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Abstract: In recent years, renewable energy has seen widespread application. However, due to its
intermittent nature, there is a need to develop energy management systems for its scheduling and
control. This paper introduces a multi-stage constraint-handling multi-objective optimization method
tailored for resilient microgrid energy management. The microgrid encompasses diesel generators,
energy storage systems, renewable energy sources, and various load types. The intelligent man-
agement of generators, batteries, switchable loads, and controllable loads ensures a reliable power
supply for the critical loads. Beyond operational costs, our model also considers grid dependency as
a key objective, making it particularly suited for energy management in extreme environments such
as islands, border regions, and military bases. Managing complex controls of generators, batteries,
switchable loads, and controllable loads presents challenging constraints that the management strat-
egy must meet. To tackle this challenge, we propose an multi-objective optimization algorithm with
multi-stage constraint-handling strategy to handle the high-dimensional complex constraints of the
resilient energy management problem. Our proposed approach demonstrates superior performance
compared to nine leading constrained multi-objective optimization algorithms across various test
scenarios. Furthermore, the benefits of our method become increasingly evident as the complexity
of the problem increases. Compared to the classical NSGA-II, the proposed NSGA-II-MC method
achieved a 49.7% improvement in the Hypervolume metric on large-scale problems.

Keywords: microgrid; multi-objective optimization; constraint handling

1. Introduction

The scarcity of fossil fuels and growing concerns about global warming have led
to the emergence of renewable energy sources. Microgrids, which coordinate various
renewable energy resources, distributed generators, energy storage systems, and electrical
loads alongside the conventional power grid, are a promising technique to mitigate the
depletion of fossil fuels and to reduce the associated carbon footprint. However, the high
penetration of renewable energy resources, such as solar power and wind power, imposes
new challenges in the operation of microgrids because of their intermittent nature. To
address the uncertainties posed by these intermittent power sources, energy management
systems have been increasingly developed to increase the reliability of microgrids and to
yield better performance. Energy management is defined as an approach to optimize the
utilization of controllable devices in a microgrid to minimize its operation cost, emissions,
and other objectives. This work focuses on the resilient energy management of microgrids,
where, in addition to generators and storage units, various switchable and controllable
loads can be strategically scheduled to meet the electricity demand of critical loads under
extreme environmental conditions, such as islands, border regions, and military bases. In
these scenarios, access to the main power grid may be uncertain or prohibitively expensive.
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Introducing control over various switchable and controllable loads makes the optimization
problem of energy management more difficult to solve, as it exhibits the typical charac-
teristics of being large-scale, multi-objective, and multi-constraint. Therefore, developing
effective solution algorithms is especially necessary.

In recent years, diverse methods including mathematical programming-based opti-
mization approaches and meta-heuristic algorithms have been proposed [1] for energy
management. Zhang et al. [2] tackled the energy management problem by employing
particle swarm optimization, taking into account the integration of photovoltaic systems
and batteries while considering energy tariff rates. Liu et al. [3] delved into a stochastic op-
timization model, focusing on curtailing net generation costs considering real-time market
prices. Badawy and Sozer [4] introduced a supervisory energy management method that
amalgamates fuzzy logic controllers with sliding mode control, ensuring a stable power
supply and uninterrupted energy delivery. Tanvir and Merabet [5] introduced an energy
management approach that seamlessly integrates batteries with wind energy systems,
placing significant importance on monitoring battery State of Charge (SoC) for effective
battery charging and discharging. Roy et al. [6] proposed a novel approach that leverages
artificial neural networks in conjunction with hybrid whale optimization to minimize
generation costs while forecasting renewable energy availability. Li et al. [7] developed an
encompassing energy management system that optimizes the simultaneous operation of
thermal and battery systems, resulting in improved frequency and voltage stability within
microgrid networks. Pannala et al. [8] engaged in a comprehensive exploration of voltage
control and energy management strategies, employing an exhaustive approach across
both isolated and grid-connected microgrid systems. This approach addresses critical
challenges, including generation failures, low power generation, and battery constraints.
Oliveira-Assis et al. [9] proposed an optimized energy management approach that har-
nesses biogeography-based modeling to minimize hydrogen fuel consumption within
charging-station-based microgrid systems. Zhao et al. [10] devised an optimal scheduling
strategy employing model predictive control to bolster system resilience in the face of
renewable energy variability. This strategy finds practical application in multi-microgrid
scenarios, especially under dynamic trading conditions. Merabet et al. [11] presented an
energy management framework with a dual focus on reducing generation costs and opti-
mizing battery usage. This solution also integrates load-shifting mechanisms and adapts
to varying grid tariffs. Moreover, various approaches have been proposed to address the
critical presence of uncertain data in energy management optimization problems. Nam-
mouchi et al. [12] proposed to combine Machine Learning and Robust Optimization for
optimally scheduling energy generation, consumption, and buy/sell actions in a microgrid,
taking into account the uncertainty of photovoltaic power generation and user consump-
tion. Chen et al. [13] adopted chance-constrained programming for modeling and solving
an uncertain multi-objective microgrid scheduling problem, addressing the uncertainty
of renewable energy generation. Rui et al. [14] combined Mixed Integer Programming
and Stackelberg games for defining an optimal energy scheduling in a microgrid context.
Vidan et al. [15] proposed a computationally efficient Robust Optimization method for
tackling energy price data uncertainty while optimally managing production and battery
storage actions. However, it should be noted that existing single-objective optimization
methods for energy management rarely consider the control of controllable loads, and most
of them only utilize existing optimization methods without designing proprietary methods
for the complex and high-dimensional constraints present in energy management problems.
Consequently, the convergence capability of these methods may be limited.

Various objectives such as cost, emissions, and battery lifespan should be considered
when supplying the load. Consequently, the necessity of multi-objective optimization algo-
rithms becomes apparent. In this context, Li and Xia [16] introduced the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) method as an effective means to address multiple
objectives within microgrid management, with a particular emphasis on reducing operating
costs and mitigating air pollutants. Incorporating grid power consumption cost and battery
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degradation cost, Preetha Roselyn et al. [17] developed a multi-objective genetic algorithm
similar to NSGA-II to optimize the energy management strategy in microgrids. Murty
and Kumar [18] presented a multi-objective optimization framework to obtain the optimal
energy dispatch strategy for grid-connected and standalone microgrids integrated with
photovoltaic cells, wind turbines, fuel cells, micro turbines, diesel generators, and battery
energy storage system. This method aims to minimize the costs of main grid energy, fuel
costs, emissions, and other objectives. A multi-objective grey wolf method is proposed
in [19] to obtain the Pareto front considering the opposing objectives of energy system cost
and battery lifespan. In this work, sizing optimization and energy management strategy are
both analyzed. De Kamal and Mandal [20] proposed a multi-objective modified personal
best particle swarm optimization method for multi-microgrids energy management. This
work aims to find the Pareto front of minimizing both operation costs and power losses.
Li et al. [21] addressed a wide spectrum of objectives, including power quality, security,
and financial considerations, in their quest to optimize energy scheduling within micro-
grids. Rajagopalan et al. [22] considered a variant of nature-inspired metaheuristics for
multi-objective power generation scheduling.

