
Citation: Backhus, J.; Rao, A.R.;

Venkatraman, C.; Padmanabhan, A.;

Kumar, A.V.; Gupta, C. Equipment

Health Assessment: Time Series

Analysis for Wind Turbine

Performance. Appl. Sci. 2024, 14, 3270.

https://doi.org/10.3390/

app14083270

Academic Editor: José António

Correia

Received: 7 March 2024

Revised: 2 April 2024

Accepted: 3 April 2024

Published: 12 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Equipment Health Assessment: Time Series Analysis for Wind
Turbine Performance
Jana Backhus 1, Aniruddha Rajendra Rao 1,* , Chandrasekar Venkatraman 1, Abhishek Padmanabhan 2,
A. Vinoth Kumar 3 and Chetan Gupta 1

1 Industrial AI Lab, R&D, Hitachi America, Ltd., Santa Clara, CA 95054, USA
2 Centre of Excellence in Energy Sciences, Atria University, Bengaluru 560024, India;

abhishekp@atriauniversity.edu.in
3 Atria Brindavan Power Private Limited, Bangalore 560025, India; vinoth.kumar@atriapower.com
* Correspondence: aniruddha.rao@hal.hitachi.com

Abstract: In this study, we leverage SCADA data from diverse wind turbines to predict power
output, employing advanced time series methods, specifically Functional Neural Networks (FNN)
and Long Short-Term Memory (LSTM) networks. A key innovation lies in the ensemble of FNN
and LSTM models, capitalizing on their collective learning. This ensemble approach outperforms
individual models, ensuring stable and accurate power output predictions. Additionally, machine
learning techniques are applied to detect wind turbine performance deterioration, enabling proactive
maintenance strategies and health assessment. Crucially, our analysis reveals the uniqueness of each
wind turbine, necessitating tailored models for optimal predictions. These insight underscores the
importance of providing automatized customization for different turbines to keep human modeling
effort low. Importantly, the methodologies developed in this analysis are not limited to wind turbines;
they can be extended to predict and optimize performance in various machinery, highlighting the
versatility and applicability of our research across diverse industrial contexts.

Keywords: SCADA data; time series; wind turbine; prediction; classification; ensemble

1. Introduction

In an era marked by mounting concerns about the environmental impact of traditional
energy sources, the quest for sustainable and renewable alternatives has taken center stage
in the global discourse. The imperative to reduce greenhouse gas emissions, secure energy
independence, and mitigate the effects of climate change has driven a fundamental shift
in our approach to power generation [1,2]. At the forefront of this transformative journey
stands wind energy, a clean and abundant resource harnessed to provide a solution to our
growing energy needs while reducing our carbon footprint [3,4]. Wind turbines gracefully
punctuate landscapes symbolizing our commitment to a cleaner and more sustainable
future. However, the pursuit of harnessing the power of the wind comes with its own set
of challenges [5–7]. The intermittent nature of wind, the need for effective grid integration,
and the demands of operating and maintaining these complex machines have sparked a
revolution in how we manage and optimize wind energy facilities.

Sustainable maintenance practices ensure equipment availability, reliability, and safety
while minimizing environmental impact [8,9]. These practices focus on preventive main-
tenance, efficient resource use, and eco-friendly technologies. Integrating sustainability
into maintenance involves aligning activities with broader goals like reducing energy
consumption and waste generation. By adopting these practices, organizations enhance
operational efficiency, cut costs, and promote environmental conservation. At the heart of
Wind farm operation and maintenance revolution lies the Supervisory Control and Data
Acquisition (SCADA) system, a vital component that allows us to remotely monitor, control,
and collect crucial data from wind turbines [10,11]. The insights offered by data obtained
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from SCADA systems ensure the efficient operation of wind turbines but also play a pivotal
role in their longevity [12,13]. Refs. [14,15] discusses the use of SCADA data for Wind
Turbine Performance and explainable artificial intelligence. They also mention the potential
of multivariate time series analysis, which we have exploited in this work.

In this study, we leverage SCADA data from 13 wind turbines located in a wind farm
in India to predict the power output of the wind turbines, employing advanced time series
methods, specifically Functional Neural Networks (FNN) [16,17] and Long Short-Term
Memory (LSTM) networks [18]. A key innovation lies in an ensemble of FNN and LSTM
model to capitalize on their collective learning to make a more effective prediction. This
approach outperforms the individual models, ensuring high accuracy of the power output
predictions when wind turbine is in a good state (good timeline) and significantly lower
accuracy when the wind turbine is in a bad state (bad timeline). This difference is crucial in
making sure we are learning the correct mapping between the features and power output
of a wind turbine. Then, statistical techniques are applied to the prediction performance
errors to detect wind turbine deterioration, enabling proactive maintenance strategies and
health assessment.

Our analysis leads to the important understanding that the uniqueness of each wind
turbine necessitates tailored models for optimal predictions. This highlights the significance
of offering automated customization for different turbines to minimize human efforts for
modeling. Importantly, the methodologies devised in this analysis are not restricted
to wind turbines; they can be extended to various other machinery to enhance their
performance. This showcases the versatility and relevance of our research across a wide
range of industrial settings.

This research is part of an effort to leverage equipment related data to analyze the
health of the equipment where multiple entities are placed in a similar environment,
but each entity is showing slightly different behavior [19,20]. The goal of this study is
to develop methodologies that are not limited to our first target of wind turbines but
can be extended to predict and optimize equipment performance in various machinery.
Furthermore, we assume that it will be too much human effort to fine-tune a prediction
model for each machine entity and therefore we explore machine learning methodologies
that are robust enough to perform considerably well over all entities. In summary, this is
an initial study that we hope to extend into a more versatile and applicable research across
diverse industrial contexts in the future.

The rest of this paper is organized as follows: In Section 2, we first describe the data
before diving into the methods, model settings and our approach. We follow this the results
of the power output prediction for the wind turbines and the deterioration detection for
them in Section 3. Section 4 discusses the results and our understand and insights from
the experiments. We also share the validation we got from domain experts. In the final
section, we present our concluding remarks and future research directions which pertain
explainable analysis, adaption of our work in the wind farms and other improvements.

