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Abstract: In Cone Beam Computed Tomography (CBCT) images, accurate tooth segmentation is
crucial for oral health, providing essential guidance for dental procedures such as implant placement
and difficult tooth extractions (impactions). However, due to the lack of a substantial amount of
dental data and the complexity of tooth morphology in CBCT images, the task of tooth segmentation
faces significant challenges. This may lead to issues such as overfitting and training instability in
existing algorithms, resulting in poor model generalization. Ultimately, this may impact the accuracy
of segmentation results and could even provide incorrect diagnostic and treatment information. In
response to these challenges, we introduce PPA-SAM, an innovative dual-encoder segmentation
network that merges the currently popular Segment Anything Model (SAM) with the 3D medical
segmentation network, VNet. Through the use of adapters, we achieve parameter reuse and fine-
tuning, enhancing the model’s adaptability to specific CBCT datasets. Simultaneously, we utilize a
three-layer convolutional network as both a discriminator and a generator for adversarial training.
The PPA-SAM model seamlessly integrates the high-precision segmentation performance of convo-
lutional networks with the outstanding generalization capabilities of SAM models, achieving more
accurate and robust three-dimensional tooth segmentation in CBCT images. Evaluation of a small
CBCT dataset demonstrates that PPA-SAM outperforms other networks in terms of accuracy and
robustness, providing a reliable and efficient solution for three-dimensional tooth segmentation in
CBCT images. This research has a positive impact on the management of dentofacial conditions from
oral implantology to orthognathic surgery, offering dependable technological support for future oral
diagnostics and treatment planning.

Keywords: dual-encoder; 3D tooth segmentation; few-shot segmentation; CBCT; GANs

1. Introduction

In the field of oral medicine, precise tooth segmentation is crucial for diagnosing oral
diseases, formulating effective treatment plans, and restoring patients’ oral structures [1,2].
Medical imaging techniques such as X-rays, Cone Beam Computed Tomography (CBCT),
Magnetic Resonance Imaging (MRI), etc., provide rich information about oral structures.
By accurately segmenting tooth models from CBCT images, oral healthcare professionals
can achieve more precise diagnoses of oral diseases, formulate personalized treatment
plans effectively, and identify surface lesions and damages on teeth. This enables doctors
to pinpoint and address specific areas with greater accuracy. For the restoration and
reconstruction of oral structures, precise tooth segmentation provides crucial guidance for
planning procedures such as dental implant placement and other deno-alveolar surgeries
that involve cutting bone with minimal damage to roots. The bone cutting could be
with burs or piezotome to remove impacted teeth or when performing corticotomies
or osteotomies to remove bone blocks for grafting or accelerate orthodontic treatment,
ensuring coordination with surrounding oral tissues. In addition, in orthognathic surgery,
segmentation is equally crucial to prevent damage to tooth roots during osteotomy. For
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instance, in cases where the widening of the maxilla or the pushback of the premaxilla is
planned, or when vertical movement of a section of the upper or lower jaw is required
to correct an open bite. Artificial Intelligence has the potential to detect the severity
of malocclusion and score it using occlusal indices or IOFTN [3]. Subsequently, this
information can be utilized during orthognathic surgery to generate accurate segmentation
and fabricate custom wafers [4]. Therefore, precise tooth segmentation not only enhances
the accuracy of diagnostics in oral medicine but also promotes the precision of treatments,
contributing to the effective restoration of oral structures.

Before the advent of machine learning, researchers predominantly relied on the level-
set method for the segmentation of teeth CBCT images [5,6]. However, the level-set method
typically requires an initial contour, which can impact the final segmentation results. Se-
lecting a suitable initial contour may demand expertise or other prior information. Due
to the potential existence of complex structures such as root canals and periodontal liga-
ments in CBCT images of teeth, the presence of these structures may make it challenging
for the level set method to accurately segment the contours of each structure. With the
advent of machine learning and neural networks, researchers have proposed various novel
medical image segmentation networks, significantly reducing the time required for manual
annotation by radiologists [7]. These networks not only diminish the subjective errors intro-
duced by manual annotation but also enhance the stability and accuracy of segmentation
results. Consequently, some researchers have applied deep learning methods to 3D tooth
segmentation tasks [8–12]. This implies that doctors can rely more on these automated
tools to quickly obtain precise segmentation results, providing more reliable support for
patient diagnosis and treatment. Traditional convolutional networks often require extensive
datasets to support them and are primarily designed for specific segmentation tasks, with
weaker generalization performance.

Recently, the Segment Anything Model (SAM) [13] has emerged, showcasing outstand-
ing zero-shot segmentation performance in various everyday image segmentation tasks.
This model, proposed by Meta AI, has pushed the boundaries of segmentation and signifi-
cantly advanced the development of foundational models in computer vision. However,
due to SAM’s relatively limited training samples on medical image data, it exhibits a certain
gap when applied to medical image segmentation tasks compared to existing models with
precise segmentation and excellent performance. In some tasks, SAM even fails to correctly
identify medical target images [14,15]. To harness SAM’s potential in the field of medical
image segmentation, some researchers have made improvements to the SAM model. They
froze the original parameters of the SAM model and introduced several optimizers in the
image encoder. Fine-tuning these optimizer parameters allows the model to better adapt to
specific medical image segmentation tasks [16]. However, these approaches are limited to
processing individual slices in medical images, neglecting the interconnections between
different slices. In comparison to three-dimensional holistic segmentation, the accuracy
achieved by segmenting and subsequently stitching together individual slices is lower.

To address these issues, this paper proposes an effective plug-and-play three-dimensional
tooth CBCT image segmentation architecture named VAG-SAM. The overall architecture of
the network is a generative adversarial network composed of a discriminator and a generator.
The generator consists of VNet and a SAM encoder with optimizers, while the discrimi-
nator is a three-layer convolutional network. VAG-SAM combines the SAM model with
traditional convolutional models, fully integrating high-precision segmentation capability
and outstanding generalization ability, demonstrating excellent performance in small-sample
three-dimensional tooth CBCT image segmentation tasks.