Other multi-objective methods [23–25] have also been proposed for energy manage-
ment of microgrids considering various objectives and microgrid properties. However,
most existing works directly used off-the-shelf multi-objective algorithms, which might
perform poorly on energy management problems with hard constraints. Given the substan-
tial number of controllable loads, each with specific on/off timings and power demand
constraints, the optimization problem becomes challenging to converge. In this context,
we designate a multi-stage constraint-handling multi-objective optimization method for
resilient microgrid energy management, and compare it with state-of-the-art multi-objective
optimization algorithms. The contributions of this work are as follows:

• A resilient microgrid energy management model that incorporates the scheduling of
diesel generators, energy storage systems, switchable loads, and controllable loads;

• A multi-stage constraint-handling multi-objective optimization algorithm that can
effectively tackle the complex constraints of the resilient microgrid energy manage-
ment problem;

• Superior performance compared to nine state-of-the-art constrained multi-objective
optimization algorithms.

The rest of this paper is structured as follows: Section 2 outlines the model for the
resilient microgrid energy management problem. The proposed constrained multi-objective
optimization algorithm is elaborated upon in Section 3. Section 4 presents the experimental
results, and Section 5 offers the conclusion.

2. System Model

This work focuses on the resilient energy management problem, primarily addressing
extreme environments such as islands, border regions, and military bases. Our goal is
to reduce the dependence on the main power grid in these areas. Given the limited
energy resources and the necessity to meet critical loads due to specific scenarios, not
only are storage and generators managed but loads are also controllable in this approach.
This approach ensures that essential services and operations remain uninterrupted, even
under challenging conditions. Therefore, given a microgrid composed of diesel generators,
renewable energy sources, energy storage systems (such as batteries), and various loads,
we aim to optimize the operation schedule for generators, energy storage, and controllable
loads. This scheduling will take into account the operational constraints of each component
to minimize both the operational costs and reliance on the main electricity grid. Table 1
gives the mathematical notation used in the model.
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Table 1. Mathematical Notations.

Symbol Explanation

Pmin
bess Minimum power output of the energy storage system

Pmax
bess Maximum power output of the energy storage system

Pbess(k) Power output of the energy storage system at time k

Emin
bess Minimum energy capacity of the energy storage system

Emax
bess Maximum energy capacity of the energy storage system

Ebess(k) Energy capacity of the energy storage system at time k

ηbess Charge/discharge efficiency of the energy storage system

εbess Self-discharge rate of the energy storage system

∆PDG Maximum ramping power of the diesel generator

PDG(k) Power output of the diesel generator at time k

Pmin
DG Minimum power output of the diesel generator

Pmax
DG Maximum power output of the diesel generator

ton(k) Continuous running time of the generator at time k

to f f (k) Continuous off time of the generator at time k

Ton Minimum continuous running time required for the generator

To f f Minimum continuous off time required for the generator

βmin
cur Minimum proportion of switchable loads

βmax
cur Maximum proportion of switchable loads

βcur(k) Proportion of switchable loads at time k

Tstart,i Earliest start time for the i-th controllable load

Tfinish,i Latest stop time for the i-th controllable load

Tsch,i Total operating time requirement for the i-th controllable load

Esch,i Total energy demand for the i-th controllable load

δsch,i(k) Operating state of the i-th controllable load at time k

Pmin
sch,i Minimum power output for the i-th controllable load

Pmax
sch,i Maximum power output for the i-th controllable load

C1 Operational costs of the system

CDG(k) Operating costs of the diesel generator at time k

CBESS(k) Operating costs of the energy storage system at time k

Ccur(k) Penalty for load shedding at time k

Cgrid(k) Cost of buying and selling electricity at time k

C f uel(k) Fuel cost for the diesel generator at time k

OMDG Maintenance cost per unit time of generator operation

χ
up
DG(k) Fixed costs for each startup of the diesel generator

χdown
DG (k) Fixed costs for each shutdown of the diesel generator

a, b Constant coefficients of fuel cost for the diesel generator

OMBESS Maintenance cost per unit time for the energy storage system

cswitch
BESS Cost associated with charging and discharging losses

αcur,i(k) Penalty coefficient for the i-th load shedding
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Table 1. Cont.

Symbol Explanation

βcur,i(k) Power of the shed load for the i-th controllable load

ηgrid(k) Electricity price for buying (cbur
grid(k)) or selling (csel

grid(k))

C2 Optimization objective to minimize dependence on the main grid

λgrid Power purchased from the main grid

2.1. System Description

The microgrid case studied in this paper consists of a diesel generator, a wind turbine
generator, a photovoltaic generator, an energy storage system, and various types of loads.
The loads include critical loads, switchable loads, and controllable loads. Among them, the
electrical demands of critical loads must be met. Depending on the actual situation, the
electrical demands of switchable loads can be curtailed. As for controllable loads, under
the conditions of meeting their total electrical demands and time constraints, their on/off
times and power can be adjusted. The decision variables for energy management in this
microgrid system are shown in Table 2, and by controlling the operation of the generation
equipment, energy storage system, and smart loads, the system operation can be optimized.

Table 2. Decision variables for energy management problem.

Decision Variables Descriptions Type

δDG(k)
on/off status of the diesel generator at

time k binary

PDG(k)
output power of the diesel generator at

time k (kW) continuous

δbess (k) status of the BESS at time k binary

Pbess (k)
charging/discharging power of the BESS

at time k (kW) continuous

Ton,i
sch start time of the ith controllable load integer

To f f ,i
sch

shutdown time of the ith
controllable load integer

Psch,i(k)
power consumption of the ith

controllable load at time k (kW) continuous

βcur(k)
proportion of flexible load curtailment at

time k (%) continuous

For the decision variables representing the operational status of generators and control-
lable loads, 1 represents “on” and 0 represents “off”. As for the status of the energy storage
system δsch,i(k), 1 represents “discharge”, −1 represents “charge”, and 0 represents “off”.