2. Data and Methods
2.1. Data

A SCADA dataset for wind turbine power generation collects real-time operational,
environmental, anomalous, electrical, and communication data from individual turbines or
across an entire wind farm [21,22]. It encompasses turbine status (on/off, power output,
rotor speed), environmental conditions (wind speed, direction, temperature), alarms for
irregularities, electrical parameters (voltage, current), and communication details. The
initial SCADA dataset measures approximately 2000 different features. We have limited our
scope of interest, however, before downloading the data from a data collection server [7],
to keep the data size small. Therefore, we have excluded all features that are metadata
like timestamps or Boolean values related to wind turbine status. For our study, we are
interested in the power generation performance of each individual wind turbine. Therefore,
we mainly focus on the measurements of actual power output and any related factors. We
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have chosen relevant parameters based on the following turbine components: e.g., rotor,
pitch, gearbox, nacelle, power, and environmental information like wind [23].

After downloading an initial dataset with 76 features, we have conducted an ex-
ploratory data and correlation analysis on one wind turbine (no. 5) to further downsize
the dataset of interest. The wind turbine was selected based on domain information that it
has active pitch alignment and is considered one of the better performing wind turbines.
We were able to decrease the feature set to 24 features, omitting 9 features because of rare
changes in values and 43 features because of very high correlation (larger than 0.9) to at
least one other feature. The correlation heatmap of the remaining features of interest is
shown in Figure 1. Here, we highlighted the row and column for the actual power output
(“WTUR.W.mag.f”) which is our target feature of interest to evaluate the power generation
performance of a wind turbine. We also added an additional feature to the heatmap which
is a calculation of the sinus radius of the wind direction, where the original wind direction
values are given in degrees.

Figure 1. Correlation Heatmap between Features of Interest (the Power output is denoted using the
Black box).

Figure 2 shows the actual power output of the 13 wind turbines over the available
time frame from end of October 2022 to early June 2023. The timelines colored in orange are
considered “good” based on initial information received from the data provider. We also
got informed that the whole wind farm is known to show “bad” performance between mid
of November to mid of December 2022 due to dust collection. Furthermore, we can observe
in Figure 2 that there are several periods of missing data mostly caused by temporary
shutdowns of the SCADA data collection system.
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Figure 2. Actual power output of the 13 wind turbines (black: bad performance, orange: good performance).

2.2. Methods

In predicting power outputs, traditional and statistical methods have long been em-
ployed to model relationships between variables [24–27]. Traditional machine learning
methods like linear regression are fundamental tools, assuming a linear relationship be-
tween predictors and the power function output [28]. Polynomial regression, an extension
of linear regression, can capture more complex relationships by introducing polynomial
terms. These methods, while interpretable and computationally efficient, might struggle to
capture intricate nonlinear patterns present in power functions, limiting their accuracy [29].
They also ignore the temporal nature of the data. We therefore consider two different
time series prediction approaches using Deep Learning (DL) methods, which have been
show to be most successful in the literature [17,30–32], for our wind turbine power output
prediction as described in the following two sections.

2.2.1. Long Short-Term Memory (LSTM)

Recently, deep learning methods, especially recurrent neural networks (RNNs) and
long short-term memory networks (LSTMs) [18], have revolutionized the time series
prediction landscape [31,33]. When applied to power function prediction, these DL methods
can capture intricate dependencies and nonlinearities inherent in the data. Additionally,
convolutional neural networks (CNNs) can be employed to capture spatial patterns within
the data [32]. Deep learning models, while computationally intensive, offer the advantage
of automatic feature extraction, enabling them to discern complex relationships, and
making them highly effective in accurately predicting power functions even in dynamic
and intricate scenarios. Their ability to handle vast amounts of data and learn hierarchical
representations often leads to superior performance in power function prediction tasks [34].

LSTM is a type of RNN architecture, specifically designed to capture long-term depen-
dencies in sequential data, making them ideal for predicting power functions over time as
seen in Figure 3. Traditional RNNs often struggle with learning patterns in data sequences
that are separated by many time steps. LSTMs were introduced to address this issue by
incorporating memory cells and sophisticated gating mechanisms. LSTMs are widely used
in various applications such as natural language processing, speech recognition, and time
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series prediction due to their ability to capture long-term dependencies in sequential data.
LSTM components are as follows:

1. Hidden state & new inputs—hidden state from a previous timestep (ht−1) and the
input at a current timestep (xt) are combined before passing copies of it through
various gates.

2. Forget gate—this gate controls what information should be forgotten. Since the
sigmoid function ranges between 0 and 1, it sets which values in the cell state should
be discarded (multiplied by 0), remembered (multiplied by 1), or partially remembered
(multiplied by some value between 0 and 1).

3. Input gate helps to identify important elements that need to be added to the cell state.
Note that the results of the input gate get multiplied by the cell state candidate, with
only the information deemed important by the input gate being added to the cell state.

4. Update cell state—first, the previous cell state (ct−1) gets multiplied by the results of
the forget gate. Then we add new information from [input gate × cell state candidate]
to get the latest cell state (ct).

5. Update hidden state—the last part is to update the hidden state. The latest cell state
(ct) is passed through the tanh activation function and multiplied by the results of the
output gate.

6. Finally, the latest cell state (ct) and the hidden state (ht) go back into the recurrent unit,
and the process repeats at timestep t + 1. The loop continues until we reach the end of
the sequence.

Figure 3. LSTM Cell (https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-
teach-a-network-to-remember-the-past-55e54c2ff22e, accessed on on 15 January 2024).

2.2.2. Functional Neural Networks (FNN)

On the other hand, Functional data analysis (FDA) [35–37] is a branch of statistics
that deals with data that are functions or curves, rather than simple numeric or categorical
values. In FDA, the data is treated as a continuous function, and the goal is to analyze and
model the behavior of the function over time or space. FDA methods allow researchers
to extract meaningful information from functional data, such as trends, patterns, and
underlying structures. This information can then be used to develop models and make
predictions or forecasts. A Functional Linear Model (FLM) [38,39] is a statistical model used

https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-network-to-remember-the-past-55e54c2ff22e
https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-network-to-remember-the-past-55e54c2ff22e
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in FDA that extends the linear regression model to functional data. It is designed to handle
data that consists of a collection of curves or functions, rather than discrete data points.
The FLM assumes that the relationship between the response variable and the predictor
variables can be represented by a linear function, but with a functional rather than scalar
form. The predictor variables can be either functional or scalar and can be continuous
or categorical. In FLM, the functional form of the predictor variable is expressed using a
basis expansion of a finite set of basis functions. These basis functions can be any set of
orthogonal functions that span the space of functions under consideration. For example,
Fourier, wavelet, or B-spline basis functions can be used.