The main contributions of this paper are as follows:

1. We propose PPA-SAM, an innovative fusion method of the Visual Grand Model
and traditional convolutional networks. By cleverly integrating the improved SAM
encoder into VNet, forming a dual-encoder structure, it significantly enhances the
multi-angle feature extraction capability.
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2. While retaining the reusable pre-trained weights of the SAM encoder, we introduce
optimizers for parameter fine-tuning, making the segmentation network more suitable
for three-dimensional tooth segmentation tasks while preserving the advantages of
the large model. The combination of GAN (Generative Adversarial Networks) and
SAM improves the network’s generalization performance, and the utilization of
VNet enhances the network’s feature extraction capability, demonstrating excellent
performance in small-sample tasks.

3. We conducted a comprehensive performance evaluation on a small-sample 3D CBCT
tooth dataset, comparing it with other advanced networks and considering different
scales of training sample sizes. In this series of experiments, PPA-SAM exhibited
outstanding segmentation performance, providing a solid foundation for addressing
three-dimensional tooth segmentation tasks.

2. Related Work
2.1. Visual Fundamental Models

Convolutional Neural Networks (CNNs) play a pivotal role in computer vision,
demonstrating remarkable success in tasks such as image classification, object detection,
and semantic segmentation. Recently, U-shaped segmentation networks, as exemplified by
the U-Net architecture proposed by Ronneberger et al. [17], consist primarily of an encoder
and a decoder, forming a U-shaped structure. The encoder is responsible for feature extrac-
tion, while the decoder maps features back to the segmented result of the original input
image. U-Net finds broad applications in fields such as medical image segmentation and
satellite image analysis. Subsequently, numerous networks based on U-Net improvements
have emerged [18–20]. For example, UNet++ [19] adopts a nested structure and dense
connections to better capture multi-scale and hierarchical features, thereby enhancing the
expressiveness of U-Net. It is widely applied in tasks such as medical image segmentation
and natural image segmentation.

Simultaneously, the Transformer, as a model capable of capturing global information
and pixel relationships in images, has garnered significant attention from researchers for
its integration into the field of image processing. TransUNet [18], based on the attention
mechanism of the Transformer, has the ability to capture global contextual information,
thereby contributing to a better understanding of the overall structure of images. Doso-
vitskiy et al. [21] introduced the Vision Transformer (ViT), which utilizes a self-attention
mechanism to process images. Prior to inputting images into ViT, they are segmented into
blocks and then mapped into a sequence of vectors suitable for processing by a Transformer.
This approach enables ViT to excel in handling images of different sizes and effectively
capturing long-range contextual information.

The success of ViT underscores the significance of self-attention mechanisms in the
field of computer vision. However, traditional U-shaped segmentation networks and
Transformer-based networks often require extensive training datasets, leading to relatively
poor generalization performance. With the continuous development of techniques such
as adversarial training [22–24] and pre-training [19,25], the robustness and generalization
capabilities of deep learning models have significantly improved.

Adversarial training enhances the robustness of neural networks against adversarial
attacks by introducing adversarial examples during the training process, thereby prevent-
ing adversarial inputs. This method is widely applied in various domains such as image
classification, speech recognition, and natural language processing. It makes models more
resilient to targeted perturbations, preventing the model from being misled. Pretraining
involves training a model on a large-scale dataset to learn generic feature representations,
thereby enhancing its performance on related tasks. Widely applied in the fields of im-
age processing and natural language processing, this approach strengthens the model’s
generalization capabilities. CLIP [26], through pre-training on large-scale image-text pairs,
successfully learned the connections between images and text, demonstrating strong gen-
eralization capabilities. Generative Pre-trained Transformer (GPT) is a language model
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based on the Transformer architecture. Through self-supervised learning pretraining on
extensive text data, it acquires universal language representations. GPT excels in vari-
ous natural language processing tasks, including text generation, text classification, and
language understanding, attracting significant attention due to its versatility and general-
ization capabilities. OpenAI’s DALL·E 2 [27] adopted a pre-training mechanism similar
to GPT [28], achieving significant improvements in generating diversity, image quality,
and understanding text descriptions, expanding the model’s application range and perfor-
mance. However, these large-scale models often encounter substantial data pressure and
computational demands during training, requiring a significant amount of high-quality
data to ensure the model learns diverse language representations adequately.

2.2. Fine-Tuning Models

In the field of machine learning, fine-tuning models have been widely employed
in transfer learning tasks. Fine-tuning refers to the process of further training a neural
network model that has already undergone pre-training, using data specific to a particular
task. The aim is to adapt the model more effectively to the new task, thereby enhancing
its performance.

Adapters are lightweight structures introduced into the model, allowing specific task
fine-tuning on a pre-trained model without modifying the overall architecture. Adapters
provide a means of preserving generality while facilitating flexible fine-tuning for specific
tasks. For example, the GPT [28] model proposed by OpenAI is a pre-trained generative
model based on the Transformer architecture. Widely employed in natural language
processing tasks such as text generation, text classification, and dialogue generation, GPT
demonstrates powerful language understanding and generation capabilities. During the
pre-training phase, GPT learns general language representations through unsupervised
learning on massive text data. Subsequently, it adapts to specific downstream tasks through
parameter fine-tuning. ViT-Adapter [29] is an approach that introduces adapter layers
into the Visual Transformer (ViT) model, allowing for customized task fine-tuning on
pre-trained models to enhance performance on specific visual tasks. SAM [13] is a universal
image segmentation model proposed by Kirillov et al. Pre-trained on over 11 million images
and utilizing over a billion masks, SAM has demonstrated outstanding performance in
image segmentation tasks. This success highlights the importance of large-scale data and
powerful pre-training in the field of deep learning. These research achievements collectively
drive the development of computer vision, providing more powerful and flexible solutions
for various application scenarios. SAM segments targets through single points or borders
for target hints, and its excellent segmentation performance is attributed to the fact that its
pre-training data mostly have clear and regular boundaries.

However, in medical images, the boundaries of tissues and content are often fuzzy,
rendering SAM unable to accurately identify target content through local information
alone. To enhance SAM’s adaptability to downstream tasks, some researchers have em-
ployed parameter fine-tuning techniques to improve its performance. MedSAM [30] utilizes
parameter-efficient fine-tuning (PEFT) to fine-tune the pre-trained SAM model, demonstrat-
ing excellent performance in medical image segmentation. SAM-Med 2D [14] introduces
adapters into the encoder for fine-tuning, making it well-suited for the medical domain. The
Medical SAM Adapter [16] retains most parameters of the SAM model and applies popular
adapters from NLP techniques to medical image segmentation, showcasing surprisingly
good performance.