2.2. Model Constraints
2.2.1. Energy Storage System Constraints

Consider the following constraints for the energy storage system:

Pmin
bess ≤ Pbess (k) ≤ Pmax

bess (1)

Emin
bess ≤ Ebess (k) ≤ Emax

bess (2)

That is, it is necessary to satisfy the maximum charging and discharging power constraints
of the energy storage system, and the battery capacity of the energy storage system must
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not exceed the maximum and minimum capacity values. The capacity of the energy storage
system is calculated as follows:

Ebess (k + 1) = Ebess (k) + ηbess Pbess (k)∆t− εbess ∆t

ηbess =

{
ηc

bess , Pbess (k) > 0
ηd

bess , Pbess (k) ≤ 0
(3)

where ηbess represents the charge/discharge efficiency, and εbess represents the self-discharge
rate of the battery.

2.2.2. Diesel Generator Constraints

For the diesel generator, we first need to consider its ramping power constraint:

−∆PDG ≤ PDG(k)− PDG(k− 1) ≤ ∆PDG (4)

This means that the change in the generator’s power output between adjacent time periods
cannot exceed ∆PDG. Additionally, the generator’s power output must not go beyond its
maximum or minimum power limits:

Pmin
DG ≤ PDG(k) ≤ Pmax

DG (5)

Furthermore, we need to consider the minimum on/off duration constraints for
the generator:

ton(k) ≥ Ton (6)

to f f (k) ≥ To f f (7)

Here, ton(k) represents the current continuous running time of the generator, and to f f (k)
represents the current continuous off time of the generator. This means that the generator
needs to run continuously for Ton time periods before it can be turned off and must remain
off for To f f time periods before it can be turned on.

2.2.3. Load Constraints

The paper considers three types of typical loads: (1) critical loads; (2) switchable loads;
and (3) controllable loads. Critical loads are associated with various critical tasks whose
electricity demands must be met. Switchable loads are non-critical loads whose power can
be adjusted based on the actual situation, such as ventilation equipment, air conditioning,
etc. The proportion of switchable loads must satisfy the following constraint:

βmin
cur ≤ βcur(k) ≤ βmax

cur (8)

Compared to critical loads, controllable loads have more flexible energy requirements
and only need to meet their power supply needs within a predefined time range. The energy
management system can schedule their power consumption during various time periods.
Examples of controllable loads include production tasks in industrial microgrids, various
devices awaiting charging, and electric vehicles awaiting charging. The paper considers
various controllable loads, and for each controllable load, the following constraints must
be satisfied.

The device must operate within the time range from Tstart,i to Tfinish,i, where Tstart,i
and Tfinish,i represent the earliest start time and the latest stop time for the i-th controllable
load. Additionally, it is necessary to meet the total operating time requirement Tsch,i and
the total energy demand Esch,i for each controllable load:

Tfinish,i

∑
k=Tstart,i

δsch,i(k) = Tsch,i (9)
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Tfinish,i

∑
k=Tstart,i

Psch,i(k)∆t = Esch,i (10)

For each operating time period, the device’s operating power must satisfy the power
upper and lower bounds:

δsch,i(k)Pmin
sch,i ≤ Psch,i(k) ≤ δsch,i(k)Pmax

sch,i (11)

Furthermore, to prevent frequent start–stop cycles that may damage the device, once
the device is turned on, it cannot be stopped during its operation. This constraint is
satisfied by:

k+Tsch,i−1

∑
τ=k

δsch,i(τ) ≥ Tsch,i(δsch,i(k)− δsch,i(k− 1)) k = Tstart,i, · · · , Tf inish,i−Tsch,i + 1 (12)

2.2.4. Power Balance Constraints

Diesel generators, wind power, and photovoltaic power are the energy supply nodes,
while critical loads, switchable loads, and controllable loads are the energy demand nodes.
Energy storage systems and the main grid adjust their power flow to satisfy the following
power balance constraints:

Nsch

∑
i=1

Psch,i(k)+P̃cur (k)(1− βcur(k)) + P̃cri(k)

= P̃solar (k) + P̃wind (k) + PDG(k) + Pgrid (k) + Pbess(k)

(13)

where the values of Pgrid (k) and Pbess(k) greater than 0 indicate that the main grid and
energy storage system are supplying power to the microgrid.

2.3. Optimization Objectives

The objectives of the energy management for the resilient microgrid studied in this
paper are to reduce the operational costs of the system and its dependence on the main
grid. Based on the generation from renewable sources such as wind and photovoltaics,
load usage, and electricity price information, the system aims to reduce costs by charging
during low electricity price periods and discharging during high electricity price periods
using the energy storage system. Through coordinated control of generation equipment,
energy storage, and loads, the system also aims to decrease its reliance on the main grid.
This approach has several benefits, including mitigating the impact of renewable energy
fluctuations on the main grid, increasing the utilization of renewable energy, and enhancing
the reliability of the microgrid system. It is suitable for energy management in extreme
environments like islands, border regions, and military bases.

Therefore, the optimization objective of the microgrid consists of two parts: minimiz-
ing the operational costs of the system and minimizing the energy exchange between the
microgrid and the main grid. The calculation of operational costs is as follows:

C1 = min
T

∑
k=1

[
CDG(k) + Cbess(k) + Ccur (k) + Cgrid (k)

]
(14)

where CDG(k), CBESS(k), Ccur(k), and Cgrid(k) represent the operating costs of the diesel
generator and the energy storage system at time k, the penalty for load shedding, and the
cost of buying and selling electricity, respectively.

The operating cost of the diesel generator includes fuel cost, startup cost, and mainte-
nance cost, and is calculated as follows:

CDG(k) = C f uel(k) + OMDG · δDG(k) · ∆t + χ
up
DG(k) + χdown

DG (k) (15)
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where C f uel(k) is the fuel cost for the diesel generator at time k, OMDG is the maintenance
cost per unit time of generator operation, δDG(k) represents the operational state of the
diesel generator at time k (1 for on, 0 for off), and χ

up
DG(k) and χdown

DG (k) represent the fixed
costs for each startup and shutdown.