Traditional time series techniques rely on statistical methods, such as ARIMA, expo-
nential smoothing, and FLM. These methods have been widely used for decades and have
proven to be effective in many applications. However, they have some limitations, such as
being sensitive to the assumptions made about the data and the need for manual feature
engineering. One of the more popular deep learning models for time series prediction
is Functional Neural Networks (FNN) [30,40], that have been shown to outperform tra-
ditional time series models in many applications due to their ability to handle complex
and nonlinear relationships in the data. This is particularly useful in applications where
the relationships between variables are not well understood or there are many interacting
factors. A Functional Neural Network (FNN) [16,17] as shown in Figure 4, is composed of
a series of interconnected continuous neurons that are designed to process functional data.
The input layer of the network takes in functional data, and each continuous neuron given
by Equation (1) in the continuous hidden layer performs a non linear transformation on the
input data or values coming in from the previous layer. The output layer of the network
produces a functional output that can be used for prediction or forecasting.

H(r)
(l) (s) = σ

(
b(r)
(l) (s) +

J

∑
j=1

∫
w(r,j)
(l) (s, t)H(r,j)

(l−1)(t)dt
)

, (1)

where l indicates the layer number and r, j are the neuron number, l = 1, 2, 3, . . . , L,

H(r)
(0)(s) = Xr(s) (input time series), H(r)

(L)(s) = Ŷr(s) (output time series), σ(·) is a non-linear

activation function, b(r)
(l) ∈ L2(T ) is the unknown intercept function, w(r,j)

(l) ∈ L2(T × T )

is the bivariate parameter function for the rth continuous neuron in the lth hidden layer
coming from the jth continuous neuron of the (l − 1)th hidden layer.

Figure 4. The general architecture of Functional Neural Network (FNN).

The architecture of FNN can vary widely, depending on the specific application and
the complexity of the data. The training typically involves backpropagation through
functional derivatives or basis expansion, a method that adjusts the weights of the network
to minimize the error between the predicted output and the actual output. The choice of
loss function and optimization algorithm also impacts the performance of the network.
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2.3. Model Settings
2.3.1. Hyperparameter Search

To obtain robust power prediction results over all wind turbines, we have conducted an
exhaustive hyperparameter search in a grid search manner to understand the performance
of the model settings over the dataset with different feature selections. The experiments
were conducted separately for two network types: LSTM and FNN. In the end, we have
settled on a small set of selected features which are described in Table 1 for the two
model types.

Table 1. Selected Features for LSTM and FNN.

Model Selected Features Total No. of Features

LSTM

Wind Speed

Generator Speed

Rotator Blade Pitch Angle× Generator Speed

Rotator Blade Pitch Angle×Wind Speed Turbulences

4

FNN

Wind Speed

Generator Speed

Wind Speed × Generator Speed

Wind Speed Turbulences

4

For the hyperparameters, we have not only investigated different model sizes but also
tested different activation functions (i.e., tanh, ReLU, LeakyReLU, ELU, Sigmoid), learning
rates, and error criterions (i.e., MSE, MAE). In addition, wind turbine power output is
generally limited to a maximum and minimum possible power output and our models were
often over- or underpredicting these limits. Therefore, we have also experimented with
different output cutoff methods such as tanh, sigmoid, and a hard cutoff at the minimum
and maximum. For the experiments presented in this study, we set our hyperparameters as
stated in Table 2.

Table 2. Hyperparameter Settings for LSTM and FNN.

Model Activation Function Loss Error Output Cutoff Learning Rate Network Size

LSTM ReLU MSE Hard cutoff 0.001
Hidden Size = 2

Common Channel = 24

FNN ELU MSE Sigmoid 0.01

Hidden Size = 1

Common Channel = 20

Common Size = 40

2.3.2. Ensemble Method

Ensemble methods involve the amalgamation of multiple machine learning models’, a
strategy proven to elevate predictive performance, and the ability to combat overfitting,
a prevalent issue in machine learning [41,42]. Ensemble methods have gained a lot of
popularity in recent years for different time series tasks [43,44]. Amalgamations can iron
out inconsistencies and errors inherent to individual models, reducing bias and variance in
the final predictions and leading to enhanced generalization capabilities even in the face of
noisy data and outliers. Ensembles can be achieved through a variety of techniques, includ-
ing employing different algorithms [45], training on distinct data subsets [46], and utilizing
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varying feature selection strategies [47]. By virtue of their diversity in model composition,
ensembles often produce superior, more reliable prediction across various scenarios.

2.3.3. Deterioration Detection Approach

In this study, we leverage the strengths of ensemble methods by amalgamation of the
prediction outputs of our separately trained models for FNN and LSTM with an equal
weighting of 0.5. Additionally, we investigate a wind turbine equipment health assessment
method that leverages the prediction outputs of the ensemble model and compares it to the
real outputs by calculating the root mean squared error (RMSE) and the root mean squared
percentage error (RMSPE) that are defined in Equations (2) and (3) respectively.

RMSE =

√
1
n

Σn
i=1

(
Yi − Ŷi

)2
(2)

RMSPE =

√√√√√Σn
i=1

(
Yi − Ŷi

)2

Σn
i=1Yi

(3)

Our expectation is that the prediction model is trained on the good timeline. If the
measured prediction errors increase then it means that the wind turbine power output
diverges from the expected power output and the wind turbine performance has degraded.
We can calculate RMSE and RMSPE cutoff limits based on the validation dataset for the
good timeline. With these cutoff limits, we can detect a degradation in performance of the
wind turbine from newly arriving data by comparing predicted and true power output
values. An overview of the whole proposed method is shown in Figure 5.

Figure 5. Deterioration Detection Method Overview.

3. Results
3.1. Prediction Models

Figure 6 shows the overall flow of our proposed prediction method. In the follow-
ing, we present the obtained results for prediction and deterioration detection. We have
conducted many trial and error studies, where we experimented with LSTM and FNN
time series modeling and compared the prediction outputs based on the RMSE. For these
studies, we separated the data into “good” and “bad” performing time periods based on
domain knowledge obtained from the data provider. A power output prediction model for
each wind turbine was trained based on it’s “good” data timeline and then tested on both a
subset of “good” and “bad” data timelines.
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The training, validation, and test data for the good timeline are created based on
randomly ordered three-day time windows to account for different seasons in the training
data. To increase the number of samples in the training, validation, and test data, we have
used a sliding window approach as depicted in Figure 7. First, we assign hourly resampled
data to a 3-day long day group and then apply a sliding window approach within each
3-day group. This makes sure there is no data leakage. With this approach, we can increase
the number of total samples while enabling the random assignment the training, validation,
or test dataset. For our first prediction evaluation, we created the test dataset for the bad
timeline in a similar manner, and we have aligned the randomization over all wind turbines
to compare the same timelines in the same training, validation or test categories.