Despite their success, fine-tuning models encounter challenges, including the need for
large-scale annotated data, high computational costs, and the requirement for adaptability
in new domains. Fine-tuning may also face constraints due to conceptual differences
during domain transfer, necessitating careful adjustments to accommodate varying tasks
and data distributions.
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2.3. Medical Image Segmentation

Medical image segmentation holds significant importance in clinical diagnosis, treat-
ment planning, and disease research [31]. Accurate segmentation results can assist doctors
in precisely locating and quantifying lesion areas, providing crucial diagnostic informa-
tion, and supporting disease diagnosis and treatment. For instance, MRI brain image
segmentation is employed to localize and quantify brain structures such as the cerebral
cortex, hippocampus, and basal ganglia. This is crucial for studying the impact of brain
disorders like epilepsy, Alzheimer’s disease, and brain tumors, as well as for planning
surgical procedures. In CT lung imaging, medical image segmentation assists in locating
and quantifying pulmonary structures, thereby supporting the diagnosis and treatment
of diseases such as lung cancer and chronic obstructive pulmonary disease (COPD). In
dermatology, image segmentation techniques aid doctors in identifying and analyzing the
boundaries of skin lesions, facilitating diagnosis and treatment planning, especially in the
early detection of skin cancer.

However, medical images often exhibit complex structures and diversity. Magnetic
Resonance Imaging (MRI) utilizes magnetic fields and harmless radio waves to generate
high-contrast images with detailed anatomical information. Medical image segmentation
in MRI faces several challenges, including the integration of multi-channel information,
handling high-resolution complex structures, coping with intense contrast variations, ad-
dressing the need for local and global consistency, and sensitivity to noise and artifacts.
Computed Tomography (CT) images, obtained through X-ray imaging, provide detailed
cross-sectional images of internal body structures. Automatically segmenting medical im-
ages in CT also faces several challenges, including artifact interference, radiation dose noise,
voxel resolution differences, and a wide dynamic range. These issues make segmenting
complex structures and small features from the images more challenging.

Compared to 2D images, 3D images can provide more spatial information, better
representing the three-dimensional structures and morphological features of organs and
lesions. Some researchers have proposed segmentation networks based on 3D convolu-
tions [32–35], applying convolution operations directly to 3D data. With the emergence
of SAM models based on large datasets, continuous improvements and adaptations of
segmentation models for medical image tasks have been proposed [14–16].

2.4. CBCT Tooth Segmentation

Segmenting tooth models from CBCT images holds significant importance for the
subsequent diagnosis and treatment of dentists [1,2]. For example, accurate tooth models
assist dentists in detailed assessments of the morphology, density, and structure of the
alveolar bone, aiding in the diagnosis of various bone disorders such as fractures, cysts,
or inflammation. In dental implant surgery, CBCT tooth segmentation provides crucial
information for planning the position, angle, and depth of implants. By precisely segment-
ing tooth and alveolar bone structures, doctors can evaluate the suitability of implants
and determine the optimal surgical approach. Before the advent of deep learning, people
commonly used variants of level-set methods [5,6] and incorporated prior knowledge for
tooth segmentation. With the emergence of deep learning, automated tooth segmentation
from CBCT using neural networks has been explored [10–12]. However, accurate tooth
segmentation from CBCT images remains a challenging task due to the following reasons:
(1) The shape and size differences between different teeth in CBCT images, as well as their
intersections with surrounding tissues, make the segmentation task complex. (2) Acquiring
a large amount of three-dimensional CBCT image data is relatively difficult, leading to
overfitting and insufficient generalization ability of deep learning models in small sample
situations. (3) CBCT images provide rich three-dimensional information, but traditional
two-dimensional segmentation methods may not fully leverage this information, making it
challenging to effectively process and integrate three-dimensional information.
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3. Methodology
3.1. Architecture Overview

The proposed PPA-SAM, as illustrated in Figure 1, is an overall generative adver-
sarial network architecture consisting of a generator and a discriminator. They undergo
adversarial training to enhance the quality of the output labels. The generator integrates
the strengths of VNet and SAM, comprising two parallel encoders: the VNet encoder
and the enhanced SAM encoder, where the enhanced SAM encoder retains the original
parameters for reuse. The outputs of these two encoders are concatenated and passed to
the decoding layer, resulting in the prediction labels. The discriminator consists of three
layers of convolutional networks designed to judge the authenticity of input samples. The
discriminator’s output is utilized for backward propagation to both the generator and
discriminator, enhancing the overall performance.
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Figure 1. PPA-SAM integrates the enhanced SAM encoder into the VNet network, creating a dual-
encoder structure. The outputs from both the VNet encoder and the enhanced SAM encoder are
combined and input into the decoder, allowing PPA-SAM to achieve three-dimensional segmentation
of teeth.

3.2. VNet Structure

VNet is a convolutional neural network structure designed for three-dimensional
image segmentation. It has been widely applied in the field of medical image segmen-
tation, especially showing significant advantages in segmentation tasks involving three-
dimensional medical images such as CT (computed tomography) and MRI (magnetic
resonance imaging). In the medical domain, precise and reliable image segmentation is
crucial as it directly relates to accurate diagnosis and treatment decisions by medical profes-
sionals. VNet introduces skip connections, allowing end-to-end information transfer from
input to output, which is crucial for handling complex data structures like medical images.
In the encoder, features are progressively extracted and compressed through multiple con-
volutional blocks, concurrently reducing the size of feature maps. In the decoder section,
upsampling and deconvolution operations restore the feature space, enabling the network
to reconstruct and retain detailed image information. Skip connections are established
between each layer of the decoder and its corresponding encoder layer, creating a close
relationship between the encoder and decoder, allowing low-level features to be directly
transmitted to the decoder, thereby enhancing the network’s ability to integrate multi-scale
feature information. Additionally, VNet utilizes residual connections, a mechanism that
helps the network better learn complex medical image features, particularly in accurately
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understanding organ boundaries and local features, leading to superior performance in
medical image segmentation tasks.