The fuel cost C f uel(k) for the diesel generator at time k is calculated as:

C f uel(k) = (aP2
DG(k) + bPDG(k) + ci) · ∆t (16)

where a and b represent the first and second-order constant coefficients of fuel cost, PDG is
the power output of the diesel generator at time k, and ∆t is the time granularity, which is 1
hour in this case.

The operating cost of the energy storage system includes maintenance costs and losses
from charging and discharging.

Cbess (k) = |Pbess (k)|OMbess ∆t + cswitch
bess (δbess (k)− δbess (k− 1))2 (17)

where OMBESS represents the maintenance cost per unit time for the energy storage system,
and cswitch

BESS represents the cost associated with charging and discharging losses.
The penalty cost for load shedding is calculated based on the penalty coefficient

αcur,i(k) and the power of the shed load βcur,i(k)Pcur,i(k):

Ccur(k) = αcur,i(k)βcur,i(k)Pcur,i(k) · ∆t (18)

The cost of buying and selling electricity is determined by the interaction power
between the microgrid and the main grid Pgrid(k) and the electricity price.

ηgrid(k) =

{
cbur

grid(k) Pgrid(k) > 0
csel

grid (k) Pgrid(k) ≤ 0
Cgrid(k) = ηgrid(k)Pgrid(k)∆t

(19)

where Pgrid(k) > 0 represents that the microgrid’s generation capacity is insufficient to
meet the total demand, and it needs to purchase electricity from the main grid. Pgrid(k) ≤ 0
indicates that the microgrid is selling excess electricity to the main grid. Typically, the
purchasing price for electricity from the grid is higher than the selling price.

The second optimization objective is to reduce the microgrid’s dependence on the
main grid, specifically by minimizing the total power purchased from the main grid by the
microgrid. It is calculated as:

C2 = min ∑T
k=1 λgrid∆t

λgrid(k) =
{

Pgrid(k) Pgrid(k) > 0
0 Pgrid(k) ≤ 0

(20)

2.4. Multi-Objective Optimization Model

Based on the previously mentioned system optimization objectives and model con-
straints, the energy management model, which is a Mixed Integer Programming problem
with multiple objectives, is constructed as follows:

minx C(x) = (C1(x), C2(x))
s.t. (8)–(20)

(21)

Here, x represents the decision variables, and the list of decision variables is shown
in Table 2. The optimization objectives of the model are to minimize the system operating
cost C1 and minimize the dependence on the main grid C2. These two objectives are
conflicting—optimizing one objective typically leads to degradation in the value of the
other objective; it is not possible to simultaneously optimize both objectives. Therefore,
multi-objective optimization results in a set of compromise solutions, known as the Pareto
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optimal solution set. Each solution in the Pareto optimal solution set is a non-dominated
solution, meaning that each solution does not dominate the others. If solution x1 dominates
solution x2 (X1 ≺ X2), it is only when the following rules are satisfied:

fk(x1) ≤ fk(x2), k = 1, · · · , M
fk(x1) < fk(x2), ∃k ∈ {1, · · · , M}. (22)

In other words, if solution x1 is non-dominated by solution x2 in both objectives and is
strictly better than solution x2 in at least one objective, then solution x1 dominates solution
x2. Therefore, by solving this multi-objective optimization model, a set of solutions with dif-
ferent emphasis on system cost and dependence on the main grid can be obtained, allowing
decision-makers to choose the most suitable solution for different demand scenarios.

3. The Proposed Constraint Multi-Objective Optimization Algorithm

Multi-objective evolutionary algorithms (MOEAs) such as non-dominant sorting algo-
rithm II (NSGA-II) can obtain a set of Pareto optimal solutions in a single run. However,
MOEAs face challenges in dealing with high-dimensional complex constraints when di-
rectly used to solve the resilient energy management problem studied in this paper. There
are Nsch schedulable appliances in the studied microgrid, and the strict constraints (8)–(20)
should be met for all of the schedulable appliances. Moreover, the consecutive running,
minimum on/off time and ramp power constraints should be also met for the genera-
tors. It is hard for MOEAs and traditional constrained MOEAs to deal with the large
number and complex constraints in this work. To tackle this challenge, we propose an
improved NSGA-II algorithm with multi-stage constraint-handling strategy, which we call
NSGA-II-MC, to handle the high-dimensional complex constraints of the resilient energy
management problem.

3.1. Algorithm Framework

Algorithm 1 presents the pseudocode of the proposed algorithm.

Algorithm 1 NSGA-II-MC Algorithm Framework

1: Pt ← Initialize Population (N) ▷ Randomly generate N chromosomes
2: t← 1 ▷ Initialize generation count
3: while t ≤ MaxGen do
4: MatingPool ← Binary Tournament Selection (Pt)
5: Qt ← Hybrid Crossover And Mutation (Mating Pool)
6: Rt ← Pt ∪Qt
7: Rank← Non Dominated Sorting-MC (Rt)
8: Dis = Compute Crowding Distance (Rt)
9: Pt ← Selection (Rt, Rank, Dis)

10: t← t + 1
11: end while

The detailed demonstration of the proposed NSGA-II-MC algorithm is as follows:

1. Design the structure of the chromosome with a grouping matrix coding strategy;
2. Initialize the population Pt with N randomly generated chromosomes, each represent-

ing a energy management solution of the microgrid (Line 1);
3. Initial the generation count as t = 1 (Line 2);
4. Prepare the mating pool by performing binary tournament selection on Pt (Line 4);
5. Perform hybrid crossover and mutation operators on the mating pool to generate the

offspring Qt (Line 5);
6. Combine parent and offspring population Rt = Pt ∪Qt (Line 6);
7. Perform the non-dominated sorting on Rt to obtain the rank of individuals in Rt. A

multi-stage constraint-handling strategy is used to rank the individuals to handle the
complex constraints (Line 7);
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8. Compute the crowding distance (Line 8);
9. Perform the selection operator on Rt according to the rank to obtain N individuals as

the new Pt. Individuals with larger crowding distance are preferred if they have the
same rank (Line 9);

10. Increment t.
11. Repeat steps 4 to 10 until t > MaxGen.

In the subsequent sections, we introduce each component of the designed algorithm
in detail.