Figure 6. Workflow for wind turbine power output prediction.

Figure 7. Sliding window approach for 3-day time periods.

An example of how such power output predictions would look like for a sample wind
turbine no. 15 using LSTM and FNN model is shown in Figures 8 and 9 respectively for
both “good” and “bad” test datasets. We can clearly observe that the prediction model is
often overpredicting the power output for the bad timeline datasets, which indicates that
the maximum power output could be potentially higher and there is an issue with the wind
turbine performance. The poor performance can also be confirmed on the bad timeline
data’s power curves for the wind and generator speed (right side of Figures 8 and 9), as it
deviates away from it’s sigmoid behaviour. Comparing the predictions of LSTM and FNN,
we observe that LSTM achieves a higher prediction accuracy on both good and bad test
datasets whereas FNN offers more separation between them.
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Figure 8. LSTM Model prediction output for both good and bad data periods (blue: true values,
orange: predicted values).

Figure 9. FNN Model prediction output for both good and bad data periods (blue: true values,
orange: predicted values).

This observation can be further confirmed in Figure 10 that shows the RMSE for
predictions of three different models LSTM, FNN and an ensembled prediction model
where LSTM and FNN predictions are accounted for with equal weights. Overall, we
can conclude that the LSTM model performs better on all 13 wind turbine indices for
both good and bad test datasets in comparison to FNN. However, the LSTM model also
performs suspiciously well on the bad test datasets compared to the good datasets for
the wind turbines no. 3, 4, 13, 14 and 17 (highlighted in red in Figure 10). The model
might be overfitting. Since we want to leverage the prediction accuracy as an indicator of
performance deterioration, we need a high performance accuracy on good timelines and a
poor performance accuracy on bad timelines, the latter part is provided by FNN. We achieve
this by combining the LSTM and FNN model predictions in an equally weighted ensemble
shown on the right side of Figure 10. The green highlights indicate the best performing
model for each of the wind turbine on the good timeline test datasets. The ensemble model
achieves a similar performance on good timeline datasets and even outperforms LSTM
prediction accuracy in four cases (for wind turbine no. 4, 5, 9 and 13). We also achieve a
bigger gap between prediction accuracy’s for the good timeline and bad timeline datasets.
For the ensemble method, no wind turbine prediction model performs better on the bad
timeline dataset compared to the good timeline dataset.
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Figure 10. Ensemble Prediction Performance Comparison.

Figure 11 shows the prediction performance for our previous example wind turbine
no. 15 for the good timeline and bad timeline test datasets. The performance stays robust
for the good timeline dataset but prediction performance deterioration for the bad timeline
dataset is now much clearer. In Figure 12, we show the prediction results (RMSE) for the
“good timeline” test dataset over all wind turbines for the ensemble prediction model. The
first column of the table is the wind turbine no. on whose training data the wind turbine
prediction model was built. Each wind turbine prediction model was used to not only
predict the power output for its own test dataset but for all other wind turbines’ “good
timeline” test datasets as well. The obtained results are interesting, there’s an overall
tendency we can observe that each wind turbine is performing comparably well on its own
test dataset as shown by the light green highlights indicating the minimum performance
error of each column that often aligns with a wind turbine’s own prediction model. Also,
we can observe that performance results are mostly worst for wind turbine 8 (red highlight
indicates max performance error of each row) and best for wind turbine 15 (dark green
highlight indicates minimum performance error of each row). Wind turbine 8 might be
affected by factors that are not considered in the selected features (or some unknown
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external features) making the power prediction more difficult while wind turbine 15 is the
most straight forward to predict.

Figure 11. Ensemble Model prediction output for both good and bad data periods (blue: true values,
orange: predicted values).

Figure 12. Ensemble Prediction Results over all good timeline test datasets (best and worst values
are highlighted per row/column as dark green: best in row, red: worst in row, light green: best in
column, orange: worst in column).

In Figure 13, we can see the ensemble model prediction results (RMSE) for the bad
timeline test dataset over all wind turbines. The first column of the table is the wind turbine
no. on whose good timeline training dataset the prediction model was built. We used the
prediction models for each wind turbine to not only predict the power output for its own
test dataset but for all other wind turbines’ “bad timeline” test datasets. Overall, we can
observe that each wind turbine is performing worse compared to the “good timeline” test
datasets in Figure 12. Also, we can observe that prediction performance results are worst
for wind turbine 8 and best for wind turbine 2 regardless of the chosen prediction model.
On the other hand, the prediction model for wind turbine no. 3 achieves the overall best
prediction performance (light green highlights for the best entry in each column) and wind
turbine no. 5 the worst (orange highlights for worst entry in each column).

In summary, Figure 12 showed us that the best prediction model for a wind turbine is
based on its own training data. Results of Figure 13 on the other hand showed that there
might be one wind turbine prediction model that is overachieving on the bad timeline of
another wind turbine. Therefore, we can’t use any one of the wind turbine’s prediction
model for other wind turbines’ performance prediction. This supports our claim that each
wind turbine (or equipment) is unique and has different feature settings, hence they can’t
be considered as homogeneous. Therefore, we have decided to predict power output for
each wind turbine separately.
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Figure 13. Ensemble Prediction Results over all bad timeline test datasets (best and worst values
are highlighted per row/column as dark green: best in row, red: worst in row, light green: best in
column, orange: worst in column).

3.2. Deterioration Detection

For deterioration detection, we have to find the balance between good performance
on the good timeline and bad performance on the bad timeline. This needs to be achieved
over a range of wind turbines (or other equipment) individually. The ensemble prediction
method shows the most robust performance and therefore is our time series prediction
method of choice.

For deterioration detection, we use a continuous time period with good and bad
timelines to test the performance of our approach. Figure 14 is showing an example test
timeline for wind turbine no. 15 that has good and bad timelines. The bad timelines are
labeled by the value 1 indicated by the orange line on the secondary y-axis. All labels were
manually assigned according to the available information from the data provider.