3.3. Dual-Encoder Structure

The dual-encoder structure comprises the VNet encoder and an improved version
of the SAM encoder. The enhanced SAM encoder, based on the Transformer architecture,
aids in capturing global information and sequence relationships. VNet is more suitable
for processing three-dimensional data in medical images and possesses good local feature
extraction capabilities. This dual-encoder structure enables the model to benefit simultane-
ously from the strengths of both Transformer and convolutional neural networks, enriching
feature representation across multiple levels, including global, local, and sequential infor-
mation. This enhances segmentation accuracy in tasks such as medical image segmentation
and improves the model’s generalization ability to adapt to a broader range of datasets
and scenarios.

The improved SAM encoder is designed based on the prototype of the Vision Transformer
(ViT). During fine-tuning, we freeze the original parameters of ViT and introduce adapters
to better adapt to medical image tasks. To reduce the computational burden on the model
and ensure adaptability after image feature extraction, we first linearly process the image size
to fit the inputs of the improved SAM encoder and VNet, which are (1024 × 1024 × 1024)
and (256 × 256 × 256), respectively. When inputting into the improved SAM encoder, the
process starts with Patch Embedding, dividing the input image into fixed-size blocks and
transforming each block into a deep feature vector. Patch Embedding uses a 2D convolution
with a kernel size of 16, a stride of 16, and an output dimension of 768, resulting in 64 × 64
768-dimensional vectors. Next, we add positional encoding, which provides the model with
positional information for each pixel or patch in the image, enabling the model to understand
the spatial arrangement of objects in the image more accurately for segmentation tasks.
Subsequently, 12 Transformer blocks are applied sequentially, enhancing the understanding
and extraction of details in various parts of the image. Finally, we obtain a high-dimensional
image embedding. To adapt to the output size of the VNet encoder, we use convolution for
dimension reduction and concatenate the feature blocks obtained from both encoders for
subsequent data reconstruction and prediction in the VNet decoder.

3.4. Adapter

We adopted an effective strategy by introducing simple yet efficient adapters between
each Transformer layer on the basis of freezing the parameters of the SAM encoder. This
design allows fine-tuning for specific tasks while preserving the general features learned in
the pretraining model to prevent excessive adjustments that might compromise the model’s
general knowledge obtained from large-scale pretraining tasks. This adaptation helps the
model better adapt to downstream tasks like medical image segmentation [36]. Additionally,
this design helps prevent catastrophic forgetting, making the model more robust on new
medical image segmentation tasks. The structure of the adapter is illustrated in Figure 2.

We drew inspiration from SAM-Adapter [35] and designed the adapter as a bottleneck
model, comprising a down-projecting MLP layer, the GELU activation function, and an
up-projecting MLP layer. The formula is as follows:

Pi = MLPup(GELU(MLPdown(Fi))) (1)

Specifically, Fi represents the output of each Transformer layer, and MLPdown is respon-
sible for down-projecting these outputs, compressing the input data to a lower dimension.
The GELU function, introduced as the activation function, adds non-linearity and aids
the model in learning more complex feature representations. Subsequently, the MLPup
layer restores the data from the lower dimension to the original shape, achieving the
up-projection of the adapter. This bottleneck structure design introduces more flexibility
into the adapter, allowing the model to maintain computational efficiency while learning
task-specific adaptability.
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Figure 2. The adapters are placed at the connections between each Transformer layer in the SAM
encoder. The enhanced SAM encoder allows only the parameters of the optimizer to undergo iterative
updates, while other parameters remain frozen.

3.5. Discriminator

We devised a three-layer convolutional network to serve as the discriminator, working
in conjunction with the generator for adversarial training. The primary role of the discrimi-
nator is to discern the authenticity of the input labels, and its network structure is illustrated
in Figure 3. In the discriminator, we set the kernel size of the first two convolutional layers
to 3, with a stride of 2 and padding of 1, resulting in a halved data shape after each pass
through these layers. For the third convolutional layer, the kernel size is set to 1, with a
stride of 1 and no padding to maintain the shape. The LeakyReLU activation function is
employed in the hidden layers with a negative slope set to 0.05. When inputting data into
the discriminator, CT images are concatenated with labels as conditions. This concatenation
strategy enhances the discriminator’s sensitivity, allowing it to more accurately assess the
authenticity of input labels. During downsampling, we progressively reduce the spatial
resolution of the input data while retaining essential feature information. Finally, we utilize
the Sigmoid function as the activation function, producing outputs within the range of 0
to 1. The discriminator’s output can be interpreted as the authenticity of the input labels,
providing a basis for subsequent updates to the discriminator and generator parameters.
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3.6. Generative Adversarial Structure

We employed a segmentation network with a dual-encoder as the generator, working
in tandem with the discriminator to constitute adversarial training. The training process is
depicted in Figure 4.
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In this network structure, CBCT images are initially fed into the segmentation network
of the generator. After a series of operations, including downsampling, upsampling, and
skip connections, the generator produces predicted labels. To further enhance segmentation
accuracy, we concatenate CBCT images with the predicted labels and input them as con-
straint conditions into the discriminator. By calculating the loss between the discriminator
output and a matrix of all ones, and then performing backpropagation, we update the
weights of the generator. This process helps the generator better fit the real labels, thus
improving its performance in image segmentation tasks. In this way, one training update
process for the generator is completed.

Subsequently, we freeze the parameters of the generator and proceed to train the
discriminator. The discriminator receives input either with CBCT images and real labels or
with CBCT images and concatenated predicted labels. It calculates the loss between the
discriminator output and a matrix of all ones or all zeros. Through backpropagation, the
weights of the discriminator are updated to enhance its ability to distinguish between real
and fake labels. By iteratively updating the parameters of the generator and discriminator,
the network becomes more adept at the CBCT tooth image segmentation task, improving
its overall performance. This alternating training strategy effectively propels the learning
process of the network, gradually optimizing it to achieve higher segmentation accuracy.

Overall, our approach fully leverages the collaborative training between the generator
and discriminator. Through an effective network structure and alternating update strategy,
it demonstrates improved performance in three-dimensional tooth segmentation tasks.

