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Abstract: Ensuring optimal performance and reliability in rotor-bearing systems is crucial for indus-
trial applications. Imbalances and shaft bowing in these systems can lead to decreased efficiency
and increased vibrations. The early detection and mitigation of a rotor’s faults are essential, and
model-based fault identification has gained much attention in the manufacturing industry over the
years. Over the past two decades, however, the development of fault diagnosis rules with data-
driven and artificial intelligence (AI) methods has become a trend, and in the foreseeable future
the combination of AI with big data will become mainstream. Nevertheless, the critical role of
rotating machinery in manufacturing introduces a challenge, as often insufficient fault data are
available. This limitation renders the establishment of diagnostic rules using data-driven methods
and AI technologies impractical. In light of these challenges, this study proposes a novel hybrid
approach that combines a physical model with machine learning (ML) techniques for the diagnosis
of multi-faults (imbalances and shaft bowing are demonstrated) in a Jeffcott rotor. To overcome the
lack of real-world labeled fault datasets, a physics-based Jeffcott rotor model is first derived and then
used to generate abundant fault datasets for ML. Subsequently, simulated data are employed for
the training of an artificial neural network (ANN), enabling the network to learn from and analyze
the vast array of generated data. The results prove that a well-trained feed-forward neural network
(FNN) can accurately isolate and diagnose imbalance and shaft bowing faults using the simulated
and real data from the Jeffcott rotor experiment. These physics-based and ML approaches prove
effective particularly for multi-faults, offering new possibilities for advanced rotor system monitoring
and maintenance strategies in industrial applications.

Keywords: hybrid approach; multi-fault diagnosis; machine learning; ANN; imbalance and bow

1. Introduction

Rotating machines find widespread utilization across diverse domains, including in
the manufacturing sectors, wind energy generation, aviation propulsion systems, electric
motor assemblies, marine propulsion systems, and mining equipment, owing to their
notable attributes of elevated efficacy and robustness. Within the framework of Industry
5.0, a significant transformation can be observed, whereby the convergence of cutting-edge
technologies and the promotion of sustainable practices in the manufacturing sector are
emphasized. In this context, the utilization of rotating machines assumes a crucial and
prominent role. Advancements in cutting-edge technologies in the field of material sciences
have led to the development of rotating machines that are both faster and lighter, while
also being capable of withstanding prolonged periods of operation. Numerous operational
irregularities, including but not limited to mass imbalances, bowed shafts, cracked shafts,
misalignment, elevated temperatures, quick acceleration, and frequent load fluctuations,
all contribute to reduced efficiency and premature mechanical breakdown. Consequently,
these issues result in unplanned periods of inactivity and financial detriment. Hence,
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ensuring the efficient maintenance and accurate fault detection and diagnosis (FDD) of
rotating machines holds significance in achieving the objectives of Industry 5.0, whereby
the convergence of efficiency, sustainability, and productivity is emphasized [1].

Vibration fluctuations, which are highly sensitive to both minor structural variations
and changes in the operational process, are the basis for condition monitoring and diag-
nostics in rotating equipment. Any fault that occurs in a rotor will alter its vibrational
behavior, and the degree of this impact depends largely on the various fault types. Given
this, vibration-based diagnostics (VBD) has gained popularity and is often used in practice
to diagnose a variety of rotor faults [2]. Walker et al. [3] reviewed the recent advances in
the VBD and prognosis of rotors with eight common problems. The approaches for fault
diagnosis can be broadly divided into three categories: (1) physics-based or model-based
approaches; (2) data-driven approaches; (3) the combination of various approaches, called
the hybrid method.

Data-driven approaches to rotor diagnosis utilize statistical theories or artificial in-
telligence (AI) algorithms to process the collected data, especially fault data, for fault
diagnosis [4]. In recent years, data-driven approaches have become promising with the ad-
vancement of signal processing techniques such as empirical mode decomposition (EMD),
Hilbert–Huang transforms (HHT) [5–7], and wavelet transforms [8–10]. In the foreseeable
future, data-driven methodologies combined with artificial intelligence (AI) technology
will remain well-liked and fruitful. Given the progress in the field of vibration analyses,
there is increasing interest in the application of AI techniques for fault diagnosis in rotating
machinery. The integration of AI approaches has gained significant recognition and trac-
tion in both academic and industrial circles, presenting a promising avenue for addressing
industrial challenges. Walker et al. [11] proposed automating the localization of imbalanced
faults using ANN techniques. Mohamed et al. [12] proposed a method for diagnosing faults
in rotating machinery using a frequency domain vibration analysis and neural network
(NN) pattern classification. A variety of unbalanced fault types have been localized with
high precision on dynamic rotor test rigs using ANNs, providing benefits by reducing the
number of sensors used. Liu et al. [13] provided a comprehensive analysis of the AI-based
research and development for rotating machinery fault diagnostics, encompassing both
theoretical and practical standpoints. Aneesh et al. [14] recently presented a comprehensive
review of the role of AI in rotor fault diagnosis. They discussed the difference between
traditional machine learning (ML) and deep learning approaches.

For the success of a data-driven approach, a sufficient amount of accurate data must
be available for network training. However, industrial plant rotor systems always have
insufficient datasets. In that regard, model-based techniques designed for fault identifi-
cation originating from physical models of rotor systems (complete or partial) have been
offered for years. Using model-based techniques, numerous studies have detected rotor
faults with success. Edward et al. [15] used a model-based identification approach in the
frequency domain to identify an imbalance on a test rig. Bachschmid and Pennacchi [16]
used an experimental validation approach to support model-based methods for fault loca-
tion, severity assessment, and fault classification. Sekhar [17] applied this methodology to
concurrently identify instances of imbalances and cracking within a rotor-bearing system.
Jain and Kundra [18] employed model-based techniques to detect imbalances and cracks
and experimentally validated their imbalance identification results conducted on a test rig.
Sinha et al. [19] estimated the imbalance and misalignment of a flexible rotating machine
based on a single run-down procedure. Lees et al. [2] provided a thorough analysis of a
model-based rotating machine identification system. They discussed various methods for
deriving foundation models from operational data and subsequently updating them. Jalan
and Mohanty used an experimental model-based method to identify imbalance and mis-
alignment issues in a rotor-bearing system [20]. However, there are numerous applications
for this technique, such as in the studies conducted by one particular work group [21–23],
who have made significant contributions to the field of rotor fault identification using a
model-based method. In a very recent study, Lin et al. [24] derived a novel model-based
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approach in which model parameters such as bearing constants and initial imbalances are
identified in the first phase and progressive imbalances based on daily operational data
are used to identify them in the second phase. The imbalance can, therefore, be monitored
online and in real time. In general, the model-based method yields the most accurate results,
which are consistent with the physical theory; however, model derivation and verification
processes are extremely time-consuming and must be performed by rotor specialists.