Figure 14. Test Data for Wind Turbine 15 with Labels for deterioration detection.

Figure 15 shows the power output prediction results (orange line) in regard to the
actual power output (blue line). For overlaps between the actual and the predicted power,
the line appears slightly grey. The predicted power outputs are obtained for each wind
turbine based on the workflow presented in Figure 6 using the ensemble prediction method.
We can observe that the RMSE (red line, scale on secondary y-axis), calculated for 24-h
windows, is generally lower in the very beginning and in the middle of the presented test
timeline. This observation matches with the time periods that we have identified as “good
timelines” based on our domain knowledge.

To detect deterioration in the performance of a wind turbine, we want to establish a
prediction model performance baseline using RMSE or RMSPE metrics leveraging valida-
tion data, i.e., a known good timeline dataset that wasn’t used during model training. This
baseline can then be compared to the prediction performance of a test dataset where the
real wind turbine output performance is unknown. Figure 16 shows an example of this
process for wind turbine no. 15. The first graph shows the validation data and its RMSPE
(green line on secondary y-axis). Once RMSPE value is calculated for each 24-h window
hence the green line is cut off early in the plot and RMSE can be calculated in the same
manner. Then, we use the obtained RMSE/RMSPE values to calculate value cutoff limits
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using simple statistics. For this research, the cutoff limits are calculated individually for
each wind turbine prediction model using the 90% percentile RMSE value and the 95%
percentile RMSPE value based on the validation data. Thus, dynamic cutoff limits can
be calculated based on the prediction quality for each wind turbine. The cutoff limits are
then used to identify if an RMSE/RMSPE value observed for the test data suggests a wind
turbine performance deterioration or not. Examples of this can be seen in Figure 16 for
wind turbine no. 15, where the second plot shows the RMSE based deterioration labels in
red and true labels in purple. The third plot shows similar information for RMSPE with true
labels in purple and identified labels in green. The two plots in the last row of Figure 16
show the confusion matrices for RMSE and RMSPE respectively. The plots give us insights
into the performance deterioration classification accuracy of the two metrics. Our proposed
performance deterioration approach performs better when we use the RMPSE metric. We
observe 100% precision, meaning that if the wind turbine is in a good state, we are al-
ways able to classify this correctly. There are cases when the method is unable to detect
deterioration correctly, especially when the expected power output is in a lower value
range or at the beginning/end of a bad performing time period. Performance deterioration
might therefore be harder to detect when wind speed and actual power output are low.
We conclude that the impact of deterioration is felt more during times where the expected
power output is supposed to be high.

Figure 15. Power Output Prediction Results for all Wind Turbines.

Figure 17 shows a second deterioration detection example for wind turbine no. 8,
which we observed previously as the most difficult wind turbine to achieve good prediction
results for as shown in Figures 12 and 13. For this wind turbine, the classification accuracy
for the deterioration task is slightly lower. The observed F1-score is 0.631 for the RMSPE
metric and the lower score is observed because less of the bad performing time periods
are actually identified as bad and some good performing time periods also have been
wrongly identified as bad. In the following Table 3, we calculate the overall weighted F1
classification score to account for the imbalance in the classes for each wind turbine to
understand the overall performance of our proposed method. In addition to the RMSE
and RMSPE metrics, we also added a mixed metric version where a bad time period is
identified if either RMSE or RMSPE value cutoff limits are triggered. Overall, we observe
the highest classification performance for the mixed metric that outperforms the other two
approaches in 10 out of 13 cases. In the other cases, the performance is equal or slightly
worse compared to the RMSPE approach. The RMSE approach never performs the best and
only beats the RMSPE approach for wind turbine no. 3 and 8. The reason why the relative
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percentage error like RMSPE works better is that the bad performing time periods include
expected low value power outputs that are harder to detect when only using statistically
calculated cutoff limits based on an absolute value. Therefore, our conclusion is to use the
mixed approach for getting the best performance in deterioration detection.

Figure 16. Deterioration Detection for Wind Turbine 15 where (a) denotes the true (blue line) vs.
predicted (orange line) power output for a validation dataset with RMSPE for groups of samples
(green line), and for a test dataset: (b) the real (purple line) and deterioration labels using RMSE (red
line), (c) the real (purple line) and deterioration labels using RMSPE (green line), (d) confusion matrix
based on RMSE and (e) confusion matrix based on RMSPE.

Figure 17. Deterioration Detection for Wind Turbine 8 where (a) denotes the true (blue line) vs.
predicted (orange line) power output for a validation dataset with RMSPE for groups of samples
(green line), and for a test dataset: (b) the real (purple line) and deterioration labels using RMSE (red
line), (c) the real (purple line) and deterioration labels using RMSPE (green line), (d) confusion matrix
based on RMSE and (e) confusion matrix based on RMSPE.
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Table 3. Weighted F1-Score Results for RMSE, RMSPE, and Mixed Metric.

Wind Turbine RMSE RMSPE Mixed

2 0.661 0.737 0.783
3 0.710 0.704 0.775
4 0.537 0.747 0.793
5 0.407 0.516 0.634
6 0.549 0.890 0.878
7 0.490 0.876 0.876
8 0.675 0.600 0.720
9 0.526 0.823 0.812
13 0.457 0.720 0.768
14 0.485 0.605 0.648
15 0.748 0.816 0.873
16 0.717 0.754 0.757
17 0.573 0.883 0.892

4. Discussion

In the following section, we will discuss the results and benefits of the proposed
method. In summary, we have proposed a wind turbine output prediction modeling and
deterioration detection method that takes data from a wind turbine and then trains a
prediction model to conduct deterioration detection on newly observed data. While the
approach processes each wind turbine separately, the workflow is automatized in a manner
where fine-tuning to the needs of each turbine is not necessary.

The results for the power output prediction show that not all wind turbines achieve
the same prediction performance due to differences in their feature settings even though the
turbines were physically placed in a similar environment within a short distance from each
other. It is therefore important to create separate prediction models for each wind turbine.
Furthermore, our previous discussion based on Figure 10 showed that it is hard to choose
a specific time series prediction method, LSTM or FNN, over another for all the wind
turbines and an ensemble is a good approach to stabilize the prediction results achieving
good prediction accuracy on the good timelines and distinguishably worse prediction
performance on the bad timelines.