4. Experiments
4.1. Dataset

In this study, we utilized a tooth dataset provided by Hangzhou Dental Hospital for
training, testing, and evaluation. Before the utilization of the dataset, informed consent
was obtained from the hospital, granting permission to use their three-dimensional CBCT
images for research purposes. Additionally, to ensure the privacy and anonymity of the pa-
tients, their data was thoroughly anonymized during the preprocessing phase. The dataset
consists of 46 samples, each being a three-dimensional CBCT image with a shape size of
(D × 536 × 536). Here, D represents the depth, ranging from 186 to 359. Each sample has
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been carefully annotated, providing detailed descriptions of the three-dimensional model
of the teeth. In medical small-sample segmentation tasks, experimenting with varying
quantities and sizes of training samples contributes to a comprehensive evaluation of model
performance. This experimental design can reveal the model’s robustness to changes in
data volume and its performance across diverse scenarios. By incrementally increasing
the number of training samples, we can observe variations in the model’s performance
under different sample conditions. To thoroughly validate the segmentation performance
of PPA-GAN under small-sample scenarios, we conducted four sets of experiments based
on different training sample sizes. In these four experiments, we randomly selected 5, 10,
15, and 20 samples as the training set, using the remaining samples as the test set. In each
experiment set, training and testing were performed for each network, ensuring consistency
in the training and test sets among different networks within the same experiment set
to minimize the impact of other factors on the experiment results. Our goal is to gain
insights into the segmentation effectiveness of PPA-GAN when dealing with a restricted
training dataset and to compare its performance with current state-of-the-art segmentation
models. These advanced models include 3DUnet, Swin Unetr, SAM, TransBTS, and the
original VNet.

To ensure the smooth operation of the network and enhance its performance, we
performed a series of operations on the data: (1) Prior to experimentation, we scaled the
values of CBCT images to the range of 0–255, improving data stability and avoiding issues
like gradient explosion or vanishing gradients. (2) We transformed the image shape to
(256 × 256 × 256), reducing the computational burden on the network and adapting to the
input requirements of the dual encoder. (3) Before inputting the images into the network,
we performed data augmentation by flipping the images along the X and Y axes with a 15%
probability. This increased the model’s generalization capability, enabling it to better adapt
to previously unseen data, while also enhancing the diversity of the dataset.

4.2. Evaluation Metrics

In this study, we employ the Dice coefficient (Dice), the Hausdorff distance (HD95),
the Average Surface Distance (ASD) and the Jaccard coefficient (Jaccard) metrics for com-
parative evaluation of experimental results and models.

The Dice is utilized to measure the similarity between two sets, commonly applied
in medical image segmentation to assess the segmentation accuracy of predicted labels.
Assuming the segmentation result is represented by S and the ground truth annotation
is denoted as G, the Dice coefficient formula between S and G is expressed as follows in
Equation (2):

dDice(S, G) =
2|S ∩ G|
|S|+|G| (2)

The Hausdorff distance is defined as the maximum distance from one set to another.
It is commonly used in image segmentation tasks to calculate the distance between the
farthest points on the predicted image’s edge and the true image’s edge. A smaller value
indicates a higher similarity between the two sets. Assuming the segmentation result is
denoted as S and the ground truth annotation is denoted as G, the Hausdorff formula
between S and G is expressed as shown in Equation (3):

dH(S, G) = Max{h(S, G), h(G, S)}; h(S, G) = max
s∈S

min
g∈G

||s − g||2 (3)

where h(S, G) represents the distance from S to G, i.e., for a point s in S, find the nearest
point g in G, calculate the Euclidean distance between them, and then take the maximum
of these distances. Hausdorff corresponds to the most dissimilar regions between two sets.
To avoid unreasonable distances caused by certain points being far from the main cluster,
this paper calculates the distance of the farthest 95% of pixels as the indicator (HD95) to
ensure numerical stability.
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ASD denotes the average distance between the segmentation result’s edge and the
ground truth’s edge. Assuming the segmentation result is denoted as S and the ground
truth annotation is denoted as G, the ASD formula between S and G is expressed as follows
in Equation (4):

dASD(S, G) =
1
2

(
1

nS
∑
s∈S

d(s, G) +
1

nG
∑

g∈G
d(g, S)

)
(4)

where nS and nG represent the number of non-zero pixels in S and G respectively, and d(s,
G) denotes the Euclidean distance from pixel s to the nearest non-zero pixel in G. Both the
Hausdorff and ASD measure the distance between two sets. However, Hausdorff focuses
on the distance between the most dissimilar pair of points, while ASD is based on the
average distance among all points. Therefore, ASD can provide a more comprehensive
assessment of the accuracy of the segmentation results.

The Jaccard coefficient is commonly used to assess the performance of segmentation
algorithms, especially when comparing the similarity between segmentation results and
ground truth. It calculates the intersection ratio between predicted and true values. The
formula is represented as Equation (5).

dJaccard(S, G) =
|S ∩ G|
|S ∪ G| (5)

A larger Jaccard distance indicates a higher overlap between two sets, implying a
smaller difference between the segmentation result and the true annotation.

4.3. Loss Function

To enhance the robustness and precision of the model in small-sample segmentation
tasks and reduce the occurrence of false positives and false negatives, we employed a
combination of Dice loss and generative adversarial network (GAN) loss. The specific loss
function is shown in Equation (6).

Loss = Lossgan + Lossdice (6)

where Lossgan represents the loss function in generative adversarial training, as shown in
Equation (7):

Lossgan(G, D) = Ex,y[ln D(x, y)] + Ex,z[ln(1 − D(x, G(x, z)))] (7)

where E represents the expected value of the distribution function, where x represents the
CBCT image after voxel preprocessing, y represents the normalized ground truth labels,
and z represents the fake labels obtained by x after passing through the generator. Lossdice
represents the Dice loss, formulated as shown in Equation (8):

Lossdice = 1 − dice (8)

4.4. Experimental Setting

In our research, we selected the Nvidia GeForce RTX 4090, produced by Nvidia
Corporation located in California, United States, as the experimental platform for the three-
dimensional tooth segmentation task, equipped with 24 GB of VRAM. During the training
process, we chose AdamW as the optimizer for both the generator and discriminator, with
beta_1 set to 0.9, beta_2 set to 0.999, and an initial learning rate set to 2 × 10−4. To efficiently
adjust the learning rate, we employed a dynamic learning rate adjustment strategy using the
Dice coefficient as the experimental metric. Specifically, when the optimal Dice coefficient
does not decrease after 40 epochs, we halved the learning rate. This process continued
until either there was no decrease for 80 consecutive epochs or training concluded after
250 epochs. This strategy helps maintain the convergence of the model during training and
effectively prevents it from getting stuck in local optima.
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5. Result

To comprehensively validate the segmentation performance of PPA-SAM, we chose
VNet as a baseline and assessed the impact of introducing the enhanced SAM encoder
and generative adversarial network on segmentation performance. Simultaneously, we
conducted performance comparisons with commonly used models. Table 1 presents the
segmentation performance of multiple models on the tooth dataset with varying numbers
of training samples (5, 10, 15, 20).