Numerous ongoing studies on imbalances in rotating machinery have been performed,
spanning a wide range of topics, such as imbalance misalignment [25], imbalance diag-
nostics [26], modeling methodologies to help with imbalance prediction, and lab-based
experimental investigations. There are a number of comprehensive literature studies that
outline the range of imbalance prediction research, including those by Edward et al. [27],
Randall [28], and Walker et al. [29].

Shaft bowing refers to a deviation from the perfect alignment of the geometrical axis
of the rotor shaft. This phenomenon is often attributed to factors such as heat gradients
experienced during the initiation and cessation of operation in thermal turbo turbines,
material creep, manufacturing discrepancies, and other contributing factors. Depending
on the amount and location of the bend, shaft bowing can cause an excessive amount of
vibration in a machine [30]. Numerous scholarly studies have been conducted to discern
the impacts of shaft bowing in rotating machinery, assess their dynamic properties, and
implement suitable corrective measures [31]. The impact of residual rotor bowing on rotor
vibrations was examined in a seminal study conducted by Nicholas et al. [32,33].

Researchers have studied how residual shaft bowing affects the imbalance response in
a simplified rotor model. They examined different combinations of bowing and imbalances
to understand their interaction. Additionally, they proposed three distinct balancing
methods based on their findings. Flack et al. [34] employed a transfer matrix technique
to forecast the imbalance response of a Jeffcott rotor subjected to bowing. The rotor was
affixed to various fluid film bearings, and the outcomes were subsequently contrasted with
prior experimental investigations. Shiau et al. [35] investigated the impact of residual shaft
bowing on the dynamic response of a simply supported single disk rotor. Their study
systematically examined the interplay of factors such as disk skewing, mass imbalances,
and the positioning of the disk between the bearings. Rao et al. [36] scrutinized a warped
Jeffcott rotor model across diverse bowing scenarios, revealing instances of self-balancing
and phase jumping. Srinivas et al. [37] employed an ANN and wavelet transform to
categorize a rotor system that experienced both shaft bowing and an imbalance. This was
achieved by monitoring the vibrations in the transverse and axial directions. Rezazadeh
et al. [38] recently presented research where they used a combination of a WTS (wavelet
transform spectrum) with LSTM (long short-term memory) and an SVM (support vector
machine) to detect imbalances and shaft bowing in rotor systems. When there are multiple
faults, the vibrations caused by these faults are coupled with each other in a linear or
nonlinear manner. As a result, the observed vibration signals are quite complicated,
making it challenging to detect each fault using traditional methods.

Even though model-based approaches have been used to diagnose and anticipate
rotor defects for many years, there are drawbacks, including the need for lengthy models
and a lack of self-adaptability to aging machinery. Therefore, with the aid of modern
signal processing, hybrid methods that make use of AI techniques and physical modeling
have appeared. Regarding the commonly named hybrid approaches, in light of their
combination types, they can be divided into three categories—serial combinations (method
fusion) [39], parallel combinations (output fusion) [40], and mixed combinations. Physical
model may be derived and employed along with these hybrid methods, although mainly
just to generate the residual in the parity equation. The present research, however, proposes
a novel combination of physics-based and ML techniques, in which a physical model gen-
erates synthetic data for ML training. An exemplar in this domain is the work by Huang
et al. [41,42], who adeptly introduced the concept of a hybrid approach by incorporating
a neural network (NN) alongside physical modeling for imbalance identification. Djeziri
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et al. [43] used a hybrid method for fault prognosis based on a physical model, data clus-
tering, and the geolocation principle to predict the remaining useful life (RUL) for wind
turbine systems. Recently, Wilhelm et al. [44] reviewed hybrid approaches for FDD that
combine data-driven analyses with physics-based and knowledge-based models to over-
come a lack of data and increase the FDD accuracy. Moreover, Fang et al. [45] presented a
fault diagnosis and prognosis method based on a hybrid approach that combines structural
and data-driven techniques.

The objective of this study is to create a hybrid approach that is applicable for the
diagnosis of multiple faults in rotor-bearing systems. The essence of this innovative method
is as follows:

1. We will establish a physical and mathematical model of a Jeffcott rotor-bearing sys-
tem containing simultaneous imbalance and shaft bowing faults and identify the
model parameters, including the imbalance and shaft bowing characteristics, from
calculations and experimental tests.

2. After parameter identification, the physical model will be used to generate sufficient
sets of simulated data for ANN-supervised training, which will help to produce a
more reliable model. A trained ANN can be integrated into a Jeffcott rotor monitoring
system for the online diagnosis of imbalance and shaft bowing fault components
using simulated and experimental data from Jeffcott rotor experiments.

The remainder of this paper’s structure is as follows. In Section 2, the physical model
of a Jeffcott rotor subjected to an imbalance and shaft bowing is described. Section 3
introduces the hybrid methodology employed in the present study. The numerical analysis
and experimental verification process are described in Section 4. Finally, in Section 5, our
concluding remarks are presented to justify the effectiveness of this approach.

2. Physical Model of a Jeffcott Rotor with Simultaneous Imbalance and Shaft
Bowing Faults

The schematic design involves a purely physics-based approach. This design, as
elucidated in Figure 1a, provides a visual representation of the Jeffcott rotor systems
consisting of an imbalance and shaft bowing with a rigid disk, supported by two simple
bearings, while Figure 1b shows the disk’s geometric relations. It is assumed that the
shaft-bearing component possesses only stiffness K and light damping B. Here, O stands
for the center of the rotation axis, C stands for the disk’s geometric center, e is the distance
of the rotor’s imbalance from the geometric center, Ω represents the rotational speed, s
represents the residual shaft bowing, m represents the imbalance mass, M represents the
disk mass, θ represents the shaft bowing angle, and α represents the imbalance angle, both
of which reference a key phasor (KP).
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The rotor imbalance is commonly specified by a term of U = me, with a unit of g·mm
or kg·m. The acceleration of the imbalance mass at point A can be calculated based on
fundamental dynamics, i.e.:

aA =
..
ui +

..
vj − Ω2[e · cos(Ωt + α)i + e · sin(Ωt + α)j] (1)

where i and j respectively denote the unit vector in the X and Y directions. The inertia force
resulting from the imbalanced mass m can be represented by:

−maA = [−m
..
u + meΩ2(cos Ωt + α)]i + [−m

..
v + meΩ2(sin Ωt + α)]j (2)

The equations of motion (EOMs) for the Jeffcott rotor with simultaneous imbalance
and shaft bowing faults can be obtained by using Newton’s second law:

ΣFu = M
..
u (3)

ΣFv = M
..
v (4)

Subsequently, the EOMs subject to the imbalance and shaft bowing excitation in the X
and Y directions are summarized as:

(M + m)
..
u + Bx

.
u + Kxu = Kxs cos(Ωt + θ) + meΩ2 cos(Ωt + α) (5)

(M + m)
..
v + By

.
v + Kyv = Kys sin(Ωt + θ) + meΩ2 sin(Ωt + α) (6)

or in terms of nominal vibration forms as:

..
u + 2ζxωnx

.
u + ω2

nxu = sω2
nx cos(Ωt + θ) +

U
MT

Ω2 cos(Ωt + α) (7)

..
v + 2ζyωny

.
v + ω2

nyv = sω2
ny sin(Ωt + θ) +

U
MT

Ω2 sin(Ωt + α) (8)

where M, B, and K respectively represent the mass, damping, and stiffness. Here, MT = M+
m ≈ M denotes the total mass of the rotor, while ωni =

√
Ki/MT and ζ i = Ci/2

√
Ki MT ,

i = x, y represent the system’s natural frequency and damping ratio in the X and Y
directions, respectively.

The right-hand terms in Equations (7) and (8) describe the excitation forces caused
by shaft bowing and imbalances, respectively. The vibrational responses of u and v due
to shaft bowing and imbalances can be separately solved and superimposed for the total
responses. Nonetheless, identifying the rotor’s imbalance (U,α) and shaft bowing (s,θ)
from the total responses is a backward process involving nonlinear functions of α and
θ. Therefore, nonunique solutions exist, which causes difficulty in almost all cases of
multi-fault diagnosis.

Let us first provide the responses to these two types of faults separately and then
introduce the idea of combining the physical modeling and machining learning techniques
for multi-fault diagnosis. The EOM of u due to bowing alone is:

..
ub + 2ζxωnx

.
ub + ω2

nxub = sω2
nx cos(Ωt + θ) (9)

where the subscript b represents the term “bowing”. The solution of Equation (9) can be
readily obtained from any standard textbook on vibrations as:

ub = s · Ax cos(Ωt + θ − λx) (10)

where Ax is the amplification factor, which can be expressed as follows:

Ax =
1√

(1 − τ2
x)

2 + (2ζxτx)
2

(11)
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τx = Ω/ωnx (12)

λx = tan−1 2ζxτx

1 − τ2
x

(13)

Here, τ is the speed ratio or frequency ratio and λ is the response phase lag.
In most cases, m<<M; thus, MT ≈ M. Similarly, the EOM caused by the imbalance can

be written as:
..
uu + 2ζxωnx

.
uu + ω2

nxuu =
U
M

Ω2 cos(Ωt + α) (14)

The subscript u represents a state of imbalance. Similarly, the response due to the
imbalance can be solved as:

uu =
U · τ2

x
M

Ax cos(Ωt + α − λx) (15)

Through superposition, the responses in the X and Y directions can be expressed
as follows:

u(t) = Ax[
Uτ2

x
M

cos(Ωt + α − λx) + s cos(Ωt + θ − λx)] (16)

v(t) = Ay[
Uτ2

y

M
sin(Ωt + α − λy) + s sin(Ωt + θ − λy)] (17)

The responses of Equations (16) and (17) can be further rearranged in terms of the
cos(Ωt) and sin(Ωt) components as follows:

u(t) = f1 cos(Ωt) + f2 sin(Ωt) (18)

v(t) = f3 cos(Ωt) + f4 sin(Ωt) (19)

where f 1, f 2, f 3, and f 4 are the four features as functions of the four fault variables U, α, s,
and θ, respectively, defined as:

f1 = Ax[
Uτ2

x
M

cos(α − λx) + s cos(θ − λx)] (20)

f2 = −Ax[
Uτ2

x
M

sin(α − λx) + s sin(θ − λx)] (21)

f3 = Ay[
Uτ2

y

M
sin(α − λy) + s sin(θ − λy)] (22)

f4 = Ay[
Uτ2

y

M
cos(α − λy) + s cos(θ − λy)] (23)

or in terms of the feature vector as:

f4×1 = { f1, f2, f3, f4}T (24)

The fault variables associated with imbalances and shaft bowing can be written as a
fault vector:

m4×1 = {U, α, s, θ}T (25)

The subject of the diagnosis is to identify Equation (25) from the data from
Equation (24) using calculations or measurements. It is apparent that due to the vari-
ability and nonlinearity, the solution is nonunique. The ANN provides a robust alternative
to solve this type of problem.

Note that the features shown in (20)–(23) are not only functions of the fault variables
but also functions of system variables such as the speed ratio τ and damping ratio λ. The
impact of the damping and speed ratios on the diagnosis accuracy for imbalances and shaft
bowing will be discussed in Section 4.
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3. Hybrid Methodology

In this paper, the authors propose a comprehensive approach for establishing a real-
time imbalance and shaft bowing diagnosis system for a rotor system and use a Jeffcott
rotor-bearing system as the application example. This approach combines mathematical
modeling techniques with ML-based prediction methods to enable the accurate and timely
detection of multiple faults in the system, as shown in Figure 2. The ability to assess the
onset of faults is a crucial aspect of both physics-based and machine learning approaches
when analyzing the overall system.
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ML techniques are increasingly being used to diagnose faults in rotating machinery by
analyzing data from sensors on the machinery. These models can learn to detect patterns
that indicate faults and classify the type and severity of the problem, which can help
maintenance teams diagnose issues earlier and prevent costly downtime. To overcome
this challenge, a hybrid approach will be developed. This approach will combine machine
learning techniques with expert knowledge and physical models to augment the limited
fault data.

Data-driven methodologies leverage statistical theories and artificial intelligence (AI)
algorithms to analyze gathered data—particularly fault data—in order to facilitate fault
diagnosis. However, the efficacy of data-driven techniques is contingent upon a substantial
amount of accurately labeled data being available for network training. Notably, researchers
frequently encounter challenges in acquiring sufficient labelled datasets for industrial rotor
systems. To address this data constraint issue, the physical model employs a knowledge-
based approach, presenting a viable way to overcome the lack of relevant data.