For the deterioration detection, we have shown an overview of all wind turbines’
power output prediction performance plotted for a continuous test dataset in Figure 15.
The overall periods of good and bad performance are similar for the deterioration detection
of all wind turbines showing that the wind turbines are operating under similar conditions.
On the other hand, our experiments showed the uniqueness of each wind turbine. This
makes us confident that there is value in using our ensemble model for prediction to detect
deterioration of wind turbine individually. The overall F1-scores as shown in Table 3 are
between 0.634 and 0.892 for all wind turbines for a mixed error metrics. In addition, it
is not necessary for deterioration detection to identify all labels correctly. If we can keep
the number of false positives low during “good timeline” data periods while detecting
continuous phases of bad performance during “bad timeline” periods, it will be possible
for a wind turbine operator to use these results to improve overall wind turbine power
output in a quick manner. Even a fraction of an improvement will result in an improved
business value.

Our work can identify deteriorating performance in wind turbines therefore enabling
better planning for the maintenance and repairs of wind turbines. The proposed deterio-
ration detection approach can also be applied to other equipment and help improve the
performance of those industry machinery. Running machines at lower efficiency leads
to faster wear and tear as well as revenue loss, and our work supports to mitigate these
risks. The obtained results are promising and it will be interesting to apply our work to
other machines/equipment. The accurate prediction of power output over a group of
wind turbines using the same method is challenging because of the differences in external
and internal factors and how they affect the wind turbines. Currently, data is limited,
and training/validation has to be conducted on a relatively small dataset, especially for
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the second part of deterioration detection. More experiments need to be done over a
longer horizon to understand the performance better. Also, it is essential to consider the
implications of reducing or increasing the number of features in wind turbine deterioration
analysis. A sensitivity analysis could provide valuable insights into the impact of different
features on the model’s performance. For instance, determining which features have the
most significant influence on deterioration predictions could help prioritize maintenance
efforts. Additionally, conducting bootstrapping or cross-validation for parameter setting
can enhance the model’s robustness and reliability. These techniques can help ensure that
the deterioration analysis accurately reflects the real-world behavior of wind turbines,
thereby improving maintenance planning and overall operational efficiency.

We shared our comprehensive analysis with Atria Power, the owner of the wind
turbine farm, and they found it to be valuable. The insights derived from our analysis
align closely with the operational dynamics of their wind turbines, providing them with
actionable intelligence to enhance their operations. Atria Power is excited about the
prospect of implementing these insights and is eager to explore how our findings can
be integrated into their existing processes. They perceive a significant potential in this
collaboration, recognizing the opportunity to improve efficiency, reliability, and overall
performance of their wind turbine operations.

5. Conclusions

We have demonstrated how to efficiently predict the power output of a wind turbine
using SCADA data and then to leverage these predictions to detect possible performance
deterioration. This analysis can be extended to any machine and helps to proactively
maintain such equipment in a healthy state, to run them optimally and to get the best
performance while maximizing profit for the business/company.

Our presented results showed that we were able to predict deterioration for all wind
turbines where the classification F1-score was between 0.634 and 0.892. We achieved this
with an automatized workflow that can create a prediction model based on training data,
predict outputs for a validation dataset to calculate performance cutoff limits, and then label
newly observed test data as good or bad performing. Although we did some initial trial
and error to achieve a stable prediction performance over all wind turbines, we refrained
from fine-tuning/specializing prediction models to the needs of specific wind turbines or
do anything that might make application in a real-world business scenario difficult. Thus,
the our approach demonstrates to be a valuable asset in wind farm maintenance, offering
additional insights to enhance the current maintenance strategy, which relies on scheduled
inspections and alarms triggered by exceeding static threshold values.

For future work, we aim to extend the scope of our research by exploring additional
deep neural networks and time series prediction approaches to further enhance our ap-
proach. Extending our analysis to encompass broader class of machinery will allow us to
generalize our findings and contribute to a more comprehensive understanding of predic-
tive maintenance. Additionally, incorporating a Functional Basis Neural Network with
Fourier or wavelet functions holds promise for improving modeling results, warranting
further investigation. We plan to incorporate our work to more Atria Power Wind Farms
as next steps. Another important avenue is understanding the important features and their
impact. Finally, expanding our time scope beyond six months will enable us to capture and
account for all seasonalities, other kinds of bad states, providing a more comprehensive
assessment of performance over time.

Author Contributions: Conceptualization, J.B., A.R.R., C.V. and C.G.; Methodology, J.B., A.R.R. and
C.V.; Validation, J.B., A.R.R., A.P. and A.V.K.; Formal analysis, J.B. and A.R.R.; Investigation, J.B. and
A.R.R.; Writing—original draft, J.B. and A.R.R.; Writing—review & editing, J.B., A.R.R., C.V., A.P.,
A.V.K. and C.G.; Supervision, C.V. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.



Appl. Sci. 2024, 14, 3270 18 of 20

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets presented in this article are not readily available because
the data are part of an ongoing study or is not permitted to share readily with everyone, etc. Requests
to access the datasets should be directed to Atria Power.

Acknowledgments: We would like to extend our sincere gratitude to Atria Power for their invaluable
contribution of data and insights that greatly enriched our research. Their willingness to share their
expertise and resources has been instrumental in enhancing the depth and quality of our work. We are
truly thankful for their collaboration and support, which has been pivotal in achieving our objectives.

Conflicts of Interest: Jana Backhus, Aniruddha Rajendra Rao, Chandrasekar Venkatraman, and
Chetan Gupta were employed by Hitachi America, Ltd. A. Vinoth Kumar was employed by Atria
Brindavan Power Private Limited. The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed as a potential
conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DNN Deep Neural Network
FDA Functional Data Analysis
FLM Functional Linear Model
FNN Functional Neural Network
TS Time Series
LSTM Long Term Short Memory
RMSE Root Mean Squared Error
RMSPE Root Mean Squared Percentage Error
RNN Recurrent Neural Network
SCADA Supervisory control and data acquisition

References
1. Gernaat, D.E.; de Boer, H.S.; Daioglou, V.; Yalew, S.G.; Müller, C.; van Vuuren, D.P. Climate change impacts on renewable energy

supply. Nat. Clim. Chang. 2021, 11, 119–125. [CrossRef]
2. Koch, H.; Vögele, S.; Hattermann, F.F.; Huang, S. The impact of climate change and variability on the generation of electrical

power. Meteorol. Z. 2015, 24, 173–188. [CrossRef]
3. Porté-Agel, F.; Bastankhah, M.; Shamsoddin, S. Wind-Turbine and Wind-Farm Flows: A Review. Bound.-Layer Meteorol. 2019,

174, 1–59. [CrossRef] [PubMed]
4. Pryor, S.C.; Barthelmie, R.J.; Bukovsky, M.S.; Leung, L.R.; Sakaguchi, K. Climate change impacts on wind power generation. Nat.