Table 1. Evaluating the performance of PPA-SAM and other models in the small-sample tooth
segmentation task.

Method Sample Size Dice HD95 ASD Jaccard

3DUnet

5 8871 2.126 0.521 8209
10 8954 1.576 0.358 8513
15 9075 1.047 0.245 8307
20 9299 0.961 0.234 8711

Swin Unetr

5 6158 27.14 3.008 4641
10 8048 3.013 0.739 6840
15 8847 2.885 0.452 8006
20 9182 0.977 0.251 8560

VNet

5 8346 1.615 0.426 7203
10 8884 1.163 0.298 8034
15 9063 0.997 0.253 8336
20 9376 0.920 0.312 8156

TransBTS

5 8166 3.934 0.740 6923
10 8470 6.020 0.758 7379
15 8938 1.047 0.281 8083
20 9101 0.924 0.251 8354

SAM

5 7185 5.814 1.336 6441
10 7250 24.56 2.895 6785
15 7830 2.837 0.944 7153
20 8078 1.962 0.803 7341

VNet
+

dual-encoder

5 8562 1.436 0.595 7673
10 8975 1.198 0.472 8185
15 9152 1.084 0.398 8424
20 9352 0.981 0.347 8673

VNet
+

GAN

5 8753 1.086 0.415 7822
10 8958 1.043 0.320 8154
15 9177 0.982 0.273 8525
20 9337 0.954 0.173 8787

PPA-SAM

5 9056 1.261 0.328 8255
10 9195 1.035 0.279 8627
15 9383 0.945 0.216 8842
20 9463 0.854 0.207 9018

By incrementally increasing the number of training samples, we evaluated each
model’s performance under small-sample conditions. The results indicate that the in-
troduction of the enhanced SAM encoder and generative adversarial network indeed
enhances segmentation performance. In the tooth segmentation task with a training sample
size of 20, PPA-SAM exhibited outstanding performance, achieving a Dice coefficient of
94.63, a 95 Hausdorff distance of 0.845, ASD of 0.207, and Jaccard coefficient of 9018. In
comparison to other advanced models, PPA-SAM demonstrated superior tooth segmen-
tation results under small-sample training conditions. Conversely, Swin Unetr showed
inferior performance in small-sample tasks, with metrics consistently lower than those
of 3DUnet. For the SAM model, being a 2D segmentation model, we extracted individ-
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ual slices from the three-dimensional tooth model, constructing datasets for training and
testing. The testing results of the slices were subsequently concatenated and evaluated.
Due to SAM’s limited pre-training on medical image datasets and its inability to fully
leverage three-dimensional information, SAM’s performance in segmentation tasks was
relatively subpar.

We performed three-dimensional visualization on samples numbered 11, 23, and 32,
and selected a slice for two-dimensional visualization on sample number 40, as shown
in Figures 5–8, revealing that PPA-SAM’s segmentation results closely approximated the
ground truth labels. In contrast, Swin Unetr exhibited lower accuracy in segmentation
with only 5 training samples, making it less suitable for medical-assistive applications.
SAM’s approach of segmenting individual slices and then combining them resulted in
noticeable deviations in each slice, leading to a less smooth surface in the visualized results.
In summary, PPA-SAM excelled in the small-sample three-dimensional tooth segmentation
task, highlighting its robust generalization and adaptability, making it suitable for scenarios
with limited data.
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in the small-sample tooth segmentation task.

6. Discussion

The experimental results demonstrate that the PPA-SAM model exhibits outstanding
segmentation performance and generalization ability on a small-sample CBCT dental
dataset, showcasing significant clinical application value. The generator of PPA-SAM
combines an optimizer-equipped SAM encoder with a VNet encoder, forming a dual-
encoder structure that facilitates the acquisition of both global and local information. In
dental images, global information focuses on overall structure and positioning, while
local information involves the details and edges of each tooth. This combination enables
the model to more accurately segment each tooth. The features from the dual-encoder
entering the decoder provide it with more information, covering features at different scales
and levels. This allows the decoder to better accomplish the three-dimensional tooth
segmentation task using multi-level, rich features.

We utilize a VNet network with a dual-encoder as the generator, combined with a
discriminator containing a three-layer convolutional network, forming the conditional
generative adversarial network known as PPA-SAM. Simultaneously, CBCT images are
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integrated as conditions with labels and input into the discriminator. This conditional
information helps enhance the model’s generalization ability, enabling it to comprehen-
sively and representatively learn features and better understand the relationship between
teeth and their surrounding environment, resulting in segmented three-dimensional tooth
images that closely resemble real data.

In the tooth segmentation task of this study, PPA-SAM demonstrates higher Dice
coefficients compared to other comparative networks across different scales of training
datasets. Specifically, for training set sizes of 5, 10, 15, and 20, the PPA-SAM shows an
improvement in Dice coefficients over the second-ranking model by 1.85%, 2.41%, 3.08%,
and 0.87%, respectively. These results indicate that even with smaller amounts of data,
the PPA-SAM can achieve superior segmentation performance, highlighting its significant
potential for clinical applications. Traditional convolutional networks [6–10,31–33] typ-
ically require large-scale datasets and perform poorly in situations with small samples,
especially in medical segmentation tasks where datasets are often lim-ited. For exam-
ple, 3D Unet [33] has long training times and faces significant computa-tional pressure.
Transformer-based segmentation networks, such as Swin Unetr [32], perform poorly and
have limited generalization capability when trained with limited data.