Nevertheless, it is imperative to acknowledge the limitations of this data-driven
approach, particularly in scenarios involving multiple faults, where its reliability may be
compromised. In such instances, utilizing a physical model to generate fault data for ANN
training emerges as a more dependable solution, enhancing the robustness of the overall
diagnostic process.

Two steps are involved in this process, namely model construction and real-time
diagnosis, as shown in Figure 2. The model construction phase involves a combination
of physical modeling and ML techniques. By using a physical model, one can generate
sufficient sets of simulated data for ANN-supervised training, which helps to produce a
more reliable model for diagnosing imbalances and shaft bowing in a Jeffcott rotor-bearing
system. The simulated dataset is randomly generated using a systematic approach, with
the imbalance parameters ranging from 0 to 1000 (g·mm) and the bowing parameters
ranging from 0 to 500 (mm). Next, the derived model is implemented into a real rotor
system for real-time diagnosis, as displayed in phase 2. In this phase, cases with two



Appl. Sci. 2024, 14, 3269 8 of 20

different residual bowing faults plus various imbalance combinations are tested to acquire
the real response features from an experimental setup involving a rotor rig. Note that in
the designed scenarios the bowing only occurs under two conditions, s = 0.5 mm run at
1600 rpm and 3200 rpm and s = 4 mm run at 680 rpm, due to the difficulty of bending the
shaft to achieve a small, permanent bow. Moreover, in the s = 4 mm bowing case, the rotor
can be run only at very low speed due to safety concerns.

The real response features (f1, f2, f3, and f4) are then calculated from the measured
response of the rotor rig and fed into the trained FNN for instant fault component identifi-
cation, i.e., mT= {U, α, s, θ}. By combining phase 1 and phase 2, this hybrid approach can
be used to overcome the data availability limitations and provide an accurate diagnosis
model for imbalances and bow faults in rotating machinery.

To achieve this goal, we employed the most common ML-based approaches used
for rotor fault diagnosis, which are ANNs. ANNs can learn to classify different types of
faults based on vibrations, currents, or acoustic data from sensors on the machinery. In
particular, ANNs can be utilized to diagnose imbalances and shaft bowing in rotating
machinery, which are common problems that can lead to excessive vibrations, reduced
machine performance, and even catastrophic failure.

Among the various types of ANNs, we had tested various types such as feed-forward
neural networks (FNNs), RNNs, and LSTMs and found that their differences in accuracy
are almost nondifferentiable. Hence, an FNN was selected for its simple structure and
computational efficiency. In the FNN, the information flows in one direction, from the input
layer through one or more hidden layers to the output layer. By training the FNN with
historical data from the rotor system, it can learn the underlying patterns and relationships
between the various system parameters and multiple faults. This enables the FNN to make
predictions about future fault events based on real-time sensor data. Figure 3 demonstrates
the applications of the machine learning framework for diagnosing multiple faults in a
Jeffcott rotor-bearing machine, showcasing its potential for multifaceted fault detection
and analyses.

1. Acquiring data: The physical model is used to generate the datasets randomly. Never-
theless, the training set can be generated from measured data as much as one need. It
is notable that these imbalance and shaft bowing components, mT= {U, α, s, θ}, are
random inputs to the physical model, and the response features components at the
disk centre after the forwarding calculation are the output, i.e., Equation (24).

2. Data preparation: The generated datasets will be considered raw data for further
processing via supervised training. The simulated inputs and outputs are reversed
during the network training. The response components fT, i.e., the 4 parameters, are
used as the input to the ANN, and the 4 parameters mT are used for the target.

3. ANN architecture: An appropriate model needs to be selected and configured for
the problem at hand. Typically, a feed-forward neural network (FNN) with one or
more hidden layers is used. There are several parameters in each model that can be
varied to arrive at the best model parameter for each case. The proposed framework
is modeled using MATLAB version: 9.15.0 (R2023b) software.

4. Model training: The FNN is trained with a single hidden layer architecture with a
varying number of nodes using 10,000 datasets, which are randomly generated from
a physical model. The first 70 percent of the datasets are utilized for training, the
second 15 percent are used for validation, and the final 15 percent are used for testing.

5. Model testing: To rigorously evaluate the FNN model’s performance, the root mean
squared error (RMSE) is employed to evaluate the alignment between the randomly
generated values (so-called real data) and estimated values. A lower RMSE value
signifies better accuracy and model performance. The formula for the RMSE is:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (26)
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where yi denotes the real value for the ith point, ŷi denotes the estimated value, and n
denotes the number of datapoints.

6. Diagnosis: The trained FNN is tested using simulated and real data acquired from the
experimental Jeffcott rotor setup to diagnose the multi-fault components, i.e., U, α, s,
and θ. Based on the output of the FNN, the machine operator can monitor the growth
of imbalances and shaft bowing faults to take necessary actions.
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4. Numerical Analysis and Experimental Verification
4.1. Numerical Analysis Using Simulated Data

The detection of imbalances and shaft bowing in Jeffcott rotor systems is an immensely
significant task within numerous industrial domains. To tackle this challenge, the use
of ANN models has proven to be highly effective. Our investigation commenced by
employing an FNN that comprised multiple hidden layers, an input layer, and an output
layer, all lacking feedback connections or loops [46].

In the context of diagnosing multiple faults, the input layer adeptly receives the
vibration signals or response components originating from the horizontal and vertical
directions of the Jeffcott rotor system. Subsequently, these signals are skillfully processed
by the neurons residing within the concealed layers, which judiciously employ activation
functions such as the tan-sigmoid function or the rectified linear unit (ReLU) function. The
outcome obtained from the hidden layer is then skillfully mapped to the ultimate output
through the neurons residing within the output layer. It is worth noting that the output
layer typically employs a linear transfer function, such as the purelin transfer function, to
carry out this mapping process.

To train the FNN, 10,000 datasets are randomly generated, and 70% of them are used
for training, 15% for validation, and the last 15% for testing. The Levenberg–Marquardt
backpropagation (LM) training algorithm, specifically the trainlm training function in
MATLAB, was employed to train the network. To determine the most suitable number
of hidden nodes, a trial-and-error approach was employed, as there is no precise method
that can be used to select this parameter based solely on the number of inputs and outputs.
However, in many ANN applications, including for FNNs applied to rotor systems, a single
hidden layer has been proven sufficient [37,47]. Once the FNN is trained, it can be used to
accurately detect and diagnose imbalances and shaft bowing in Jeffcott rotor systems based
on the input vibration signals.