3.2. Chromosome Design

The decision variables of the resilient energy management problem have different
types of variable values with complex constraints. To improve the efficiency of the evolving
process, we use a grouped matrix coding strategy to code the mixed integer decision
variables as a group of matrices C = C1, C2, C3, C4. Specifically, C1 represents the on/off
status δDG(k) of the generators that only contains values of 0 and 1; C2 represents the
running status δbess (k) of the BESS that contains values of −1, 0 and 1; C3 codes the
continuous decision variables as a matrix, containing the rated powers of the generators,
the BESS, the controllable loads, and the load curtailment βcur(k); and C4 is a matrix that
contains the start and shutdown time pairs in each row for all the schedulable appliances.

3.3. Hybrid Variation Strategy

The crossover operator is used to inherit the genetic information of two parents
to generate a better offspring. The mutation operator randomly alters the genes in the
chromosome to increase the diversity of the population. Considering the complex data
structure of the chromosome, different crossover and mutation operators are required to
process different elements in C. In this paper, we propose a hybrid variation strategy to
generate the offspring by a set of crossover and mutation operators.

For C1 in the chromosome that represents the on/off status of the generator, we
perform two-point crossover and bit-flip mutation operators on the bit array. The two-point
crossover operator randomly selects two crossover points, and swaps the elements between
the two points of the two parents. Since the on/off status of the generator should satisfy the
minimum on/off time constraints, the two-point crossover operator can generate offspring
with less constraint violation compared with other crossover operators. In bit-flip mutation,
each bit in C1 has a probability of 1

DC1
to mutate through bit flips, where DC1 is the number

of elements in C1.
We also perform two-point crossover on C2, which represents the running status of

the BESS. For mutation, we replace the bit-flip operation in the bit-flip mutation operator
with a random selection from among the candidate values of −1, 0, and 1.

For continuous values in C3, simulated binary crossover (SBX) and polynomial mu-
tation (PM) are used. Given parents x1(x1

1, · · · , x1
n
)

and x2(x2
1, · · · , x2

n
)
, the offspring

c1(c1
1, · · · , c1

n
)

and c2(c2
1, · · · , c2

n
)

can be generated through SBX as:{
c1

i = 0.5×
[
(1 + β) · x1

i + (1− β) · x2
i
]

c2
i = 0.5×

[
(1− β) · x1

i + (1 + β) · x2
i
] (23)

β =

{
(r× 2)1/(1+ηc) r ≤ 0.5
(1/(2− r× 2))1/(1+ηc) otherwise.

(24)
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where ηc is the distribution index of simulated binary crossover. The polynomial mutation
operator is performed on the parent xi with a distribution index ηm:

xi = xi + δq ·
(

xUpper
i − xLower

i

)
δq =

 [(2r) + (1− 2r)∗ (1− δ1)
ηm+1] 1

ηm+1 − 1 if r ≤ 0.5

1− [2(1− r) + 2 · (r− 0.5) ∗ (1− δ2)
ηm+1] 1

ηm+1 otherwise

(25)

where:

δ1 ←
xi−xLower

i

xUpper
i −xLower

i

δ2 ←
xUpper

i −xi

xUpper
i −xLower

i

(26)

We perform the point-wise SBX crossover, PM mutation, and rounding operators on
C4 that represents the start and shutdown time for the controllable loads. The upper and
lower limit xUpper

i and xLower
i for elements in C4 are initialized according to the earliest

startup and latest shutdown time of the controllable loads before conducting the point-wise
SBX crossover.

3.4. Multi-Stage Constraint-Handling Strategy

The constrained domination principle (CDP) is the most popular technique for han-
dling constraints in constrained MOEAs. CDP adds a feasibility rule to the domination
principle, that is, feasible solutions have better ranks than infeasible ones, and the con-
straint violation is compared when ranking two infeasible solutions. However, useful
information contained within infeasible solutions might be lost when favoring feasible
solutions over infeasible ones. This problem is especially severe when handling the con-
straints in this work, wherein the constraints are hard to satisfy and a large number of
infeasible solutions arise during the search process. In the ε constraint-handling technique,
infeasible solutions are treated as feasible ones if their constraint violation degree is less
than ε. This method can take advantage of the information within infeasible solutions, and
show better performance than CDP. However, it is hard to control ε appropriately. In this
paper, we propose a multi-stage constraint-handling strategy to handle the large number
and complex constraints.

A population can be easily become trapped in a local feasible region when tackling
complicated constraints by the constrained search. For problems with small feasible regions,
it may take an unnecessary amount of time to search the local optimal region. Therefore, at
the first stage, we propose to use an unconstrained search to guide the searching process
with more attention on convergence than feasibility. This can improve converging speed and
alleviate the waste of computing resources caused by searching useless areas. Specifically,
the default domination rule is used to rank the individuals regardless of the constraints
during the non-dominated sorting. The unconstrained search stage runs from t = 1 to
t = MaxGen/6.

We propose the use of an adaptive-linear-ε constraint-handling technique at the sec-
ond stage to gradually divert the searching goal from convergence to feasibility. In ε
constraint handling, solution xi is treated as better than solution xj if the following condi-
tions are satisfied:

(1) xi is feasible and xj is not;
(2) They are both feasible, and xi dominates xj;
(3) They are both infeasible, and the constraint violation of xi is less than xj.
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Here, a solution is treated as feasible if its degree of constraint violation is less than
ε. At this stage, the proportion of feasible solutions p f in the population is expected to
increase linearly to 100% with t. A simple way of achieving this is to decrease ε linearly.
However, p f might not change as expected with ε, as shown in Figure 1. To overcome this
problem, we develop an adaptive-ε strategy. ε is first initialized to decrease linearly as:

ε∗(t) = 1− 2.5
MaxGen

(
t− 1

6
MaxGen

)
(27)

ε is then adjusted according to the current proportion of feasible solutions:

ε(t) =
{

max(ε∗(t)− |ε∗(t)− p f (t)|, 0), if p f (t) ≤ ε∗(t)
ε∗(t) + |ε∗(t)− p f (t)|, if p f (t) > ε∗(t)

(28)

As shown in Figure 1, p f is expected to decrease linearly and the adaptive ε works on
bringing p f back to linearity. The second stage lasts for 0.5 ×MaxGen generations, where ε
decreases linearly for the first 0.4 ×MaxGen generations and is zero for the other 0.1 ×
MaxGen generations.

t

p f

Linear decrease

Figure 1. The actual proportion of feasible solutions does not change as expected.

The unconstrained search is then performed at the third stage. This lasts for MaxGen/6
generations to help the population escape from possible local feasible regions. In the last
stage, we adopts the CDP-based constraint search to force the individuals to satisfy all of
the constraints, where feasible solutions always have better ranks than infeasible ones. This
stage lasts for the remaining MaxGen/6 generations.