Visualizing the three-dimensional segmentation results from Figures 5–7, irregular
fragmented regions are observed in the segmented 3D models generated by Swin Unetr,
while TransBTS exhibits contiguous phenomena in the root regions of the teeth, with a lower
accuracy in detail. This suggests potential overfitting issues of Swin Unetr and TransBTS in
small-sample segmentation tasks, leading to decreased seg-mentation accuracy. However,
due to the two-dimensional shape of input and output data for the SAM, the inter-slice
correlation in the SAM’s three-dimensional segmenta-tion results is relatively low. When
segmenting individual slices, it is prone to misiden-tifying surrounding tissues as teeth,
resulting in fine fragments around the tooth mod-el, and the weak correlation between
slices leads to a staircase-like appearance on the surface of the 3D segmentation result. In
comparison, 3D Unet and VNet, as traditional segmentation models, demonstrate good
segmentation performance. However, through three-dimensional and two-dimensional
visualizations, it can be observed that the segmentation accuracy in detail areas such as
between the roots and teeth remains low. Through the quantitative analysis presented in
Table 1, it can be concluded that PPA-SAM exhibits more robust performance by incorporat-
ing dual encoders and gen-erative adversarial networks into VNet. PPA-SAM combines the
advantages of the SAM’s large data model, possessing a strong generalization capability
and better ad-dressing the issue of small sample sizes in medical image segmentation.Our
research still encounters certain limitations:(1) The training process of the generative net-
work exhibits some instability, potentially leading to an imbalance between the generator
and discriminator, ultimately resulting in training breakdown. (2)The current network’s
training still relies on a considerable number of samples for support, making it challenging
to achieve high-quality zero-shot or one-shot experiments. In future investigations, we
aim to delve into innovative approaches that involve training the CBCT three-dimensional
tooth segmentation network with only one or zero samples. For instance, in situations with
only a single training sample, we utilize a Generative Adversarial Network to generate
synthetic medical images and labels that closely resemble the existing sample and exhibit
high quality. This method allows for the synthesis of additional training data, integrating
the generated samples into the original training set for model training. This enhances
the model’s generalization ability when dealing with a limited number of samples. This
exploration in the direction of using minimal or no samples seeks to challenge traditional
training frameworks and promote a more flexible and adaptive learning approach for
networks in medical image segmentation tasks.
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7. Conclusions

In our study, we introduce an innovative CBCT three-dimensional tooth segmentation
network named PPA-SAM. The design philosophy of PPA-SAM leverages the sensitivity
of traditional convolutional networks to detailed features and the generalization ability
of large models, showcasing outstanding performance in the small-sample task of three-
dimensional CBCT tooth image segmentation.

However, despite the excellent performance of PPA-SAM and its broad prospects
in small-sample medical image segmentation tasks, its task transfer across different data
types may appear less than ideal. For example, whe n using CBCT dental images as the
training set and X-ray dental images as the testing set for segmentation, its performance
may not meet expectations. Through further research and experimentation, we aspire to
optimize this network, making it a robust tool for addressing challenges in small-sample
medical image segmentation. This not only holds significant practical value in the domain
of tooth segmentation but also has the potential to play a positive role in other medical
image segmentation tasks. The successful application of PPA-SAM provides new insights
and methodologies for small-sample medical image segmentation tasks.

Author Contributions: Conceptualization, J.L. and H.W.; Methodology, H.G.; Software, J.L.; Valida-
tion, J.L. and Y.C.; Formal analysis, H.W. and H.G.; Investigation, J.L.; Project administration, J.L.;
Data curation, Y.C.; Visualization, J.L.; Writing—original draft preparation, J.L.; Writing—review and
editing, H.W. and H.G.; funding acquisition, H.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the Leading Talents of Science and Technology Innovation
in Zhejiang Province (Grant No. 2020R52042), Zhejiang-Netherlands Joint Laboratory for Digital
Diagnosis and Treatment of oral diseases, The Key research and development program of Zhejiang
(Grant No. 2021C01189), National Natural Science Foundation of China (Grant No. 82011530399),
and Zhejiang Provincial Natural Science Foundation of China (Grant No. LGG20F020015).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gan, Y.; Xia, Z.; Xiong, J.; Li, G.; Zhao, Q. Tooth and alveolar bone segmentation from dental computed tomography images. IEEE

J. Biomed. Health Inform. 2017, 22, 196–204. [CrossRef] [PubMed]
2. Zhou, X.; Gan, Y.; Xiong, J.; Zhang, D.; Zhao, Q.; Xia, Z. A method for tooth model reconstruction based on integration of

multimodal images. J. Healthc. Eng. 2018, 2018, 4950131. [CrossRef] [PubMed]
3. Borzabadi-Farahani, A. Systematic review and meta-analysis of the index of orthognathic functional treatment need for detecting

subjects with great need for orthognathic surgery. Cleft Palate Craniofacial J. 2023, 10556656231216833. [CrossRef] [PubMed]
4. Liu, J.; Zhang, C.; Shan, Z. Application of artificial intelligence in orthodontics: Current state and future perspectives. Healthcare

2023, 11, 2760. [CrossRef]
5. Gao, H.; Chae, O. Individual tooth segmentation from CT images using level set method with shape and intensity prior. Pattern

Recognit. 2010, 43, 2406–2417. [CrossRef]
6. Gan, Y.; Xia, Z.; Xiong, J.; Zhao, Q.; Hu, Y.; Zhang, J. Toward accurate tooth segmentation from computed tomography images

using a hybrid level set model. Med. Phys. 2015, 42, 14–27. [CrossRef] [PubMed]
7. Sahiner, B.; Pezeshk, A.; Hadjiiski, L.M.; Wang, X.; Drukker, K.; Cha, K.H.; Summers, R.M.; Giger, M.L. Deep learning in medical

imaging and radiation therapy. Med. Phys. 2019, 46, e1–e36. [CrossRef] [PubMed]
8. Lee, S.; Woo, S.; Yu, J.; Seo, J.; Lee, J.; Lee, C. Automated CNN-based tooth segmentation in cone-beam CT for dental implant

planning. IEEE Access 2020, 8, 50507–50518. [CrossRef]
9. Rao, Y.; Wang, Y.; Meng, F.; Pu, J.; Sun, J.; Wang, Q. A symmetric fully convolutional residual network with DCRF for accurate