To examine the performance of the models, networks were trained with 10, 20, 30,
40, 50, and 60 hidden nodes. The results of the study revealed that a single hidden layer
with 40 nodes had the lowest RMSE, as shown in Figure 4. The number of errors drops
rapidly and reaches the minimum for the configuration involving 40 nodes. The elapsed
time periods vary with the node number, as also shown in Figure 4, and it can be seen that
the time increases almost linearly with the number of nodes. The errors of the testing set
were reported in Table 1 in terms of (Ux, Uy, sx, sy) rather than (U, s, α, θ), because the phase
angle values (α and θ) did not align accurately because of their periodic nature. This change
was made to mitigate concerns regarding potentially misleading outcomes. In Table 1, the
lowest numbers of errors for the four components all occur with 40 nodes.
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Table 1. RMSE values for the imbalance and shaft bowing components of different node setups.

Hidden
Nodes

Elapsed
Time (s) Ux Uy sx sy ∑RMSE

10 9 1.88 × 10−6 1.89 × 10−6 2.05 × 10−7 1.37 × 10−7 4.11 × 10−6

20 16 2.63 × 10−7 2.14 × 10−7 2.43 × 10−7 2.07 × 10−7 9.26 × 10−7

30 24 3.13 × 10−7 2.85 × 10−7 1.37 × 10−7 1.37 × 10−7 8.72 × 10−7

40 38 1.59 × 10−7 1.88 × 10−7 9.35 × 10−8 7.67 × 10−8 5.17 × 10−7

50 45 2.18 × 10−7 2.73 × 10−7 1.57 × 10−7 1.87 × 10−7 8.34 × 10−7

60 58 4.59 × 10−7 4.34 × 10−7 1.17 × 10−7 1.18 × 10−7 1.13 × 10−6

During our investigation of the performance of the FNN using simulated data, we
proposed a variety of fault conditions so that the diagnosis accuracy rates could be observed
and compared. Different fault combinations can be classified as imbalance-dominant, shaft-
bowing-dominant, and equal. When the imbalance dominates, the U values range from 0.6
to 0.9 kg·m and the s values from 0.5 to 0.1 mm. This means that the imbalance component
is 100 times the shaft bowing component. In contrast, shaft bowing dominance involves U
values ranging from 0.00001 to 0.00002 kg·m and s values ranging from 2 to 3 mm, opposing
the imbalance scenario. The U and s parameters vary from 0.002 to 0.003 kg·m and 2 to
3 mm, respectively, in the equal case.

In addition, the effects of imbalances and shaft bowing vary with the rotational
speed. The FNN performance results under three different operational ranges, namely
sub-critical speed (τ < 1), near-critical speed (τ ≈ 1), and trans-critical speed (τ > 1), were
also investigated. The RMSE was used as the metric for the performance evaluation in each
scenario, and lower RMSE values indicate better performance or closer alignment with the
FNN predictions.

The data illustrated in Table 2 demonstrate the performance of the FNN across various
fault dominations at different speeds. Let us first look at the third column for the imbalance-
dominant case, where it can be observed that the estimated error sum of the FNN is
the lowest (green face) when running at near-critical speed τ ≈ 1, then τ > 1 and τ < 1.
The identification error sum of the shaft bowing case, however, exhibits no significant
differences for the different speed ranges. For the cases that are shaft-bowing-dominant,
there are no significant differences in imbalance and bowing estimation errors under
various speeds. When these two faults are of equal weight, the lowest estimation errors
for imbalances and shaft bowing happen in different speed regions. Imbalances are best
identified at τ > 1, while the bowing identification process shows the lowest error with the
rotor running at τ < 1.
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Table 2. Comparison of RMSE values for fault components under different speed ratios.

Fault
Components

Imbalance-
Dominant

Shaft-Bowing-
Dominant Equal

τ < 1
Ux 0.0323 0.3101 4.69 × 10−5

Uy 0.0581 0.3140 6.01 × 10−5

sx 0.2924 0.0147 1.37 × 10−5

sy 0.3398 0.0215 1.66 × 10−5

τ ≈ 1
Ux 0.0200 0.2937 3.96 × 10−6

Uy 0.0200 0.3295 6.87 × 10−6

sx 0.3031 0.0238 3.31 × 10−5

sy 0.2727 0.0146 6.67 × 10−5

τ > 1
Ux 0.0288 0.3557 6.59 × 10−6

Uy 0.0315 0.3008 3.11 × 10−6

sx 0.3459 0.0105 4.07 × 10−5

sy 0.2873 0.0221 6.99 × 10−5

From the results shown above, it can be concluded that imbalances are better diagnosed
at higher speeds (τ ≈ 1 or τ > 1), while the shaft bowing is better diagnosed at lower speeds
(τ < 1). This conclusion can be explained and verified using the frequency responses of
these two types of faults, as shown in Figure 5. In this figure, it can clearly be seen that
the imbalance response is significantly magnified at higher speeds, while conversely the
shaft bowing response diminishes with increasing speeds. In other words, shaft bowing
dominates at sub-critical speeds and imbalances take over after the critical speed is reached.
Both reach their maximum response at near-critical speeds.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 21 
 

 Uy 0.0315 0.3008 3.11 × 10−6 
 sx 0.3459 0.0105 4.07 × 10−5 
 sy 0.2873 0.0221 6.99 × 10−5 

 
Figure 5. Frequency responses for imbalance and shaft bowing faults. 

Damping is another factor that affects the response amplitude and phase. In most 
rotor-bearing systems, the damping ratio is relatively low. Nevertheless, to look into the 
damping effect in depth, cases with equal fault–weight ratios but with different damping 
ratios (underdamped, critically damped, and overdamped) were tested at sub-critical 
speeds (τ < 1). The diagnosis accuracy results for the fault components are shown in Table 
3 as RMSE values. 

Table 3. Comparison of RMSE values for fault components under different damping ratios. 

Fault Components 
Average RMSE 

ζ < 1 ζ = 1 ζ > 1 
Ux 1.17 × 10−5 2.93 × 10−5 1.05 × 10−5 
Uy 1.35 × 10−5 2.43 × 10−5 1.62 × 10−5 
sx 8.75 × 10−5 8.21 × 10−5 8.66 × 10−5 
sy 6.81 × 10−5 9.15 × 10−5 7.27 × 10−5 

As seen in Table 3, the RMSEs all fall in the order of 10−5 and the effects of the damping 
on the accuracy are not significant. 