4. Results
4.1. Experimental Settings

The test case for the microgrid is based on the work of Zhai et al. [26] with a time
granularity of one hour. The wind, solar, load, and electricity price data utilized in this study
are sourced from the Global Energy Forecasting Competition 2014 [27]. The average power
of critical loads is a fixed value of 300 kW. The maximum shedding ratio for switchable
loads is 0.2. Shedding loads can affect the comfort of island residents, military personnel,
etc., so a penalty is set for shedding loads, which is five times the generation cost of the
shed electricity. The maximum interaction power between the energy system and the main
grid is 100 kW. Tables 3–5 provide the relevant parameters for distributed controllable
generation devices, energy storage units, and controllable loads.
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Table 3. Parameters for distributed controllable generation devices.

Device
Maximum/Minimum
Operating Power

(kW)

Ramp-Up Power
(kW)

Minimum Opera-
tion/Shutdown

Duration (h)

Fuel Cost
Quadratic, Linear,

Constant
Coefficients

Startup/Shutdown
Costs ($)

1 600/10 500 2/1 0.00044/0.48/3.2 3.1/3.36
2 760/20 550 2/1.5 0.00054/0.55/3.6 3.52/4.2
3 40/0.5 40 0.5/0.5 0.0015/0.74/2.5 1.1/1.2

Table 4. Parameters for controllable loads.

Controllable
Device

Minimum/Maximum
Operating Power

(kW)

Earliest Start Time
(h)

Latest End Time
(h)

Operating
Duration (h)

Energy
Consumption

(kWh)

Device 1 35/105 5 21 6 420
Device 2 40/120 8 22 3 240
Device 3 50/150 9 18 4 400
Device 4 65/195 9 18 2 260
Device 5 55/180 8 20 5 300
Device 4 20/300 12 23 7 500

Table 5. Parameters for energy storage units.

Parameter Name Value Parameter Name Value

Maximum Capacity 300 kWh Operation and Maintenance
Cost 0.05

Minimum Capacity 40 kWh Charge/Discharge Efficiency 0.95

Initial Capacity 100 kWh Charge/Discharge Switching
Cost 0.15

Maximum Charge/Discharge
Power 100 kW Self-discharge Loss 0.02 kW

4.2. Analysis and Discussion

The Hypervolume metric is used as an evaluation criterion for multi-objective opti-
mization algorithms. The table below presents a comparison between the NSGA-II-MC algo-
rithm designed in this paper and traditional multi-objective optimization algorithms. Nine
different constrained multi-objective optimization algorithms, namely AGEMOEA [28],
ANSGA-III [29], ARMOEA [30], CCMO [31], CTAEA [32], DCNSGA-III [33], NSGA-II [34],
NSGA-III [35], and RVEA [36], which are considered to be the top performers in the field,
are selected as benchmark algorithms. These algorithms were applied to solve the in-
troduced energy management problem using the standard PlatEMO platform [37]. The
general configurations of NSGA-II-MC and the compared algorithms are kept the same,
and are the default set of parameters in PlatEMO:

(1) The probability of crossover, the distribution index of simulated binary crossover,
the expectation of the number of mutated variables, and the distribution index of
polynomial mutation are set to 1, 20, 1, and 20, respectively;

(2) The maximum number of function evaluations was 100,000, i.e., the population size
was 100 and the maximum number of iterations was set to 1000.

Other algorithm-specific configurations were chosen to be exactly the same as those
in PlatEMO.

NaN values represent cases where the algorithm could not find any feasible solutions.
Table 6 provides the average Hypervolume values obtained by each algorithm over 21 runs
on various scales of energy management problems, as well as the variance in the metric
values across the 21 runs for each algorithm. Moreover, we use the Wilcoxon rank-sum test
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with p < 0.05 to compare each algorithm with NSGA-II-MC. In the last column of the table,
the symbols “+” and “−" indicate the number of test problems in which the compared
algorithm shows significantly better performance or worse performance, respectively, than
NSGA-II-MC. In addition, the symbol “=” indicates the number of test problems in which
there is no significant difference between NSGA-II-MC and the compared algorithms.

From the numerical comparison results, it can be observed that the algorithm designed
in this work outperforms all benchmark algorithms on energy management problems of
varying scales. None of the compared algorithms shows significantly better performance
than NSGA-II-MC according to the Wilcoxon rank-sum test. Note that CTAEA failed to
find feasible solutions for most problems. In particular, the energy management problem
with six controllable loads involves more decision variables and stricter power constraints,
making it more challenging to solve. Results show that many algorithms failed to find
feasible solutions for the six-scale problem, whereas the NSGA-II-MC algorithm proposed
in this work consistently obtained feasible solutions. Additionally, it can be seen that the
advantage of the NSGA-II-MC algorithm is relatively small for small-scale controllable load
problems. However, as the number of controllable loads and problem constraints become
more complex, the performance advantage of the NSGA-II-MC algorithm becomes more
pronounced. Compared to the NSGA-II algorithm, the proposed NSGA-II-MC method
achieved a 49.7% improvement in the Hypervolume metric on large-scale problems of
six controllable loads. This demonstrates the effectiveness of the proposed algorithm,
which can significantly improve the convergence performance and constraint-handling
effectiveness of multi-objective optimization algorithms.

Table 6. The average Hypervolume values and variance obtained by the compared algorithm over
21 runs on various scales of energy management problems. The best values are marked in bold.

