepfake detection with multi-scale RGB frequency clues.
J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 90–99. [CrossRef]

29. Shiohara, K.; Yamasaki, T. Detecting deepfakes with self-blended images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 18720–18729. [CrossRef]

30. Chen, L.; Zhang, Y.; Song, Y.; Wang, J.; Liu, L. Ost: Improving generalization of deepfake detection via one-shot test-time training.
Adv. Neural Inf. Process. Syst. 2022, 35, 24597–24610.

31. Aneja, S.; Nießner, M. Generalized zero and few-shot transfer for facial forgery detection. arXiv 2020, arXiv:2006.11863.
32. Kim, M.; Tariq, S.; Woo, S.S. Fretal: Generalizing deepfake detection using knowledge distillation and representation learning. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 1001–1012. [CrossRef]

33. Qi, H.; Guo, Q.; Juefei-Xu, F.; Xie, X.; Ma, L.; Feng, W.; Zhao, J. Deeprhythm: Exposing deepfakes with attentional visual heartbeat
rhythms. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020;
pp. 4318–4327. [CrossRef]

34. Lee, S.; Tariq, S.; Kim, J.; Woo, S.S. Tar: Generalized forensic framework to detect deepfakes using weakly supervised learning. In
Proceedings of the IFIP International Conference on ICT Systems Security and Privacy Protection, Oslo, Norway, 22–24 June 2021;
pp. 351–366. [CrossRef]

https://doi.org/10.1109/TPAMI.2020.2970919
https://github.com/iperov/DeepFaceLab
https://deepfaceswap.ai/
https://www.synthesia.io
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/WACVW.2019.00020
https://doi.org/10.1109/TPAMI.2020.3009287
https://doi.org/10.1007/978-3-031-06433-3_19
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.9717/kmms.2024.27.1.009
https://doi.org/10.1109/MMSP53017.2021.9733468
https://doi.org/10.1109/CVPRW56347.2022.00019
https://doi.org/10.1109/IS3C.2018.00104
https://doi.org/10.1016/j.jksuci.2023.03.005
https://doi.org/10.1109/CVPR52688.2022.01816
https://doi.org/10.1109/CVPRW53098.2021.00111
https://doi.org/10.1145/3394171.3413707
https://doi.org/10.1007/978-3-030-78120-0_23


Appl. Sci. 2024, 14, 3249 18 of 18

35. Xu, Y.; Raja, K.; Pedersen, M. Supervised contrastive learning for generalizable and explainable deepfakes detection. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022;
pp. 379–389.

36. Fung, S.; Lu, X.; Zhang, C.; Li, C.T. DeepfakeUCL: Deepfake Detection via Unsupervised Contrastive Learning. In Proceedings of
the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [CrossRef]

37. Pham, H.; Dai, Z.; Xie, Q.; Le, Q.V. Meta pseudo labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11557–11568. [CrossRef]

38. Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Krishnan, D. Supervised contrastive learning. Adv. Neural Inf.
Process. Syst. 2020, 33, 18661–18673.

39. Rossler, A.; Cozzolino, D.; Verdoliva, L.; Riess, C.; Thies, J.; Niessner, M. Faceforensics++: Learning to Detect Manipulated Facial
Images. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2
November 2019; pp. 1–11. [CrossRef]

40. Dolhansky, B.; Bitton, J.; Pflaum, B.; Lu, J.; Howes, R.; Wang, M.; Ferrer, C.C. The deepfake detection challenge (dfdc) dataset.
arXiv 2020, arXiv:2006.07397.

41. Li, Y.Z.; Yang, X.; Sun, P.; Qi, H.G.; Lyu, S. Celeb-DF: A Large-scale Challenging Dataset for DeepFake Forensics. In Proceedings
of the Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 3207–3216. [CrossRef]

42. Korshunov, P.; Marcel, S. Deepfakes: A new threat to face recognition? assessment and detection. arXiv 2018, arXiv:1812.08685.
43. Hadsell, R.; Chopra, S.; LeCun, Y. Dimensionality reduction by learning an invariant mapping. In Proceedings of the 2006 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006; pp. 1735–1742.
[CrossRef]

44. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [CrossRef]

45. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
46. Xie, Q.; Luong, M.T.; Hovy, E.; Le, Q.V. Self-training with noisy student improves imagenet classification. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10687–10698.
[CrossRef]

47. Xie, Q.; Dai, Z.; Hovy, E.; Luong, T.; Le, Q. Unsupervised data augmentation for consistency training. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020; pp. 6256–6268.

48. Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference
on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3730–3738. [CrossRef]

49. Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks.
IEEE Signal Process. Lett. 2016, 23, 1499–1503. [CrossRef]

50. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

51. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500. [CrossRef]

52. Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016, arXiv:1605.07146.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/IJCNN52387.2021.9534089
https://doi.org/10.1109/CVPR46437.2021.01139
https://doi.org/10.1109/ICCV.2019.00009
https://doi.org/10.1109/CVPR42600.2020.00327
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.1109/CVPR42600.2020.01070
https://doi.org/10.1109/ICCV.2015.425
https://doi.org/10.1109/LSP.2016.2603342
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.634

	Introduction 
	Related Works 
	Generalized Deepfake Detection 
	Contrastive Representation Learning in Deepfake Detection 
	Meta Pseudo Labels 

	Proposed SupCon-MPL-Based Deepfake Detection 
	Proposed Training Strategy 
	Known Domain and Unknown Domain in Deepfake 
	Training Strategy for Deepfake Unknown Domain Detection 

	SupCon-MPL: Supervised Contrastive Learning with Meta Pseudo Labels 
	SupCon-MPL Loss Function 

	Experiment 
	Experiment Setup 
	Single-Domain Experiment 
	Multi-Domain Experiment 
	SupCon-MPL Experiment 
	Deepfake Scenario Experiment 
	Limitations 

	Conclusions 
	Appendix A
	References