Rev. Earth Environ. 2020, 1, 627–643. [CrossRef]
5. Veers, P.S.; Dykes, K.; Lantz, E.J.; Barth, S.; Bottasso, C.L.; Carlson, O.; Clifton, A.; Green, J.B.; Green, P.; Holttinen, H.; et al. Grand

challenges in the science of wind energy. Science 2019, 366, eaau2027. [CrossRef] [PubMed]
6. Yang, W.; Tavner, P.J.; Crabtree, C.J.; Feng, Y.; Qiu, Y. Wind turbine condition monitoring: Technical and commercial challenges.

Wind Energy 2014, 17, 673–693. [CrossRef]
7. Narasinh, V.; Mital, P.; Chakravortty, N.; Mittal, S.; Kulkarni, N.; Venkatraman, C.; Rajakumar, A.G.; Banerjee, K. Investigating

power loss in a wind turbine using real-time vibration signature. Eng. Fail. Anal. 2024, 159, 108010. [CrossRef]
8. Vasic, S.; Orosnjak, M.D.; Brkljac, N.; Vrhovac, V.; Ristic, K. Identification of Criteria for Enabling the Adoption of Sustainable

Maintenance Practice: An Umbrella Review. Sustainability 2024, 16, 767. [CrossRef]
9. Franciosi, C.; Iung, B.; Miranda, S.; Riemma, S. Maintenance for Sustainability in the Industry 4.0 context: A Scoping Literature

Review. IFAC-PapersOnLine 2018, 51, 903–908. [CrossRef]
10. Jin, X.; Xu, Z.; Qiao, W. Condition Monitoring of Wind Turbine Generators Using SCADA Data Analysis. IEEE Trans. Sustain.

Energy 2021, 12, 202–210. [CrossRef]
11. Tautz-Weinert, J.; Watson, S.J. Using SCADA data for wind turbine condition monitoring—A review. Iet Renew. Power Gener.

2017, 11, 382–394. [CrossRef]
12. Murgia, A.; Verbeke, R.; Tsiporkova, E.; Terzi, L.; Astolfi, D. Discussion on the Suitability of SCADA-Based Condition Monitoring

for Wind Turbine Fault Diagnosis through Temperature Data Analysis. Energies 2023, 16, 620. [CrossRef]
13. Santolamazza, A.; Dadi, D.; Introna, V. A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data

Analysis Using Artificial Neural Networks. Energies 2021, 14, 1845. [CrossRef]

http://doi.org/10.1038/s41558-020-00949-9
http://dx.doi.org/10.1127/metz/2015/0530
http://dx.doi.org/10.1007/s10546-019-00473-0
http://www.ncbi.nlm.nih.gov/pubmed/31975701
http://dx.doi.org/10.1038/s43017-020-0101-7
http://dx.doi.org/10.1126/science.aau2027
http://www.ncbi.nlm.nih.gov/pubmed/31601706
http://dx.doi.org/10.1002/we.1508
http://dx.doi.org/10.1016/j.engfailanal.2024.108010
http://dx.doi.org/10.3390/su16020767
http://dx.doi.org/10.1016/j.ifacol.2018.08.459
http://dx.doi.org/10.1109/TSTE.2020.2989220
http://dx.doi.org/10.1049/iet-rpg.2016.0248
http://dx.doi.org/10.3390/en16020620
http://dx.doi.org/10.3390/en14071845


Appl. Sci. 2024, 14, 3270 19 of 20

14. Astolfi, D.; Pandit, R.K.; Terzi, L.; Lombardi, A. Discussion of Wind Turbine Performance Based on SCADA Data and Multiple
Test Case Analysis. Energies 2022, 15, 5343. [CrossRef]

15. Astolfi, D.; De Caro, F.; Vaccaro, A. Condition Monitoring of Wind Turbine Systems by Explainable Artificial Intelligence
Techniques. Sensors 2023, 23, 5376. [CrossRef] [PubMed]

16. Rao, A.R.; Reimherr, M.L. Nonlinear Functional Modeling Using Neural Networks. J. Comput. Graph. Stat. 2021, 32, 1248–1257.
[CrossRef]

17. Rao, A.R.; Reimherr, M.L. Modern non-linear function-on-function regression. Stat. Comput. 2021, 33, 1–12. [CrossRef]
18. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
19. Zhang, W.; Yang, D.; Wang, H. Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey. IEEE Syst. J.

2019, 13, 2213–2227. [CrossRef]
20. Zio, E. Prognostics and Health Management of Industrial Equipment; GIG: Hershey, PA, USA, 2013; p. 24
21. Maldonado-Correa, J.L.; Martín-Martínez, S.; Artigao, E.; Gómez-Lázaro, E. Using SCADA Data for Wind Turbine Condition

Monitoring: A Systematic Literature Review. Energies 2020, 13, 3132. [CrossRef]
22. Pandit, R.K.; Astolfi, D.; Hong, J.; Infield, D.; Santos, M. SCADA data for wind turbine data-driven condition/performance

monitoring: A review on state-of-art, challenges and future trends. Wind Eng. 2022, 47, 422 – 441. [CrossRef]
23. Wang, H.; Zhao, X.; Wang, W. Fault diagnosis and prediction of wind turbine gearbox based on a new hybrid model. Environ. Sci.

Pollut. Res. 2022, 30, 24506–24520. [CrossRef]
24. Wang, M.; Peng, J.; Luo, Y.; Shen, Z.; Yang, H. Comparison of different simplistic prediction models for forecasting PV power

output: Assessment with experimental measurements. Energy 2021, 224, 120162. [CrossRef]
25. Dolara, A.; Leva, S.; Manzolini, G. Comparison of different physical models for PV power output prediction. Sol. Energy 2015,

119, 83–99. [CrossRef]
26. Theocharides, S.; Makrides, G.; Georghiou, G.E.; Kyprianou, A. Machine learning algorithms for photovoltaic system power

output prediction. In Proceedings of the 2018 IEEE International Energy Conference (ENERGYCON), Limassol, Cyprus,
3–7 June 2018; pp. 1–6.