The Number of Controllable Loads

Algorithms 3 4 5 6 +/−/=

AGEMOEA 4.6273 × 10−1 4.2289 × 10−1 4.0552 × 10−1 3.0880 × 10−1 0/2/2
(2.49 × 10−2) (2.64 × 10−2) (6.18 × 10−2) (7.74 × 10−2)

ANSGA-III 4.3520 × 10−1 4.0843 × 10−1 3.6078 × 10−1 3.0284 × 10−1 0/3/1
(2.81 × 10−2) (1.30 × 10−2) (4.98 × 10−2) (5.56 × 10−2)

ARMOEA 4.2162 × 10−1 4.2218 × 10−1 4.0862 × 10−1 NaN 0/2/1
(9.96 × 10−2) (1.83 × 10−2) (6.00 × 10−2) (NaN)

CCMO 4.4546 × 10−1 4.0787 × 10−1 3.9540 × 10−1 3.2897 × 10−1 0/4/0
(1.32 × 10−2) (1.12 × 10−2) (2.67 × 10−2) (3.15 × 10−2)

CTAEA NaN 1.5676 × 10−1 NaN NaN 0/0/1
(NaN) (0.00 × 10 + 0) (NaN) (NaN)

DCNSGA-III 3.3743 × 10−1 3.2180 × 10−1 3.7492 × 10−1 NaN 0/2/1
(6.28 × 10−2) (2.38 × 10−2) (2.79 × 10−2) (NaN)

NSGA-II 4.6170 × 10−1 3.8318 × 10−1 3.7344 × 10−1 2.2796 × 10−1 0/2/2
(1.69 × 10−2) (8.70 × 10−2) (1.17 × 10−1) (1.51 × 10−1)

NSGA-III 4.4267 × 10−1 3.8955 × 10−1 3.5744 × 10−1 3.1518 × 10−1 0/3/1
(2.45 × 10−2) (3.67 × 10−2) (9.86 × 10−2) (5.02 × 10−2)

RVEA 2.9612 × 10−1 2.6328 × 10−1 2.6302 × 10−1 1.4031 × 10−1 0/4/0
(6.32 × 10−2) (5.89 × 10−2) (4.84 × 10−2) (5.64 × 10−2)

NSGA-II-MC 4.6278 × 10−1 4.2553 × 10−1 4.1215 × 10−1 3.4081 × 10−1

(1.04 × 10−2) (1.57 × 10−2) (9.11 × 10−2) (9.02 × 10−2)

Furthermore, Figure 2 provides a comparison of the Pareto fronts between NSGA-II-
MC and the traditional NSGA-II under different scenarios. The optimization objectives in
the problems are minimizing operating costs and reducing dependence on the power grid.
Each point on the Pareto front represents a management solution, with the horizontal and
vertical axes representing the values of the two objective functions. Therefore, points closer
to the origin indicate better convergence (optimality) of the algorithm. Multi-objective
optimization also considers the diversity of the Pareto front, which involves how well
a series of solutions can cover different objective preferences. This is reflected in the
distribution of the Pareto front formed by a series of solutions. A more evenly distributed
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Pareto front that covers a wider range of objective values indicates better diversity. This
means that more choices can be provided to decision-makers.

(a) Scenarios involving three controllable loads. (b) Scenarios involving four controllable loads.

(c) Scenarios involving five controllable loads. (d) Scenarios involving six controllable loads.

Figure 2. Comparison of the Pareto Fronts between the NSGA-II-MC Algorithm and Traditional
Algorithms in Different Scenarios.

The results from Figure 2 demonstrate that the NSGA-II-MC algorithm proposed in
this paper exhibits significant advantages over the traditional NSGA-II algorithm, showcas-
ing improved convergence and diversity. It is worth noting that in the scenario with three
controllable loads, the algorithm proposed in this paper shows a relatively smaller advan-
tage. However, as the complexity of the management decision problem increases, i.e., with
an increasing number of loads to be scheduled, the traditional NSGA-II algorithm struggles
to reliably optimize the problem. In contrast, the NSGA-II-MC algorithm designed in this
paper demonstrates superior performance. In the scenario with six controllable loads, there
is a noticeable gap between NSGA-II-MC and NSGA-II. As the problem scale increases
and constraint complexity grows, the advantages of the NSGA-II-MC algorithm become
more pronounced. This validates the effectiveness and reliability of the multi-objective
optimization approach proposed in this paper.

Figure 3 presents the management strategies under different objective preferences
with three controllable loads, where (a–d) represent the strategies under various objective
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preferences. Objective one is the total cost, and objective two is the dependence on the
main grid. The management strategy charts display the power generation, load power,
charging and discharging states of energy storage batteries, regulation states of controllable
loads, and the shedding of switchable loads at different times. Here, the black bar chart
represents the power supply from the main grid, the light blue bar chart indicates the power
of switchable loads, the light yellow bar chart shows the photovoltaic power generation,
the green bar chart depicts the wind power generation, the blue bar chart is for the diesel
engine’s power generation, the red line chart represents the regulation power of controllable
loads (including critical loads), the grey bar chart shows the power shedding of switchable
loads, and the pink bar chart represents the battery’s charging and discharging power.
Positive values for the main grid power supply and battery discharging indicate power
supply to the system/battery discharge, and negative values indicate selling power to the
main grid/battery charging.

(a) Objectives:34,335.3/87.2. (b) Objectives:30,487.8/291.1.

(c) Objectives:19,992.1/1711.2. (d) Objectives:18,040.3/2151.4.

Figure 3. Management strategies under different objective preferences with three controllable loads.

From the results in Figure 3, it is evident that the management strategies under
different objective preferences have significant differences. Strategy (a) represents the
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management strategy under the lowest dependence on the main grid, with the main
grid supply power being noticeably the lowest and the grid dependence amounting to
only USD 87.2 (for uniform comparison, all costs are calculated in U.S. dollars), but the
system’s electricity cost is USD 34,335.3, indicating that the system is primarily powered by
diesel generation, renewable generations, and energy storage batteries. However, because
the diesel generator’s cost of generation is significantly higher than the electricity cost
from the main grid, this leads to a noticeable increase in the system’s total electricity
cost. Conversely, strategy (d) shows a significant increase in the main grid supply power,
with grid dependence at USD 2151.4 but at a considerably reduced cost (USD 18,040.3),
indicating that utilizing relatively cheaper main grid supply can effectively reduce system
costs, albeit at the expense of significant dependence on the main grid.

The renewable energy generation situation under strategy (a) shows that around
midnight, when photovoltaic cannot generate electricity and wind power is also low, but
the base’s critical loads still need to run, the designed algorithm prioritizes power supply
from the main grid, followed by energy storage battery supply to meet the demand of
critical loads; around noon, when renewable energy sources like photovoltaic and wind
have sufficient generation and load demand decreases, the algorithm charges the energy
storage battery to meet the potential high load demand later, showing the rationality of the
method. It is worth noting that strategies (a) and (d) are the first and last on the Pareto front,
representing management strategies under a single-objective preference, while (b) and (c)
are two randomly selected strategies from the middle of the Pareto front, representing
management strategies considering a balance between the two objectives. Therefore, it can
be seen that the multi-objective optimization method designed in this paper can provide
multiple management strategies under different objective preferences in a single run,
thereby offering various choices for decision-makers, dynamically managing the system’s
energy storage, generation, load shedding, and load scheduling based on the available
external power supply conditions.