4.2. Experimental Verification and Real-Time Diagnosis 
The model RK 4 Bently Nevada experimental rig depicted in Figure 6 was used for 

the rotor fault experiment. This consisted of a motor attached to a single-disk rotor. The 
motor ran counterclockwise as viewed from the motor side. The rotor shaft was upheld 
by simple, identical bearings of an unknown stiffness. The diameter of the rotor shaft was 
10 mm. A disk of 75 mm in diameter and 800 g in mass was mounted on the rotor shaft by 
radial screws. There were 16 tapped holes symmetrically placed on each side of the disk 
with flat faces at e = 30 mm to attach any desired amount of imbalance mass. Memstec 
Glory Laser CD3S-30 and CD3S-50 sensors were precisely positioned on the 
corresponding disk along the X and Y axes, which were positioned at a separation angle 
of 90 degrees. After installation, the sensors were integrated into the power supply system 
to ensure a reliable and uninterrupted power source to ease the measurement operation. 

Figure 5. Frequency responses for imbalance and shaft bowing faults.

Moreover, in Table 2, it is noteworthy that the equal scenario case exhibits much smaller
RMSE values than the others for both the imbalance and shaft bowing faults. This means
that the FNN diagnosis of the simultaneous imbalance and shaft bowing faults would be
the most accurate when the shaft bowing and imbalance faults are not unduly dominant.

Damping is another factor that affects the response amplitude and phase. In most
rotor-bearing systems, the damping ratio is relatively low. Nevertheless, to look into the
damping effect in depth, cases with equal fault–weight ratios but with different damping
ratios (underdamped, critically damped, and overdamped) were tested at sub-critical
speeds (τ < 1). The diagnosis accuracy results for the fault components are shown in Table 3
as RMSE values.
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Table 3. Comparison of RMSE values for fault components under different damping ratios.

Fault Components
Average RMSE

ζ < 1 ζ = 1 ζ > 1

Ux 1.17 × 10−5 2.93 × 10−5 1.05 × 10−5

Uy 1.35 × 10−5 2.43 × 10−5 1.62 × 10−5

sx 8.75 × 10−5 8.21 × 10−5 8.66 × 10−5

sy 6.81 × 10−5 9.15 × 10−5 7.27 × 10−5

As seen in Table 3, the RMSEs all fall in the order of 10−5 and the effects of the damping
on the accuracy are not significant.

4.2. Experimental Verification and Real-Time Diagnosis

The model RK 4 Bently Nevada experimental rig depicted in Figure 6 was used for
the rotor fault experiment. This consisted of a motor attached to a single-disk rotor. The
motor ran counterclockwise as viewed from the motor side. The rotor shaft was upheld
by simple, identical bearings of an unknown stiffness. The diameter of the rotor shaft was
10 mm. A disk of 75 mm in diameter and 800 g in mass was mounted on the rotor shaft by
radial screws. There were 16 tapped holes symmetrically placed on each side of the disk
with flat faces at e = 30 mm to attach any desired amount of imbalance mass. Memstec
Glory Laser CD3S-30 and CD3S-50 sensors were precisely positioned on the corresponding
disk along the X and Y axes, which were positioned at a separation angle of 90 degrees.
After installation, the sensors were integrated into the power supply system to ensure a
reliable and uninterrupted power source to ease the measurement operation.
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Figure 6. The rotor experiment platform.

The rotor in the study encountered flexible support conditions, whereby the stiffness
and damping coefficients were determined by the combination of the shaft and bearing
components in the rotor system, as shown in Figure 7. The support stiffness consisted of the
combination of Ks (shaft stiffness) and Kb (bearing stiffness). It is important to acknowledge
that the mass of the shaft, ms, cannot be ignored and it must be lumped into a certain
fraction with the mass of the disk, Md. To determine the amount of shaft mass to be lumped
with the disk mass, calculations can be carried out using an equivalent system. This entails
establishing an equivalent system by analyzing the total kinetic energy (KE) of the shaft
under the assumption of vibration in the static deflection mode.
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Subsequently, the effective mass of the shaft that should be lumped onto the disk is
0.48 ms. Additionally, the mass of the disk (Md) is increased by 0.48 ms. Therefore, the value
of Meq would be 0.96 kg.

The system’s overall stiffness is determined by the series connection of the shaft and
the bearings, as shown in Figure 7. The stiffness of the shaft under simple supports can be
easily calculated to be Ks = (48EI/L3). Nonetheless, the bearing stiffness Kb is difficult to
calculate theoretically; therefore, a practical approach is used to run the rotor experimentally
to identify its critical speed (ωcr), which was found to be 2300 rpm for the present case. The
identified system critical speed ωcr =

√
Keq/Meq can be used in reverse to evaluate the

bearing stiffness Kb.
The critical speeds associated with X and Y vibrations for an asymmetric rotor are

different. However, the asymmetry in the rotor rig is too small to be differentiable in the
vibration measurements. While evaluating the critical speeds, it was assumed that the
first recorded critical speed pertains to the Y direction. Additionally, it was noted that the
critical speed in the X direction, as referenced in prior research [48], is approximately 5%
greater than in the Y direction.

The damping ratios in the X and Y directions of the fundamental (1st) mode can be
calculated using the logarithmic decrement (LD) from the measured transient response
after shutting down the motor from steady operation, as shown in Figure 8. Nevertheless,
the LD is designed for a simple 1-dof vibratory system. The shaft-disk-bearing system on
the test rig, however, contains an infinite number of modes. The participation of higher
modes in the transient response inevitably interferes with the fundamental wave, as seen in
the saw-toothed waves. The rotor involves light damping, such that a slight interference at
the peak will make the succeeding peak greater than the previous. To avoid the noise from
higher frequencies, we picked two adjacent waves with the least interference in the peaks
and smoothed them out for the damping calculation. The values obtained after averaging
for ζx and ζy were 0.5% and 0.47%, respectively. Table 4 summarizes all model parameters
of the rotor-bearing system in the test rig.