27. Massidda, L.; Marrocu, M. Use of multilinear adaptive regression splines and numerical weather prediction to forecast the power
output of a PV plant in Borkum, Germany. Sol. Energy 2017, 146, 141–149. [CrossRef]

28. Backhus, J.; Kono, Y. Cooling Power Consumption Dependency Simulation for Real-World Data Center Data. In Proceedings
of the 2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia,
22–24 September 2022; pp. 1–6.

29. Parmezan, A.R.S.; Souza, V.M.A.; Batista, G.E.A.P.A. Evaluation of statistical and machine learning models for time series
prediction: Identifying the state-of-the-art and the best conditions for the use of each model. Inf. Sci. 2019, 484, 302–337.
[CrossRef]

30. Wang, Q.; Wang, H.; Gupta, C.; Rao, A.R.; Khorasgani, H. A Non-linear Function-on-Function Model for Regression with Time
Series Data. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December
2020; pp. 232–239.

31. Song, X.; Liu, Y.; Xue, L.; Wang, J.; Zhang, J.; Wang, J.; Jiang, L.; Cheng, Z. Time-series well performance prediction based on Long
Short-Term Memory (LSTM) neural network model. J. Pet. Sci. Eng. 2020, 186, 106682. [CrossRef]

32. Jin, X.B.; Yu, X.H.; Wang, X.; Bai, Y.T.; Su, T.; Kong, J. Prediction for Time Series with CNN and LSTM. In Proceedings of the 11th
International Conference on Modelling, Identification and Control (ICMIC2019); Springer: Singapore, 2019.

33. Lindemann, B.; Müller, T.; Vietz, H.; Jazdi, N.; Weyrich, M. A survey on long short-term memory networks for time series
prediction. Procedia CIRP 2021, 99, 650–655. [CrossRef]

34. Han, Z.; Zhao, J.; Leung, H.; Ma, K.; Wang, W. A Review of Deep Learning Models for Time Series Prediction. IEEE Sens. J. 2019,
21, 7833–7848. [CrossRef]

35. Ramsay, J.O.; Silvermann, B.W. Functional Data Analysis, 2nd ed.; Springer: New York, NY, USA, 2005.
36. Kokoszka, P.; Reimherr, M.L. Introduction to Functional Data Analysis, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2017.
37. Ferraty, F.; Romain, Y. The Oxford Handbook of Functional Data Analysis. In Oxford Handbooks Online; Oxford University Press:

Oxford, UK, 2011.
38. ling Wang, J.; Chiou, J.M.; Müller, H.G. Functional Data Analysis. Annu. Rev. Stat. Its Appl. 2016, 3, 257–295. [CrossRef]
39. Reiss, P.T.; Goldsmith, J.; Shang, H.L.; Ogden, R.T. Methods for Scalar-on-Function Regression. Int. Stat. Rev. 2017, 85, 228–249.

[CrossRef] [PubMed]
40. Rossi, F.; Conan-Guez, B.; Fleuret, F. Functional data analysis with multi layer perceptrons. In Proceedings of the 2002

International Joint Conference on Neural Networks, IJCNN’02 (Cat. No.02CH37290), Honolulu, HI, USA, 12–17 May 2002;
Volume 3, pp. 2843–2848.

41. Liu, Y.; Cheng, H.; Kong, X.; Wang, Q.B.; Cui, H. Intelligent wind turbine blade icing detection using supervisory control and
data acquisition data and ensemble deep learning. Energy Sci. Eng. 2019, 7, 2633–2645. [CrossRef]

42. Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. . [CrossRef]
43. Lee, X.Y.; Kumar, A.; Vidyaratne, L.S.; Rao, A.R.; Farahat, A.K.; Gupta, C.R. An ensemble of convolution-based methods for

fault detection using vibration signals. In Proceedings of the 2023 IEEE International Conference on Prognostics and Health
Management (ICPHM), Montreal, QC, Canada, 5–7 June 2023; pp. 172–179.

http://dx.doi.org/10.3390/en15155343
http://dx.doi.org/10.3390/s23125376
http://www.ncbi.nlm.nih.gov/pubmed/37420542
http://dx.doi.org/10.1080/10618600.2023.2165498
http://dx.doi.org/10.1007/s11222-023-10299-z
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/JSYST.2019.2905565
http://dx.doi.org/10.3390/en13123132
http://dx.doi.org/10.1177/0309524X221124031
http://dx.doi.org/10.1007/s11356-022-23893-x
http://dx.doi.org/10.1016/j.energy.2021.120162
http://dx.doi.org/10.1016/j.solener.2015.06.017
http://dx.doi.org/10.1016/j.solener.2017.02.007
http://dx.doi.org/10.1016/j.ins.2019.01.076
http://dx.doi.org/10.1016/j.petrol.2019.106682
http://dx.doi.org/10.1016/j.procir.2021.03.088
http://dx.doi.org/10.1109/JSEN.2019.2923982
http://dx.doi.org/10.1146/annurev-statistics-041715-033624
http://dx.doi.org/10.1111/insr.12163
http://www.ncbi.nlm.nih.gov/pubmed/28919663
http://dx.doi.org/10.1002/ese3.449
.
http://dx.doi.org/10.1002/widm.1249


Appl. Sci. 2024, 14, 3270 20 of 20

44. Phyo, P.P.; Byun, Y. Hybrid Ensemble Deep Learning-Based Approach for Time Series Energy Prediction. Symmetry 2021, 13, 1942.
[CrossRef]

45. Zhou, Z.H. Ensemble Methods: Foundations and Algorithms; CRC Press: Boca Raton, FL, USA, 2012.
46. Tian, Y.; Feng, Y. RaSE: Random subspace ensemble classification. J. Mach. Learn. Res. 2021, 22, 2019–2111.
47. Guan, D.; Yuan, W.; Lee, Y.K.; Najeebullah, K.; Rasel, M.K. A Review of Ensemble Learning Based Feature Selection. IETE Tech.

Rev. 2014, 31, 190–198. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/sym13101942
http://dx.doi.org/10.1080/02564602.2014.906859

	Introduction
	Data and Methods
	Data
	Methods
	Long Short-Term Memory (LSTM)
	Functional Neural Networks (FNN)

	Model Settings
	Hyperparameter Search
	Ensemble Method
	Deterioration Detection Approach


	Results
	Prediction Models
	Deterioration Detection

	Discussion
	Conclusions
	References