Figure 4 displays the management strategies under different objective preferences
with four controllable loads, where (a–d) represent the strategies under various objective
preferences. Compared to the scenario with three controllable loads shown in Figure 3,
the addition of one more controllable load significantly changes the system’s management
mode. During the peak energy demand period of critical and controllable loads from 13:00
to 15:00, the management algorithm designed in this paper tends to ensure energy balance
by supplying power through the energy storage system and shedding loads to meet the
system’s electricity demand. In the low-grid-dependence mode shown in (a), there is no
need for grid power supply during this period, and the electricity demand shortfall is
compensated by using diesel generators; in the low-operational cost-mode shown in (d),
cost savings are achieved by supplying power through the main grid during this period.
Due to the high cost of generation, diesel generators serve as a supplementary energy
source at different times to address the issue of insufficient power from the energy storage
batteries and renewable energy sources to meet electricity demand.
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(a) Objectives:33,532.4/191.1. (b) Objectives:32,414.7/245.3.

(c) Objectives:22,333.3/1456.6. (d) Objectives:20,434.6/1876.9.

Figure 4. Management strategies under different objective preferences with four controllable loads.

Figure 5 illustrates the management strategies under different objective preferences
with five controllable loads, where (a–d) represent the strategies under various objective
preferences. Compared to the scenarios with three and four controllable loads discussed
above, the utilization rate of energy storage batteries significantly increases in this scenario
due to the higher number of load demands, requiring frequent adjustments among various
power supply resources. In the period from 22:00 to 24:00, with the same total load demand,
the low-grid-dependence mode shown in (a) fulfills the system’s electricity needs using
diesel generators, while scenarios (b–d), depending on their respective management modes
and preferences for grid dependence, supply electricity demands from the main grid in
varying proportions, demonstrating the algorithm’s rationality.
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(a) Objectives:34,606.9/294.1. (b) Objectives:29,813.6/724.3.

(c) Objectives:26,137.8/1248.3. (d) Objectives:25,931.3/1279.9.

Figure 5. Management strategies under different objective preferences with five controllable loads.

Figure 6 presents the management strategies under different objective preferences
with six controllable loads. In scenarios with multiple controllable loads, the complexity
of the system increases, leading inevitably to higher overall operational costs and greater
dependence on the main grid. From the scenario operation diagrams, it can be observed
that the addition of controllable loads creates a peak electricity demand period from 19:00
to 20:00. In the low-grid-dependence management mode (a), the algorithm exclusively
uses diesel generators for power supply, resulting in high operational costs of USD 42,990.4.
In contrast, management mode (d), which utilizes electricity from the main grid, can
effectively reduce system costs.
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(a) Objectives:42,990.4/98.7. (b) Objectives:27,901.0/1470.8.

(c) Objectives:24,379.1/2119.6. (d) Objectives:22,933.6/2490.6.

Figure 6. Management strategies under different objective preferences with six controllable loads.

In addition, Figure 7 shows the comparative results of management strategies under
four controllable loads scenarios between the NSGA-II-MC and NSGA-II algorithms. This
experiment selected the solutions at the bottom of the Pareto front, i.e., the scenarios with
the lowest dependency on the main grid. However, it can be seen from the results that the
traditional NSGA-II algorithm struggles to meet this preference, still relying heavily on
the main grid for power supply, whereas the NSGA-II-MC algorithm tends towards using
diesel generators, better satisfying user preferences.
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(a) NSGA-II, Objectives:26,158.3/877.4.

(b) NSGA-II-MC, Objectives:30,887.7/365.1.

Figure 7. Comparison of NSGA-II-MC and NSGA-II management strategies (four controllable loads).

Figure 8 presents the comparison of management strategies between the NSGA-II-
MC and NSGA-II algorithms under scenarios with six controllable loads. Comparing the
objective values of the two solutions reveals that, in the complex management scenario of six
controllable loads, the NSGA-II algorithm struggles to achieve effective optimization, with
operational costs reaching USD 51,054.4. Meanwhile, the management strategy derived
from the NSGA-II-MC algorithm can achieve a reduction of more than USD 16,000 in
operational costs with only about 200 increases in dependency level, demonstrating a clear
advantage in algorithm convergence.
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(a)NSGA-II, Objectives:51,054.4/236.9.

(b)NSGA-II-MC, Objectives:35,850.7/467.0.

Figure 8. Comparison of NSGA-II-MC and NSGA-II management strategies (six controllable loads).

The results above indicate that the multi-objective optimization method proposed in
this paper can intelligently generate management strategies for resilient microgrids with
different objective preferences. With a single run, it is possible to obtain management plans
with varying degrees of grid dependence. For example, in a military base, management
modes with low grid dependence are suitable for wartime energy system management,
while those with low operational costs are suitable for the economical operation of energy
systems during peacetime. Furthermore, the results demonstrate that the traditional NSGA-
II algorithm had difficulty meeting various preferences and failed to converge under
stringent constraints, resulting in high costs and substantial reliance on the grid. In contrast,
the proposed NSGA-II-MC algorithm can efficiently manage these constraints and generate
satisfactory energy management solutions tailored to diverse preferences.

5. Conclusions

This paper introduces a multi-stage constraint-handling multi-objective optimiza-
tion method specifically designed for resilient microgrid energy management. Manag-
ing complex controls of generators, batteries, switchable loads, and controllable loads



Appl. Sci. 2024, 14, 3253 23 of 24

presents challenging constraints that the management strategy must meet. The multi-
stage constraint-handling approach is developed to address these challenges effectively.
Compared to conventional multi-objective optimization methods, our proposed method
demonstrates superior performance to nine state-of-the-art methods, exhibiting the best
convergence and diversity in the obtained Pareto front. The multi-objective optimization
method presented in this study can intelligently generate management strategies catering
to different objective preferences. In just a single run, it can produce management plans
that vary in their degree of grid dependence. However, the model does not account for
data uncertainty in the microgrid system. Moreover, it assumes that the predicted wind
and solar power outputs are perfectly accurate, which is not the case in actual predictions
due to inherent errors. Therefore, future research should consider the inaccuracies present
in renewable energy forecasts and incorporate factors of uncertainty into the analysis. In
addition, future research could expand the proposed method to more complex microgrid
systems or to scenarios involving multiple microgrids.
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