The experimental rotor was connected to a computer, enabling the acquisition of data
via sensors, which were then analyzed using LabVIEW Version 20.0.1f1 (32-bit) software.
The rotor’s vibration signals were recorded by the sensors located on the rotor disk, mea-
suring the vibrations in both the X and Y axes. The rotor was subjected to single-frequency
excitation and the steady state response, as expected, showed an almost simple harmonic
wave, unlike the transient response in Figure 8. Figure 9 demonstrates one example of a
recorded sensor response, in which the red-colored dots represent the key phasor pulses in
the X and Y directions. The response phase angle φ is defined as the angular displacement
in degrees from the key phasor pulse to the first positive peak of the vibration amplitude.
From Figure 9, the estimated value of φx is roughly 110◦, whereas φy is approximately 200◦,
with φy lagging behind the X probe sensor by 90◦. This phase difference somewhat verifies
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the correctness of the data sequences, as the Y sensor is precisely positioned 90◦ behind the
X sensor.
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Table 4. Estimated model parameters of the rotor-bearing system in the test rig.

C Meq (kg) ζ Ks (kN/m) Kb (kN/m) Keq (kN/m) ωn (rad/s)

Y 0.96 0.47% 96.908 108.92 51.282 230.1
X 0.96 0.5% 96.908 135.72 56.538 241.6
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The vibration responses from the sensor outputs can be expressed as:

u(t) = Ax cos(Ωt − φx) = Ax cos(φx) cos(Ωt) + Ax sin(φx) sin(Ωt)
v(t) = Ay cos(Ωt − φy) = Ay cos(φy) cos(Ωt) + Ay sin(φy) sin(Ωt)

(27)
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where the vibration amplitudes and phases in the X and Y directions can be obtained from
Figure 9. The four feature responses (f 1, f 2, f 3, and f 4) from the experimental study can
be assessed using the equations shown above and Equations (20)–(23). This response can
be fed into a trained FNN implemented into the monitoring system for real-time fault
component (U, α, s, θ) diagnosis.

The disk in the test rig features 16 holes with an angular separation of 22.5◦ between
each hole, facilitating the determination of the imbalance phase angle α measured from the
key phasor. The formation of a small permanent shaft bow is difficult to control because the
shaft must be heated and bent to reach the plastic deformation region. Therefore, only two
shaft bows were employed in the study, each with residual bowing of 0.5 mm and 4 mm, as
shown in Figure 10. These shafts were installed on the rotor kit and the mass imbalances
on the disk were varied before initiating the rotor operation.
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The operational parameters were deliberately set to 1600 rpm and 3200 rpm, corre-
sponding to the sub-critical (τ = 0.69) and trans-critical speeds (τ = 1.39), respectively, given
initial bowing of 0.5 mm. In the interest of safety, the machinery was deliberately operated
at a speed far below the critical threshold during the initial bowing phase of 4 mm. This
experimental validation approach is used to determine an FNN’s capability in identifying
fault components related to imbalances and shaft bowing (U, α, s, θ). However, the real fault
component was employed with four different values while keeping s constant to estimate
the fault components using the FNN. A detailed comparison between the real experimental
data and the FNN’s estimated values is given in Tables 5–7. Each table illustrates four
scenarios of imbalance and shaft bowing combinations—case 1 reveals two fault angles in
the same quadrant with a difference, case 2 demonstrates the two fault angles in the phase,
case 3 depicts faults almost in the anti-phase, and case 4 demonstrates two faults almost
perpendicular to each other, i.e., almost a 90◦ difference.

In the following tables, the diagnosed errors are expressed as two types. First, they
are expressed in terms of the fault amplitude percentage error and the phase difference, as
shown in column 5. Columns 6 and 7, however, express the errors in terms of the in-line
and vertical amplitude error percentages ∆U//, ∆s// and ∆U⊥, ∆s⊥. The error in line with
the fault vector indicates the amplitude error, while the vertical component can be viewed
as the direction error. Based on the results presented in Table 5, it can be observed that
under sub-critical speeds and with the amplitude error of concern, the imbalance and shaft
bowing errors both exhibit the lowest values, as they are in-phase. The biggest errors for the
two faults occur in case 4, in which the two faults are perpendicular to each other. Table 6
shows similar cases to Table 5 except that the rotor was running at a trans-critical speed
of 3200 rpm. It can be observed that the lowest error value for the imbalance occurred in
case 4 and the lowest bow error value occurred in case 3. A peculiar feature can be observed
in Table 6, in which the shaft bowing exhibits significant error values of up to 38% for all
cases except case 3, when two faults were in the anti-phase. This is because the bowing
response diminishes at high speeds, such that the identification process generates larger
errors. Table 7 illustrates the case of s = 4 mm at a very slow running speed. Under such
conditions, the overall imbalance errors are bigger because the bow strongly dominates the
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response, such that the imbalance response becomes a fraction of the total response and
generates a larger error during the data fitting process. The lowest imbalance error happens
in the anti-phase situation. The overall shaft bow errors are small, except for case 4.

Table 5. Diagnosis error percentage at 1600 rpm (τ = 0.69) for initial bowing of 0.5 mm.

Case Faults Real Diagnosed Error Comp Error%

1 (same quadrant)

U 6 7.03 17.2% ∆U// 17.0
α 45◦ 48.80◦ 3.08◦ ∆U⊥ 6.3
s 0.5 0.36 28.0% ∆s// −28.4
θ 60◦ 53.95◦ 6.05◦ ∆s⊥ −7.6

2 (in-phase)

U 12 12.29 2.4% ∆U// −0.6
α 90◦ 76.14◦ 13.86◦ ∆U⊥ −24.5
s 0.5 0.58 16.0% ∆s// 14.6
θ 90◦ 81.16◦ 8.84◦ ∆s⊥ −17.8

3 (anti-phase)

U 24 21.28 11.3% ∆U// −13.1
α 225◦ 213.63◦ 11.37◦ ∆U⊥ −17.5
s 0.5 0.39 22.0% ∆s// −22.3
θ 30◦ 35.28◦ 5.28◦ ∆s⊥ 7.2

4 (perpendicular)

U 30 38.24 27.5% ∆U// 22.9
α 67.5◦ 82.88◦ 15.38◦ ∆U⊥ 33.8
s 0.5 0.35 30.0% ∆s// −30.0
θ 150◦ 147.87◦ 2.13◦ ∆s⊥ −2.6

Table 6. Diagnosis error percentage at 3200 rpm (τ = 1.39) for initial bowing of 0.5 mm.