tooth segmentation. IEEE Access 2020, 8, 92028–92038. [CrossRef]
10. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

https://doi.org/10.1109/JBHI.2017.2709406
https://www.ncbi.nlm.nih.gov/pubmed/28574371
https://doi.org/10.1155/2018/4950131
https://www.ncbi.nlm.nih.gov/pubmed/30026903
https://doi.org/10.1177/10556656231216833
https://www.ncbi.nlm.nih.gov/pubmed/38037271
https://doi.org/10.3390/healthcare11202760
https://doi.org/10.1016/j.patcog.2010.01.010
https://doi.org/10.1118/1.4901521
https://www.ncbi.nlm.nih.gov/pubmed/25563244
https://doi.org/10.1002/mp.13264
https://www.ncbi.nlm.nih.gov/pubmed/30367497
https://doi.org/10.1109/ACCESS.2020.2975826
https://doi.org/10.1109/ACCESS.2020.2994592


Appl. Sci. 2024, 14, 3259 17 of 18

11. Cui, Z.; Li, C.; Wang, W. ToothNet: Automatic tooth instance segmentation and identification from cone beam CT images. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 6368–6377.

12. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

13. Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.-Y. Segment
anything. arXiv 2023, arXiv:2304.02643.

14. Deng, R.; Cui, C.; Liu, Q.; Yao, T.; Remedios, L.W.; Bao, S.; Landman, B.A.; Wheless, L.E.; Coburn, L.A.; Wilson, K.T. Segment
anything model (sam) for digital pathology: Assess zero-shot segmentation on whole slide imaging. arXiv 2023, arXiv:2304.04155.

15. He, S.; Bao, R.; Li, J.; Grant, P.E.; Ou, Y. Accuracy of segment-anything model (sam) in medical image segmentation tasks. arXiv
2023, arXiv:2304.09324.

16. Wu, J.; Fu, R.; Fang, H.; Liu, Y.; Wang, Z.; Xu, Y.; Jin, Y.; Arbel, T. Medical sam adapter: Adapting segment anything model for
medical image segmentation. arXiv 2023, arXiv:2304.12620.

17. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; pp. 234–241.

18. Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. Transunet: Transformers make strong encoders
for medical image segmentation. arXiv 2021, arXiv:2102.04306.

19. Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation.
In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th
International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018,
Granada, Spain, 20 September 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–11.

20. Tang, Y.; Yang, D.; Li, W.; Roth, H.R.; Landman, B.; Xu, D.; Nath, V.; Hatamizadeh, A. Self-supervised pre-training of swin
transformers for 3d medical image analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 20730–20740.

21. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

22. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

23. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.
24. Zhao, H.; Zhang, Z.; Yang, Y.; Xiao, J.; Chen, J. A Dynamic Monitoring Method of Temperature Distribution for Cable Joints

Based on Thermal Knowledge and Conditional Generative Adversarial Network. IEEE Trans. Instrum. Meas. 2023, 72, 4507014.
[CrossRef]

25. Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134.

26. Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J. Learning
transferable visual models from natural language supervision. In Proceedings of the International Conference on Machine
Learning, Virtual, 18–24 July 2021; pp. 8748–8763.

27. Ramesh, A.; Dhariwal, P.; Nichol, A.; Chu, C.; Chen, M. Hierarchical text-conditional image generation with clip latents. arXiv
2022, arXiv:2204.06125.

28. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving language understanding by generative pre-training. 2018.
Available online: https://www.mikecaptain.com/resources/pdf/GPT-1.pdf (accessed on 12 March 2024).

29. Chen, Z.; Duan, Y.; Wang, W.; He, J.; Lu, T.; Dai, J.; Qiao, Y. Vision transformer adapter for dense predictions. arXiv 2022,
arXiv:2205.08534.

30. Ma, J.; He, Y.; Li, F.; Han, L.; You, C.; Wang, B. Segment anything in medical images. Nat. Commun. 2024, 15, 654. [CrossRef]
[PubMed]

31. Liu, X.; Song, L.; Liu, S.; Zhang, Y. A review of deep-learning-based medical image segmentation methods. Sustainability 2021,
13, 1224. [CrossRef]

32. Hatamizadeh, A.; Tang, Y.; Nath, V.; Yang, D.; Myronenko, A.; Landman, B.; Roth, H.R.; Xu, D. Unetr: Transformers for 3d
medical image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa,
HI, USA, 3–8 January 2022; pp. 574–584.

33. Hatamizadeh, A.; Nath, V.; Tang, Y.; Yang, D.; Roth, H.R.; Xu, D. Swin unetr: Swin transformers for semantic segmentation of
brain tumors in mri images. In Proceedings of International MICCAI Brainlesion Workshop; Springer International Publishing: Cham,
Switzerland, 2021; pp. 272–284.

34. Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from
sparse annotation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th
International Conference, Athens, Greece, 17–21 October 2016; Springer International Publishing: Cham, Switzerland, 2016; pp.
424–432.

https://doi.org/10.1145/3422622
https://doi.org/10.1109/TIM.2023.3317485
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://doi.org/10.1038/s41467-024-44824-z
https://www.ncbi.nlm.nih.gov/pubmed/38253604
https://doi.org/10.3390/su13031224


Appl. Sci. 2024, 14, 3259 18 of 18

35. Wang, W.; Chen, C.; Ding, M.; Yu, H.; Zha, S.; Li, J. Transbts: Multimodal brain tumor segmentation using transformer. In
Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference,
Strasbourg, France, 27 September–1 October 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 109–119.

36. Liu, W.; Shen, X.; Pun, C.-M.; Cun, X. Explicit visual prompting for low-level structure segmentations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 19434–19445.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Related Work 
	Visual Fundamental Models 
	Fine-Tuning Models 
	Medical Image Segmentation 
	CBCT Tooth Segmentation 

	Methodology 
	Architecture Overview 
	VNet Structure 
	Dual-Encoder Structure 
	Adapter 
	Discriminator 
	Generative Adversarial Structure 

	Experiments 
	Dataset 
	Evaluation Metrics 
	Loss Function 
	Experimental Setting 

	Result 
	Discussion 
	Conclusions 
	References