Number Faults Real Diagnosed Error Comp Error%

1 (same quadrant)

U 6 4.4 26.7% ∆U// −27.7
α 45◦ 35.24◦ 9.76◦ ∆U⊥ 12.4
s 0.5 0.69 38.0% ∆s// 36.5
θ 60◦ 54.41◦ 8.59◦ ∆s⊥ 20.6

2 (in-phase)

U 12 13.34 11.2% ∆U// 10.3
α 90◦ 97.24◦ 7.24◦ ∆U⊥ 14.0
s 0.5 0.31 38.0% ∆s// −38.4
θ 90◦ 96.18◦ 6.18◦ ∆s⊥ 6.7

3 (anti-phase)

U 24 26.72 11.3% ∆U// 2.8
α 225◦ 202.39◦ 22.61◦ ∆U⊥ 42.8
s 0.5 0.54 8.0% ∆s// 5.9
θ 30◦ 18.68◦ 11.32◦ ∆s⊥ 21.2

4 (perpendicular)

U 30 28.41 5.3% ∆U// −7.0
α 67.5◦ 56.53◦ 10.97◦ ∆U⊥ 18.0
s 0.5 0.31 38.0% ∆s// −39.0
θ 150◦ 139.88◦ 10.12◦ ∆s⊥ 10.9

However, an observable error disparity related to the imbalance and shaft bowing
becomes apparent when the rotor is rotating over the critical speed, particularly above
3200 rpm. Investigating the vibration patterns caused by imbalance and shaft bow faults
suggests that a smaller discrepancy in inaccuracy occurs for the imbalance when the fre-
quency ratio surpasses one, which can be observed at 3200 rpm in Figure 5. Upon further
examination, it is evident that the imbalance error at 3200 rpm exceeds the prediction
based on the theoretical explanation. This variation is caused by various practical en-
gineering issues that can impact the results, adding complexities beyond the reduced
theoretical models.

For s = 4 mm at 650 rpm in this state, the rotor’s frequency ratio is lower than the
critical speed. Figure 5 shows that when the frequency ratio is smaller than one, the
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system’s behavior indicates that the response is mostly influenced by the shaft bowing
amplitude. This crucial finding suggests that in specific circumstances, the influence of
the shaft bowing on the system’s behavior is greater than that of the imbalance. The small
discrepancy in the error margins indicates that both types of faults have a substantial role
in the observed vibrations, despite their theoretical differences. The consistent error gaps
highlight the complex relationship between imbalance and shaft bow effects on the system’s
dynamic behavior. This shows a situation where both causes have similar effects, and their
combined impact is seen in the total inaccuracy in the system’s response.

Table 7. Diagnosis error percentage at 650 rpm (τ = 0.28) for initial bowing of 4 mm.

Number Faults Real Diagnosed Error Comp Error%

1 (same quadrant)

U 6 5.12 14.7% ∆U// −15.9
α 45◦ 54.71◦ 9.71◦ ∆U⊥ 14.4
s 4.0 4.17 4.2% ∆s// 0.8
θ 60◦ 74.84◦ 14.84◦ ∆s⊥ 26.7

2 (in-phase)

U 12 14.86 23.8% ∆U// 11.7
α 90◦ 64.39◦ 25.61◦ ∆U⊥ 53.5
s 4.0 4.27 6.8% ∆s// −4.7
θ 90◦ 116.83◦ 26.83◦ ∆s⊥ 48.2

3 (anti-phase)

U 24 30.28 26.0% ∆U// 24.3
α 225◦ 215.06◦ 9.94◦ ∆U⊥ 21.8
s 4.0 3.72 7.0% ∆s// −7.1
θ 30◦ 32.71◦ 2.71◦ ∆s⊥ 4.4

4 (perpendicular)

U 30 32.16 7.2% ∆U// −5.2
α 67.5◦ 39.63◦ 27.87◦ ∆U⊥ 50.1
s 4.0 3.0 25.0% ∆s// −29.7
θ 150◦ 169.19◦ 19.9◦ ∆s⊥ 25.4

The more significant disparities between the actual and diagnosed faults can be
prominently observed for all experiments, unlike the scenarios using simulated data, in
which very high accuracy rates were achieved. These larger errors may be attributed to
several causes. For instance, there may have been an existing imbalance and bowing before
we intentionally added the trial weight or because the notable clearance between the shaft
and bearing was not a good fit for the simple support assumption. Both of these issues
would generate vibration noises and reduce the diagnosis accuracy in the experiments.

In essence, this research demonstrates the efficacy of the combined physical model
and machine learning approach in identifying multiple faults. The integration of the
physical model ensures an accurate representation of the Jeffcott rotor system, while the
FNN provides efficient and reliable diagnosis capabilities. This research can provide new
possibilities for advanced rotor system diagnosis and maintenance strategies in various
industrial applications.

5. Conclusions

This study proposed a novel hybrid approach that combines model-based and ML
approaches to investigate imbalance and shaft bow monitoring for Jeffcott rotor-bearing sys-
tems in online settings. Initially, the physical model of the Jeffcott rotor system involved the
development of a mathematical model to determine the rotor parameters, generating a sub-
stantial amount of simulated fault data for the ANN model. The validated physical model
served as the basis for generating a significant volume of simulated data (10,000 datasets),
which was subsequently employed to train ML models such as our FNN. This dataset was
used in training, validating, and testing the models, ensuring their effectiveness in diagnos-
ing multiple faults. However, the FNN with 40 nodes exhibited the lowest RMSE, indicating
better performance. The FNN was tested in diverse conditions, including varying fault and
frequency ratios. Under these diverse conditions, using the simulated datasets, the FNN
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consistently demonstrated exceptional performance, particularly when the imbalance and
shaft bowing did not dominate each other. Moreover, to achieve higher diagnosis accuracy
for shaft bowing, the rotor should be run at low speeds, while higher speeds are better for
imbalance diagnosis.

The combinations of fault components (U, α, s, θ) were applied to the Jeffcott rotor
experiment, and the experimental data were obtained and fed into the trained FNN for in-
stant diagnosis. The FNN effectively identified and quantified faults within the system. The
results showed that both the imbalance and bowing faults exhibited their lowest diagnosis
error values, as these two faults were in-phase at sub-critical running speeds. At trans-
critical speeds, the imbalance error was lowest; however, the bowing error significantly
increased because the bowing response rapidly diminished.

These findings highlight the superiority of the hybrid approach and its potential for
enhancing the precision and reliability of imbalance and shaft bowing diagnosis in rotor
systems. The integration of the physical model ensures an accurate representation of the
rotating system, while the machine-learning-based approach provides efficient and reliable
diagnosis and monitoring capabilities. This hybrid approach is effective in identifying
multiple faults, specifically imbalances and shaft bowing issues, addressing the challenges
faced by conventional diagnostic techniques. Consequently, this study provides new
possibilities for advanced rotor system monitoring and maintenance strategies in various
industrial applications.
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